2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/net/dsa/dsa.c
Johan Hovold 3f65047c85 of_mdio: add helper to deregister fixed-link PHYs
Add helper to deregister fixed-link PHYs registered using
of_phy_register_fixed_link().

Convert the two drivers that care to deregister their fixed-link PHYs to
use the new helper, but note that most drivers currently fail to do so.

Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-29 23:17:02 -05:00

1138 lines
24 KiB
C

/*
* net/dsa/dsa.c - Hardware switch handling
* Copyright (c) 2008-2009 Marvell Semiconductor
* Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/ctype.h>
#include <linux/device.h>
#include <linux/hwmon.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <net/dsa.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/of_net.h>
#include <linux/of_gpio.h>
#include <linux/sysfs.h>
#include <linux/phy_fixed.h>
#include <linux/gpio/consumer.h>
#include "dsa_priv.h"
char dsa_driver_version[] = "0.1";
static struct sk_buff *dsa_slave_notag_xmit(struct sk_buff *skb,
struct net_device *dev)
{
/* Just return the original SKB */
return skb;
}
static const struct dsa_device_ops none_ops = {
.xmit = dsa_slave_notag_xmit,
.rcv = NULL,
};
const struct dsa_device_ops *dsa_device_ops[DSA_TAG_LAST] = {
#ifdef CONFIG_NET_DSA_TAG_DSA
[DSA_TAG_PROTO_DSA] = &dsa_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_EDSA
[DSA_TAG_PROTO_EDSA] = &edsa_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_TRAILER
[DSA_TAG_PROTO_TRAILER] = &trailer_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_BRCM
[DSA_TAG_PROTO_BRCM] = &brcm_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_QCA
[DSA_TAG_PROTO_QCA] = &qca_netdev_ops,
#endif
[DSA_TAG_PROTO_NONE] = &none_ops,
};
/* switch driver registration ***********************************************/
static DEFINE_MUTEX(dsa_switch_drivers_mutex);
static LIST_HEAD(dsa_switch_drivers);
void register_switch_driver(struct dsa_switch_ops *ops)
{
mutex_lock(&dsa_switch_drivers_mutex);
list_add_tail(&ops->list, &dsa_switch_drivers);
mutex_unlock(&dsa_switch_drivers_mutex);
}
EXPORT_SYMBOL_GPL(register_switch_driver);
void unregister_switch_driver(struct dsa_switch_ops *ops)
{
mutex_lock(&dsa_switch_drivers_mutex);
list_del_init(&ops->list);
mutex_unlock(&dsa_switch_drivers_mutex);
}
EXPORT_SYMBOL_GPL(unregister_switch_driver);
static struct dsa_switch_ops *
dsa_switch_probe(struct device *parent, struct device *host_dev, int sw_addr,
const char **_name, void **priv)
{
struct dsa_switch_ops *ret;
struct list_head *list;
const char *name;
ret = NULL;
name = NULL;
mutex_lock(&dsa_switch_drivers_mutex);
list_for_each(list, &dsa_switch_drivers) {
struct dsa_switch_ops *ops;
ops = list_entry(list, struct dsa_switch_ops, list);
name = ops->probe(parent, host_dev, sw_addr, priv);
if (name != NULL) {
ret = ops;
break;
}
}
mutex_unlock(&dsa_switch_drivers_mutex);
*_name = name;
return ret;
}
/* hwmon support ************************************************************/
#ifdef CONFIG_NET_DSA_HWMON
static ssize_t temp1_input_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dsa_switch *ds = dev_get_drvdata(dev);
int temp, ret;
ret = ds->ops->get_temp(ds, &temp);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", temp * 1000);
}
static DEVICE_ATTR_RO(temp1_input);
static ssize_t temp1_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dsa_switch *ds = dev_get_drvdata(dev);
int temp, ret;
ret = ds->ops->get_temp_limit(ds, &temp);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", temp * 1000);
}
static ssize_t temp1_max_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct dsa_switch *ds = dev_get_drvdata(dev);
