2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 23:53:55 +08:00
linux-next/net/irda/qos.c
Jeff Kirsher d37705092f net/irda: Fix FSF address in file headers
Several files refer to an old address for the Free Software Foundation
in the file header comment.  Resolve by replacing the address with
the URL <http://www.gnu.org/licenses/> so that we do not have to keep
updating the header comments anytime the address changes.

CC: Samuel Ortiz <samuel@sortiz.org>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 12:37:57 -05:00

775 lines
22 KiB
C

/*********************************************************************
*
* Filename: qos.c
* Version: 1.0
* Description: IrLAP QoS parameter negotiation
* Status: Stable
* Author: Dag Brattli <dagb@cs.uit.no>
* Created at: Tue Sep 9 00:00:26 1997
* Modified at: Sun Jan 30 14:29:16 2000
* Modified by: Dag Brattli <dagb@cs.uit.no>
*
* Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
* All Rights Reserved.
* Copyright (c) 2000-2001 Jean Tourrilhes <jt@hpl.hp.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
********************************************************************/
#include <linux/export.h>
#include <asm/byteorder.h>
#include <net/irda/irda.h>
#include <net/irda/parameters.h>
#include <net/irda/qos.h>
#include <net/irda/irlap.h>
#include <net/irda/irlap_frame.h>
/*
* Maximum values of the baud rate we negotiate with the other end.
* Most often, you don't have to change that, because Linux-IrDA will
* use the maximum offered by the link layer, which usually works fine.
* In some very rare cases, you may want to limit it to lower speeds...
*/
int sysctl_max_baud_rate = 16000000;
/*
* Maximum value of the lap disconnect timer we negotiate with the other end.
* Most often, the value below represent the best compromise, but some user
* may want to keep the LAP alive longer or shorter in case of link failure.
* Remember that the threshold time (early warning) is fixed to 3s...
*/
int sysctl_max_noreply_time = 12;
/*
* Minimum turn time to be applied before transmitting to the peer.
* Nonzero values (usec) are used as lower limit to the per-connection
* mtt value which was announced by the other end during negotiation.
* Might be helpful if the peer device provides too short mtt.
* Default is 10us which means using the unmodified value given by the
* peer except if it's 0 (0 is likely a bug in the other stack).
*/
unsigned int sysctl_min_tx_turn_time = 10;
/*
* Maximum data size to be used in transmission in payload of LAP frame.
* There is a bit of confusion in the IrDA spec :
* The LAP spec defines the payload of a LAP frame (I field) to be
* 2048 bytes max (IrLAP 1.1, chapt 6.6.5, p40).
* On the other hand, the PHY mention frames of 2048 bytes max (IrPHY
* 1.2, chapt 5.3.2.1, p41). But, this number includes the LAP header
* (2 bytes), and CRC (32 bits at 4 Mb/s). So, for the I field (LAP
* payload), that's only 2042 bytes. Oups !
* My nsc-ircc hardware has troubles receiving 2048 bytes frames at 4 Mb/s,
* so adjust to 2042... I don't know if this bug applies only for 2048
* bytes frames or all negotiated frame sizes, but you can use the sysctl
* to play with this value anyway.
* Jean II */
unsigned int sysctl_max_tx_data_size = 2042;
/*
* Maximum transmit window, i.e. number of LAP frames between turn-around.
* This allow to override what the peer told us. Some peers are buggy and
* don't always support what they tell us.