int temp, ret;
ret = kstrtoint(buf, 0, &temp);
if (ret < 0)
return ret;
ret = ds->ops->set_temp_limit(ds, DIV_ROUND_CLOSEST(temp, 1000));
if (ret < 0)
return ret;
return count;
}
static DEVICE_ATTR_RW(temp1_max);
static ssize_t temp1_max_alarm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dsa_switch *ds = dev_get_drvdata(dev);
bool alarm;
int ret;
ret = ds->ops->get_temp_alarm(ds, &alarm);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", alarm);
}
static DEVICE_ATTR_RO(temp1_max_alarm);
static struct attribute *dsa_hwmon_attrs[] = {
&dev_attr_temp1_input.attr, /* 0 */
&dev_attr_temp1_max.attr, /* 1 */
&dev_attr_temp1_max_alarm.attr, /* 2 */
NULL
};
static umode_t dsa_hwmon_attrs_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct dsa_switch *ds = dev_get_drvdata(dev);
struct dsa_switch_ops *ops = ds->ops;
umode_t mode = attr->mode;
if (index == 1) {
if (!ops->get_temp_limit)
mode = 0;
else if (!ops->set_temp_limit)
mode &= ~S_IWUSR;
} else if (index == 2 && !ops->get_temp_alarm) {
mode = 0;
}
return mode;
}
static const struct attribute_group dsa_hwmon_group = {
.attrs = dsa_hwmon_attrs,
.is_visible = dsa_hwmon_attrs_visible,
};
__ATTRIBUTE_GROUPS(dsa_hwmon);
#endif /* CONFIG_NET_DSA_HWMON */
/* basic switch operations **************************************************/
int dsa_cpu_dsa_setup(struct dsa_switch *ds, struct device *dev,
struct device_node *port_dn, int port)
{
struct phy_device *phydev;
int ret, mode;
if (of_phy_is_fixed_link(port_dn)) {
ret = of_phy_register_fixed_link(port_dn);
if (ret) {
dev_err(dev, "failed to register fixed PHY\n");
return ret;
}
phydev = of_phy_find_device(port_dn);
mode = of_get_phy_mode(port_dn);
if (mode < 0)
mode = PHY_INTERFACE_MODE_NA;
phydev->interface = mode;
genphy_config_init(phydev);
genphy_read_status(phydev);
if (ds->ops->adjust_link)
ds->ops->adjust_link(ds, port, phydev);
put_device(&phydev->mdio.dev);
}
return 0;
}
static int dsa_cpu_dsa_setups(struct dsa_switch *ds, struct device *dev)
{
struct device_node *port_dn;
int ret, port;
for (port = 0; port < DSA_MAX_PORTS; port++) {
if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)))
continue;
port_dn = ds->ports[port].dn;
ret = dsa_cpu_dsa_setup(ds, dev, port_dn, port);
if (ret)
return ret;
}
return 0;
}
const struct dsa_device_ops *dsa_resolve_tag_protocol(int tag_protocol)
{
const struct dsa_device_ops *ops;
if (tag_protocol >= DSA_TAG_LAST)
return ERR_PTR(-EINVAL);
ops = dsa_device_ops[tag_protocol];
if (!ops)
return ERR_PTR(-ENOPROTOOPT);
return ops;
}
int dsa_cpu_port_ethtool_setup(struct dsa_switch *ds)
{
struct net_device *master;
struct ethtool_ops *cpu_ops;
master = ds->dst->master_netdev;
if (ds->master_netdev)
master = ds->master_netdev;
cpu_ops = devm_kzalloc(ds->dev, sizeof(*cpu_ops), GFP_KERNEL);
if (!cpu_ops)
return -ENOMEM;
memcpy(&ds->dst->master_ethtool_ops, master->ethtool_ops,
sizeof(struct ethtool_ops));
ds->dst->master_orig_ethtool_ops = master->ethtool_ops;
memcpy(cpu_ops, &ds->dst->master_ethtool_ops,
sizeof(struct ethtool_ops));
dsa_cpu_port_ethtool_init(cpu_ops);
master->ethtool_ops = cpu_ops;
return 0;
}
void dsa_cpu_port_ethtool_restore(struct dsa_switch *ds)
{
struct net_device *master;
master = ds->dst->master_netdev;
if (ds->master_netdev)
master = ds->master_netdev;
master->ethtool_ops = ds->dst->master_orig_ethtool_ops;
}
static int dsa_switch_setup_one(struct dsa_switch *ds, struct device *parent)
{
struct dsa_switch_ops *ops = ds->ops;
struct dsa_switch_tree *dst = ds->dst;
struct dsa_chip_data *cd = ds->cd;
bool valid_name_found = false;
int index = ds->index;
int i, ret;
/*
* Validate supplied switch configuration.