* Jean II */
unsigned int sysctl_max_tx_window = 7;
static int irlap_param_baud_rate(void *instance, irda_param_t *param, int get);
static int irlap_param_link_disconnect(void *instance, irda_param_t *parm,
int get);
static int irlap_param_max_turn_time(void *instance, irda_param_t *param,
int get);
static int irlap_param_data_size(void *instance, irda_param_t *param, int get);
static int irlap_param_window_size(void *instance, irda_param_t *param,
int get);
static int irlap_param_additional_bofs(void *instance, irda_param_t *parm,
int get);
static int irlap_param_min_turn_time(void *instance, irda_param_t *param,
int get);
#ifndef CONFIG_IRDA_DYNAMIC_WINDOW
static __u32 irlap_requested_line_capacity(struct qos_info *qos);
#endif
static __u32 min_turn_times[] = { 10000, 5000, 1000, 500, 100, 50, 10, 0 }; /* us */
static __u32 baud_rates[] = { 2400, 9600, 19200, 38400, 57600, 115200, 576000,
1152000, 4000000, 16000000 }; /* bps */
static __u32 data_sizes[] = { 64, 128, 256, 512, 1024, 2048 }; /* bytes */
static __u32 add_bofs[] = { 48, 24, 12, 5, 3, 2, 1, 0 }; /* bytes */
static __u32 max_turn_times[] = { 500, 250, 100, 50 }; /* ms */
static __u32 link_disc_times[] = { 3, 8, 12, 16, 20, 25, 30, 40 }; /* secs */
static __u32 max_line_capacities[10][4] = {
/* 500 ms 250 ms 100 ms 50 ms (max turn time) */
{ 100, 0, 0, 0 }, /* 2400 bps */
{ 400, 0, 0, 0 }, /* 9600 bps */
{ 800, 0, 0, 0 }, /* 19200 bps */
{ 1600, 0, 0, 0 }, /* 38400 bps */
{ 2360, 0, 0, 0 }, /* 57600 bps */
{ 4800, 2400, 960, 480 }, /* 115200 bps */
{ 28800, 11520, 5760, 2880 }, /* 576000 bps */
{ 57600, 28800, 11520, 5760 }, /* 1152000 bps */
{ 200000, 100000, 40000, 20000 }, /* 4000000 bps */
{ 800000, 400000, 160000, 80000 }, /* 16000000 bps */
};
static pi_minor_info_t pi_minor_call_table_type_0[] = {
{ NULL, 0 },
/* 01 */{ irlap_param_baud_rate, PV_INTEGER | PV_LITTLE_ENDIAN },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
/* 08 */{ irlap_param_link_disconnect, PV_INT_8_BITS }
};
static pi_minor_info_t pi_minor_call_table_type_1[] = {
{ NULL, 0 },
{ NULL, 0 },
/* 82 */{ irlap_param_max_turn_time, PV_INT_8_BITS },
/* 83 */{ irlap_param_data_size, PV_INT_8_BITS },
/* 84 */{ irlap_param_window_size, PV_INT_8_BITS },
/* 85 */{ irlap_param_additional_bofs, PV_INT_8_BITS },
/* 86 */{ irlap_param_min_turn_time, PV_INT_8_BITS },
};
static pi_major_info_t pi_major_call_table[] = {
{ pi_minor_call_table_type_0, 9 },
{ pi_minor_call_table_type_1, 7 },
};
static pi_param_info_t irlap_param_info = { pi_major_call_table, 2, 0x7f, 7 };
/* ---------------------- LOCAL SUBROUTINES ---------------------- */
/* Note : we start with a bunch of local subroutines.
* As the compiler is "one pass", this is the only way to get them to
* inline properly...
* Jean II
*/
/*
* Function value_index (value, array, size)
*
* Returns the index to the value in the specified array
*/
static inline int value_index(__u32 value, __u32 *array, int size)
{
int i;
for (i=0; i < size; i++)
if (array[i] == value)
break;
return i;
}
/*
* Function index_value (index, array)
*
* Returns value to index in array, easy!
*
*/
static inline __u32 index_value(int index, __u32 *array)
{
return array[index];
}
/*
* Function msb_index (word)
*
* Returns index to most significant bit (MSB) in word
*
*/
static int msb_index (__u16 word)
{
__u16 msb = 0x8000;
int index = 15; /* Current MSB */
/* Check for buggy peers.
* Note : there is a small probability that it could be us, but I
* would expect driver authors to catch that pretty early and be
* able to check precisely what's going on. If a end user sees this,
* it's very likely the peer. - Jean II */
if (word == 0) {
IRDA_WARNING("%s(), Detected buggy peer, adjust null PV to 0x1!\n",
__func__);
/* The only safe choice (we don't know the array size) */
word = 0x1;
}
while (msb) {
if (word & msb)
break; /* Found it! */
msb >>=1;
index--;
}
return index;
}
/*
* Function value_lower_bits (value, array)
*
* Returns a bit field marking all possibility lower than value.
*/
static inline int value_lower_bits(__u32 value, __u32 *array, int size, __u16 *field)
{
int i;
__u16 mask = 0x1;
__u16 result = 0x0;
for (i=0; i < size; i++) {
/* Add the current value to the bit field, shift mask */
result |= mask;
mask <<= 1;
/* Finished ? */
if (array[i] >= value)
break;
}
/* Send back a valid index */
if(i >= size)
i = size - 1; /* Last item */
*field = result;
return i;
}
/*
* Function value_highest_bit (value, array)
*
* Returns a bit field marking the highest possibility lower than value.
*/
static inline int value_highest_bit(__u32 value, __u32 *array, int size, __u16 *field)
{
int i;
__u16 mask = 0x1;
__u16 result = 0x0;
for (i=0; i < size; i++) {
/* Finished ? */
if (array[i] <= value)
break;
/* Shift mask */
mask <<= 1;
}
/* Set the current value to the bit field */
result |= mask;
/* Send back a valid index */
if(i >= size)
i = size - 1; /* Last item */
*field = result;
return i;
}
/* -------------------------- MAIN CALLS -------------------------- */
/*
* Function irda_qos_compute_intersection (qos, new)
*
* Compute the intersection of the old QoS capabilities with new ones
*
*/
void irda_qos_compute_intersection(struct qos_info *qos, struct qos_info *new)
{
IRDA_ASSERT(qos != NULL, return;);
IRDA_ASSERT(new != NULL, return;);
/* Apply */
qos->baud_rate.bits &= new->baud_rate.bits;
qos->window_size.bits &= new->window_size.bits;
qos->min_turn_time.bits &= new->min_turn_time.bits;
qos->max_turn_time.bits &= new->max_turn_time.bits;
qos->data_size.bits &= new->data_size.bits;
qos->link_disc_time.bits &= new->link_disc_time.bits;
qos->additional_bofs.bits &= new->additional_bofs.bits;
irda_qos_bits_to_value(qos);
}
/*
* Function irda_init_max_qos_capabilies (qos)
*
* The purpose of this function is for layers and drivers to be able to
* set the maximum QoS possible and then "and in" their own limitations
*
*/
void irda_init_max_qos_capabilies(struct qos_info *qos)
{
int i;
/*
* These are the maximum supported values as specified on pages
* 39-43 in IrLAP
*/
/* Use sysctl to set some configurable values... */
/* Set configured max speed */
i = value_lower_bits(sysctl_max_baud_rate, baud_rates, 10,
&qos->baud_rate.bits);
sysctl_max_baud_rate = index_value(i, baud_rates);
/* Set configured max disc time */
i = value_lower_bits(sysctl_max_noreply_time, link_disc_times, 8,
&qos->link_disc_time.bits);
sysctl_max_noreply_time = index_value(i, link_disc_times);
/* LSB is first byte, MSB is second byte */
qos->baud_rate.bits &= 0x03ff;
qos->window_size.bits = 0x7f;
qos->min_turn_time.bits = 0xff;
qos->max_turn_time.bits = 0x0f;
qos->data_size.bits = 0x3f;
qos->link_disc_time.bits &= 0xff;
qos->additional_bofs.bits = 0xff;
}
EXPORT_SYMBOL(irda_init_max_qos_capabilies);
/*
* Function irlap_adjust_qos_settings (qos)
*
* Adjust QoS settings in case some values are not possible to use because
* of other settings
*/
static void irlap_adjust_qos_settings(struct qos_info *qos)
{
__u32 line_capacity;
int index;
IRDA_DEBUG(2, "%s()\n", __func__);
/*
* Make sure the mintt is sensible.