*/
for (i = 0; i < DSA_MAX_PORTS; i++) {
char *name;
name = cd->port_names[i];
if (name == NULL)
continue;
if (!strcmp(name, "cpu")) {
if (dst->cpu_switch != -1) {
netdev_err(dst->master_netdev,
"multiple cpu ports?!\n");
ret = -EINVAL;
goto out;
}
dst->cpu_switch = index;
dst->cpu_port = i;
ds->cpu_port_mask |= 1 << i;
} else if (!strcmp(name, "dsa")) {
ds->dsa_port_mask |= 1 << i;
} else {
ds->enabled_port_mask |= 1 << i;
}
valid_name_found = true;
}
if (!valid_name_found && i == DSA_MAX_PORTS) {
ret = -EINVAL;
goto out;
}
/* Make the built-in MII bus mask match the number of ports,
* switch drivers can override this later
*/
ds->phys_mii_mask = ds->enabled_port_mask;
/*
* If the CPU connects to this switch, set the switch tree
* tagging protocol to the preferred tagging format of this
* switch.
*/
if (dst->cpu_switch == index) {
enum dsa_tag_protocol tag_protocol;
tag_protocol = ops->get_tag_protocol(ds);
dst->tag_ops = dsa_resolve_tag_protocol(tag_protocol);
if (IS_ERR(dst->tag_ops)) {
ret = PTR_ERR(dst->tag_ops);
goto out;
}
dst->rcv = dst->tag_ops->rcv;
}
memcpy(ds->rtable, cd->rtable, sizeof(ds->rtable));
/*
* Do basic register setup.
*/
ret = ops->setup(ds);
if (ret < 0)
goto out;
if (ops->set_addr) {
ret = ops->set_addr(ds, dst->master_netdev->dev_addr);
if (ret < 0)
goto out;
}
if (!ds->slave_mii_bus && ops->phy_read) {
ds->slave_mii_bus = devm_mdiobus_alloc(parent);
if (!ds->slave_mii_bus) {
ret = -ENOMEM;
goto out;
}
dsa_slave_mii_bus_init(ds);
ret = mdiobus_register(ds->slave_mii_bus);
if (ret < 0)
goto out;
}
/*
* Create network devices for physical switch ports.
*/
for (i = 0; i < DSA_MAX_PORTS; i++) {
ds->ports[i].dn = cd->port_dn[i];
if (!(ds->enabled_port_mask & (1 << i)))
continue;
ret = dsa_slave_create(ds, parent, i, cd->port_names[i]);
if (ret < 0) {
netdev_err(dst->master_netdev, "[%d]: can't create dsa slave device for port %d(%s): %d\n",
index, i, cd->port_names[i], ret);
ret = 0;
}
}
/* Perform configuration of the CPU and DSA ports */
ret = dsa_cpu_dsa_setups(ds, parent);
if (ret < 0) {
netdev_err(dst->master_netdev, "[%d] : can't configure CPU and DSA ports\n",
index);
ret = 0;
}
ret = dsa_cpu_port_ethtool_setup(ds);
if (ret)
return ret;
#ifdef CONFIG_NET_DSA_HWMON
/* If the switch provides a temperature sensor,
* register with hardware monitoring subsystem.
* Treat registration error as non-fatal and ignore it.
*/
if (ops->get_temp) {
const char *netname = netdev_name(dst->master_netdev);
char hname[IFNAMSIZ + 1];
int i, j;
/* Create valid hwmon 'name' attribute */
for (i = j = 0; i < IFNAMSIZ && netname[i]; i++) {
if (isalnum(netname[i]))
hname[j++] = netname[i];
}
hname[j] = '\0';
scnprintf(ds->hwmon_name, sizeof(ds->hwmon_name), "%s_dsa%d",
hname, index);
ds->hwmon_dev = hwmon_device_register_with_groups(NULL,
ds->hwmon_name, ds, dsa_hwmon_groups);
if (IS_ERR(ds->hwmon_dev))
ds->hwmon_dev = NULL;
}
#endif /* CONFIG_NET_DSA_HWMON */
return ret;
out:
return ret;
}
static struct dsa_switch *
dsa_switch_setup(struct dsa_switch_tree *dst, int index,
struct device *parent, struct device *host_dev)
{
struct dsa_chip_data *cd = dst->pd->chip + index;
struct dsa_switch_ops *ops;
struct dsa_switch *ds;
int ret;
const char *name;
void *priv;
/*
* Probe for switch model.
*/
ops = dsa_switch_probe(parent, host_dev, cd->sw_addr, &name, &priv);
if (!ops) {
netdev_err(dst->master_netdev, "[%d]: could not detect attached switch\n",
index);
return ERR_PTR(-EINVAL);
}
netdev_info(dst->master_netdev, "[%d]: detected a %s switch\n",
index, name);
/*
* Allocate and initialise switch state.
*/
ds = devm_kzalloc(parent, sizeof(*ds), GFP_KERNEL);
if (ds == NULL)
return ERR_PTR(-ENOMEM);
ds->dst = dst;
ds->index = index;
ds->cd = cd;
ds->ops = ops;
ds->priv = priv;
ds->dev = parent;
ret = dsa_switch_setup_one(ds, parent);
if (ret)
return ERR_PTR(ret);
return ds;
}
void dsa_cpu_dsa_destroy(struct device_node *port_dn)
{
if (of_phy_is_fixed_link(port_dn))
of_phy_deregister_fixed_link(port_dn);
}
static void dsa_switch_destroy(struct dsa_switch *ds)
{
int port;
#ifdef CONFIG_NET_DSA_HWMON
if (ds->hwmon_dev)
hwmon_device_unregister(ds->hwmon_dev);
#endif
/* Destroy network devices for physical switch ports. */
for (port = 0; port < DSA_MAX_PORTS; port++) {
if (!(ds->enabled_port_mask & (1 << port)))
continue;
if (!ds->ports[port].netdev)
continue;
dsa_slave_destroy(ds->ports[port].netdev);
}
/* Disable configuration of the CPU and DSA ports */
for (port = 0; port < DSA_MAX_PORTS; port++) {
if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)))
continue;
dsa_cpu_dsa_destroy(ds->ports[port].dn);
/* Clearing a bit which is not set does no harm */
ds->cpu_port_mask |= ~(1 << port);
ds->dsa_port_mask |= ~(1 << port);
}
if (ds->slave_mii_bus && ds->ops->phy_read)
mdiobus_unregister(ds->slave_mii_bus);
}
#ifdef CONFIG_PM_SLEEP
int dsa_switch_suspend(struct dsa_switch *ds)
{
int i, ret = 0;
/* Suspend slave network devices */
for (i = 0; i < DSA_MAX_PORTS; i++) {
if (!dsa_is_port_initialized(ds, i))
continue;
ret = dsa_slave_suspend(ds->ports[i].netdev);
if (ret)
return ret;
}
if (ds->ops->suspend)
ret = ds->ops->suspend(ds);
return ret;
}
EXPORT_SYMBOL_GPL(dsa_switch_suspend);
int dsa_switch_resume(struct dsa_switch *ds)
{
int i, ret = 0;
if (ds->ops->resume)
ret = ds->ops->resume(ds);
if (ret)
return ret;
/* Resume slave network devices */
for (i = 0; i < DSA_MAX_PORTS; i++) {
if (!dsa_is_port_initialized(ds, i))
continue;
ret = dsa_slave_resume(ds->ports[i].netdev);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(dsa_switch_resume);
#endif
/* platform driver init and cleanup *****************************************/
static int dev_is_class(struct device *dev, void *class)
{
if (dev->class != NULL && !strcmp(dev->class->name, class))
return 1;
return 0;
}
static struct device *dev_find_class(struct device *parent, char *class)
{
if (dev_is_class(parent, class)) {
get_device(parent);
return parent;
}
return device_find_child(parent, class, dev_is_class);
}
struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev)
{
struct device *d;
d = dev_find_class(dev, "mdio_bus");
if (d != NULL) {
struct mii_bus *bus;
bus = to_mii_bus(d);
put_device(d);
return bus;
}
return NULL;
}
EXPORT_SYMBOL_GPL(dsa_host_dev_to_mii_bus);
static struct net_device *dev_to_net_device(struct device *dev)
{
struct device *d;
d = dev_find_class(dev, "net");
if (d != NULL) {
struct net_device *nd;
nd = to_net_dev(d);
dev_hold(nd);
put_device(d);
return nd;
}
return NULL;
}
#ifdef CONFIG_OF
static int dsa_of_setup_routing_table(struct dsa_platform_data *pd,
struct dsa_chip_data *cd,
int chip_index, int port_index,
struct device_node *link)
{
const __be32 *reg;
int link_sw_addr;
struct device_node *parent_sw;
int len;
parent_sw = of_get_parent(link);
if (!parent_sw)
return -EINVAL;
reg = of_get_property(parent_sw, "reg", &len);
if (!reg || (len != sizeof(*reg) * 2))
return -EINVAL;
/*
* Get the destination switch number from the second field of its 'reg'
* property, i.e. for "reg = <0x19 1>" sw_addr is '1'.