* Main culprit : Ericsson T39. - Jean II
*/
if (sysctl_min_tx_turn_time > qos->min_turn_time.value) {
int i;
IRDA_WARNING("%s(), Detected buggy peer, adjust mtt to %dus!\n",
__func__, sysctl_min_tx_turn_time);
/* We don't really need bits, but easier this way */
i = value_highest_bit(sysctl_min_tx_turn_time, min_turn_times,
8, &qos->min_turn_time.bits);
sysctl_min_tx_turn_time = index_value(i, min_turn_times);
qos->min_turn_time.value = sysctl_min_tx_turn_time;
}
/*
* Not allowed to use a max turn time less than 500 ms if the baudrate
* is less than 115200
*/
if ((qos->baud_rate.value < 115200) &&
(qos->max_turn_time.value < 500))
{
IRDA_DEBUG(0,
"%s(), adjusting max turn time from %d to 500 ms\n",
__func__, qos->max_turn_time.value);
qos->max_turn_time.value = 500;
}
/*
* The data size must be adjusted according to the baud rate and max
* turn time
*/
index = value_index(qos->data_size.value, data_sizes, 6);
line_capacity = irlap_max_line_capacity(qos->baud_rate.value,
qos->max_turn_time.value);
#ifdef CONFIG_IRDA_DYNAMIC_WINDOW
while ((qos->data_size.value > line_capacity) && (index > 0)) {
qos->data_size.value = data_sizes[index--];
IRDA_DEBUG(2, "%s(), reducing data size to %d\n",
__func__, qos->data_size.value);
}
#else /* Use method described in section 6.6.11 of IrLAP */
while (irlap_requested_line_capacity(qos) > line_capacity) {
IRDA_ASSERT(index != 0, return;);
/* Must be able to send at least one frame */
if (qos->window_size.value > 1) {
qos->window_size.value--;
IRDA_DEBUG(2, "%s(), reducing window size to %d\n",
__func__, qos->window_size.value);
} else if (index > 1) {
qos->data_size.value = data_sizes[index--];
IRDA_DEBUG(2, "%s(), reducing data size to %d\n",
__func__, qos->data_size.value);
} else {
IRDA_WARNING("%s(), nothing more we can do!\n",
__func__);
}
}
#endif /* CONFIG_IRDA_DYNAMIC_WINDOW */
/*
* Fix tx data size according to user limits - Jean II
*/
if (qos->data_size.value > sysctl_max_tx_data_size)
/* Allow non discrete adjustement to avoid losing capacity */
qos->data_size.value = sysctl_max_tx_data_size;
/*
* Override Tx window if user request it. - Jean II
*/
if (qos->window_size.value > sysctl_max_tx_window)
qos->window_size.value = sysctl_max_tx_window;
}
/*
* Function irlap_negotiate (qos_device, qos_session, skb)
*
* Negotiate QoS values, not really that much negotiation :-)
* We just set the QoS capabilities for the peer station
*
*/
int irlap_qos_negotiate(struct irlap_cb *self, struct sk_buff *skb)
{
int ret;
ret = irda_param_extract_all(self, skb->data, skb->len,
&irlap_param_info);
/* Convert the negotiated bits to values */
irda_qos_bits_to_value(&self->qos_tx);
irda_qos_bits_to_value(&self->qos_rx);
irlap_adjust_qos_settings(&self->qos_tx);
IRDA_DEBUG(2, "Setting BAUD_RATE to %d bps.\n",
self->qos_tx.baud_rate.value);
IRDA_DEBUG(2, "Setting DATA_SIZE to %d bytes\n",
self->qos_tx.data_size.value);
IRDA_DEBUG(2, "Setting WINDOW_SIZE to %d\n",
self->qos_tx.window_size.value);
IRDA_DEBUG(2, "Setting XBOFS to %d\n",
self->qos_tx.additional_bofs.value);
IRDA_DEBUG(2, "Setting MAX_TURN_TIME to %d ms.\n",
self->qos_tx.max_turn_time.value);
IRDA_DEBUG(2, "Setting MIN_TURN_TIME to %d usecs.\n",
self->qos_tx.min_turn_time.value);
IRDA_DEBUG(2, "Setting LINK_DISC to %d secs.\n",
self->qos_tx.link_disc_time.value);
return ret;
}
/*