*/
link_sw_addr = be32_to_cpup(reg + 1);
if (link_sw_addr >= pd->nr_chips)
return -EINVAL;
cd->rtable[link_sw_addr] = port_index;
return 0;
}
static int dsa_of_probe_links(struct dsa_platform_data *pd,
struct dsa_chip_data *cd,
int chip_index, int port_index,
struct device_node *port,
const char *port_name)
{
struct device_node *link;
int link_index;
int ret;
for (link_index = 0;; link_index++) {
link = of_parse_phandle(port, "link", link_index);
if (!link)
break;
if (!strcmp(port_name, "dsa") && pd->nr_chips > 1) {
ret = dsa_of_setup_routing_table(pd, cd, chip_index,
port_index, link);
if (ret)
return ret;
}
}
return 0;
}
static void dsa_of_free_platform_data(struct dsa_platform_data *pd)
{
int i;
int port_index;
for (i = 0; i < pd->nr_chips; i++) {
port_index = 0;
while (port_index < DSA_MAX_PORTS) {
kfree(pd->chip[i].port_names[port_index]);
port_index++;
}
/* Drop our reference to the MDIO bus device */
if (pd->chip[i].host_dev)
put_device(pd->chip[i].host_dev);
}
kfree(pd->chip);
}
static int dsa_of_probe(struct device *dev)
{
struct device_node *np = dev->of_node;
struct device_node *child, *mdio, *ethernet, *port;
struct mii_bus *mdio_bus, *mdio_bus_switch;
struct net_device *ethernet_dev;
struct dsa_platform_data *pd;
struct dsa_chip_data *cd;
const char *port_name;
int chip_index, port_index;
const unsigned int *sw_addr, *port_reg;
u32 eeprom_len;
int ret;
mdio = of_parse_phandle(np, "dsa,mii-bus", 0);
if (!mdio)
return -EINVAL;
mdio_bus = of_mdio_find_bus(mdio);
if (!mdio_bus)
return -EPROBE_DEFER;
ethernet = of_parse_phandle(np, "dsa,ethernet", 0);
if (!ethernet) {
ret = -EINVAL;
goto out_put_mdio;
}
ethernet_dev = of_find_net_device_by_node(ethernet);
if (!ethernet_dev) {
ret = -EPROBE_DEFER;
goto out_put_mdio;
}
pd = kzalloc(sizeof(*pd), GFP_KERNEL);
if (!pd) {
ret = -ENOMEM;
goto out_put_ethernet;
}
dev->platform_data = pd;
pd->of_netdev = ethernet_dev;
pd->nr_chips = of_get_available_child_count(np);
if (pd->nr_chips > DSA_MAX_SWITCHES)
pd->nr_chips = DSA_MAX_SWITCHES;
pd->chip = kcalloc(pd->nr_chips, sizeof(struct dsa_chip_data),
GFP_KERNEL);
if (!pd->chip) {
ret = -ENOMEM;
goto out_free;
}
chip_index = -1;
for_each_available_child_of_node(np, child) {
int i;
chip_index++;
cd = &pd->chip[chip_index];
cd->of_node = child;
/* Initialize the routing table */
for (i = 0; i < DSA_MAX_SWITCHES; ++i)
cd->rtable[i] = DSA_RTABLE_NONE;
/* When assigning the host device, increment its refcount */
cd->host_dev = get_device(&mdio_bus->dev);
sw_addr = of_get_property(child, "reg", NULL);
if (!sw_addr)
continue;
cd->sw_addr = be32_to_cpup(sw_addr);
if (cd->sw_addr >= PHY_MAX_ADDR)
continue;
if (!of_property_read_u32(child, "eeprom-length", &eeprom_len))
cd->eeprom_len = eeprom_len;
mdio = of_parse_phandle(child, "mii-bus", 0);
if (mdio) {
mdio_bus_switch = of_mdio_find_bus(mdio);
if (!mdio_bus_switch) {
ret = -EPROBE_DEFER;
goto out_free_chip;
}
/* Drop the mdio_bus device ref, replacing the host
* device with the mdio_bus_switch device, keeping
* the refcount from of_mdio_find_bus() above.
*/
put_device(cd->host_dev);
cd->host_dev = &mdio_bus_switch->dev;
}
for_each_available_child_of_node(child, port) {
port_reg = of_get_property(port, "reg", NULL);
if (!port_reg)
continue;
port_index = be32_to_cpup(port_reg);
if (port_index >= DSA_MAX_PORTS)
break;
port_name = of_get_property(port, "label", NULL);
if (!port_name)
continue;
cd->port_dn[port_index] = port;
cd->port_names[port_index] = kstrdup(port_name,
GFP_KERNEL);
if (!cd->port_names[port_index]) {
ret = -ENOMEM;
goto out_free_chip;
}
ret = dsa_of_probe_links(pd, cd, chip_index,
port_index, port, port_name);
if (ret)
goto out_free_chip;
}
}
/* The individual chips hold their own refcount on the mdio bus,
* so drop ours */
put_device(&mdio_bus->dev);
return 0;
out_free_chip:
dsa_of_free_platform_data(pd);
out_free:
kfree(pd);
dev->platform_data = NULL;
out_put_ethernet:
put_device(&ethernet_dev->dev);
out_put_mdio:
put_device(&mdio_bus->dev);
return ret;
}
static void dsa_of_remove(struct device *dev)
{
struct dsa_platform_data *pd = dev->platform_data;
if (!dev->of_node)
return;
dsa_of_free_platform_data(pd);
put_device(&pd->of_netdev->dev);
kfree(pd);
}
#else
static inline int dsa_of_probe(struct device *dev)
{
return 0;
}
static inline void dsa_of_remove(struct device *dev)
{
}
#endif
static int dsa_setup_dst(struct dsa_switch_tree *dst, struct net_device *dev,
struct device *parent, struct dsa_platform_data *pd)
{
int i;
unsigned configured = 0;
dst->pd = pd;
dst->master_netdev = dev;
dst->cpu_switch = -1;
dst->cpu_port = -1;
for (i = 0; i < pd->nr_chips; i++) {
struct dsa_switch *ds;
ds = dsa_switch_setup(dst, i, parent, pd->chip[i].host_dev);
if (IS_ERR(ds)) {
netdev_err(dev, "[%d]: couldn't create dsa switch instance (error %ld)\n",
i, PTR_ERR(ds));
continue;
}
dst->ds[i] = ds;
++configured;
}
/*
* If no switch was found, exit cleanly
*/
if (!configured)
return -EPROBE_DEFER;
/*
* If we use a tagging format that doesn't have an ethertype
* field, make sure that all packets from this point on get
* sent to the tag format's receive function.
*/
wmb();
dev->dsa_ptr = (void *)dst;
return 0;
}
static int dsa_probe(struct platform_device *pdev)
{
struct dsa_platform_data *pd = pdev->dev.platform_data;
struct net_device *dev;
struct dsa_switch_tree *dst;
int ret;
pr_notice_once("Distributed Switch Architecture driver version %s\n",
dsa_driver_version);
if (pdev->dev.of_node) {
ret = dsa_of_probe(&pdev->dev);
if (ret)
return ret;
pd = pdev->dev.platform_data;
}
if (pd == NULL || (pd->netdev == NULL && pd->of_netdev == NULL))
return -EINVAL;
if (pd->of_netdev) {
dev = pd->of_netdev;
dev_hold(dev);
} else {
dev = dev_to_net_device(pd->netdev);
}
if (dev == NULL) {
ret = -EPROBE_DEFER;
goto out;
}
if (dev->dsa_ptr != NULL) {
dev_put(dev);
ret = -EEXIST;
goto out;
}
dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL);
if (dst == NULL) {
dev_put(dev);
ret = -ENOMEM;
goto out;
}
platform_set_drvdata(pdev, dst);
ret = dsa_setup_dst(dst, dev, &pdev->dev, pd);
if (ret) {
dev_put(dev);
goto out;
}
return 0;
out:
dsa_of_remove(&pdev->dev);
return ret;
}
static void dsa_remove_dst(struct dsa_switch_tree *dst)
{
int i;
dst->master_netdev->dsa_ptr = NULL;
/* If we used a tagging format that doesn't have an ethertype
* field, make sure that all packets from this point get sent
* without the tag and go through the regular receive path.
*/
wmb();
for (i = 0; i < dst->pd->nr_chips; i++) {
struct dsa_switch *ds = dst->ds[i];
if (ds)
dsa_switch_destroy(ds);
}
dsa_cpu_port_ethtool_restore(dst->ds[0]);
dev_put(dst->master_netdev);
}
static int dsa_remove(struct platform_device *pdev)
{
struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
dsa_remove_dst(dst);
dsa_of_remove(&pdev->dev);
return 0;
}
static void dsa_shutdown(struct platform_device *pdev)
{
}
static int dsa_switch_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct dsa_switch_tree *dst = dev->dsa_ptr;
if (unlikely(dst == NULL)) {
kfree_skb(skb);
return 0;
}
return dst->rcv(skb, dev, pt, orig_dev);
}
static struct packet_type dsa_pack_type __read_mostly = {
.type = cpu_to_be16(ETH_P_XDSA),
.func = dsa_switch_rcv,
};
static struct notifier_block dsa_netdevice_nb __read_mostly = {
.notifier_call = dsa_slave_netdevice_event,
};
#ifdef CONFIG_PM_SLEEP
static int dsa_suspend(struct device *d)
{
struct platform_device *pdev = to_platform_device(d);
struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
int i, ret = 0;
for (i = 0; i < dst->pd->nr_chips; i++) {
struct dsa_switch *ds = dst->ds[i];
if (ds != NULL)
ret = dsa_switch_suspend(ds);
}
return ret;
}
static int dsa_resume(struct device *d)
{
struct platform_device *pdev = to_platform_device(d);
struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
int i, ret = 0;
for (i = 0; i < dst->pd->nr_chips; i++) {
struct dsa_switch *ds = dst->ds[i];
if (ds != NULL)
ret = dsa_switch_resume(ds);
}
return ret;
}
#endif
static SIMPLE_DEV_PM_OPS(dsa_pm_ops, dsa_suspend, dsa_resume);
static const struct of_device_id dsa_of_match_table[] = {
{ .compatible = "marvell,dsa", },
{}
};
MODULE_DEVICE_TABLE(of, dsa_of_match_table);
static struct platform_driver dsa_driver = {
.probe = dsa_probe,
.remove = dsa_remove,
.shutdown = dsa_shutdown,
.driver = {
.name = "dsa",
.of_match_table = dsa_of_match_table,
.pm = &dsa_pm_ops,
},
};
static int __init dsa_init_module(void)
{
int rc;
register_netdevice_notifier(&dsa_netdevice_nb);
rc = platform_driver_register(&dsa_driver);
if (rc)
return rc;
dev_add_pack(&dsa_pack_type);
return 0;
}
module_init(dsa_init_module);
static void __exit dsa_cleanup_module(void)
{
unregister_netdevice_notifier(&dsa_netdevice_nb);
dev_remove_pack(&dsa_pack_type);
platform_driver_unregister(&dsa_driver);
}
module_exit(dsa_cleanup_module);
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dsa");