* Function irlap_insert_negotiation_params (qos, fp)
*
* Insert QoS negotiaion pararameters into frame
*
*/
int irlap_insert_qos_negotiation_params(struct irlap_cb *self,
struct sk_buff *skb)
{
int ret;
/* Insert data rate */
ret = irda_param_insert(self, PI_BAUD_RATE, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
/* Insert max turnaround time */
ret = irda_param_insert(self, PI_MAX_TURN_TIME, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
/* Insert data size */
ret = irda_param_insert(self, PI_DATA_SIZE, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
/* Insert window size */
ret = irda_param_insert(self, PI_WINDOW_SIZE, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
/* Insert additional BOFs */
ret = irda_param_insert(self, PI_ADD_BOFS, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
/* Insert minimum turnaround time */
ret = irda_param_insert(self, PI_MIN_TURN_TIME, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
/* Insert link disconnect/threshold time */
ret = irda_param_insert(self, PI_LINK_DISC, skb_tail_pointer(skb),
skb_tailroom(skb), &irlap_param_info);
if (ret < 0)
return ret;
skb_put(skb, ret);
return 0;
}
/*
* Function irlap_param_baud_rate (instance, param, get)
*
* Negotiate data-rate
*
*/
static int irlap_param_baud_rate(void *instance, irda_param_t *param, int get)
{
__u16 final;
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get) {
param->pv.i = self->qos_rx.baud_rate.bits;
IRDA_DEBUG(2, "%s(), baud rate = 0x%02x\n",
__func__, param->pv.i);
} else {
/*
* Stations must agree on baud rate, so calculate
* intersection
*/
IRDA_DEBUG(2, "Requested BAUD_RATE: 0x%04x\n", (__u16) param->pv.i);
final = (__u16) param->pv.i & self->qos_rx.baud_rate.bits;
IRDA_DEBUG(2, "Final BAUD_RATE: 0x%04x\n", final);
self->qos_tx.baud_rate.bits = final;
self->qos_rx.baud_rate.bits = final;
}
return 0;
}
/*
* Function irlap_param_link_disconnect (instance, param, get)
*
* Negotiate link disconnect/threshold time.
*
*/
static int irlap_param_link_disconnect(void *instance, irda_param_t *param,
int get)
{
__u16 final;
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.link_disc_time.bits;
else {
/*
* Stations must agree on link disconnect/threshold
* time.
*/
IRDA_DEBUG(2, "LINK_DISC: %02x\n", (__u8) param->pv.i);
final = (__u8) param->pv.i & self->qos_rx.link_disc_time.bits;
IRDA_DEBUG(2, "Final LINK_DISC: %02x\n", final);
self->qos_tx.link_disc_time.bits = final;
self->qos_rx.link_disc_time.bits = final;
}
return 0;
}
/*
* Function irlap_param_max_turn_time (instance, param, get)
*
* Negotiate the maximum turnaround time. This is a type 1 parameter and
* will be negotiated independently for each station
*
*/
static int irlap_param_max_turn_time(void *instance, irda_param_t *param,
int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.max_turn_time.bits;
else
self->qos_tx.max_turn_time.bits = (__u8) param->pv.i;
return 0;
}
/*
* Function irlap_param_data_size (instance, param, get)
*
* Negotiate the data size. This is a type 1 parameter and
* will be negotiated independently for each station
*
*/
static int irlap_param_data_size(void *instance, irda_param_t *param, int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.data_size.bits;
else
self->qos_tx.data_size.bits = (__u8) param->pv.i;
return 0;
}
/*
* Function irlap_param_window_size (instance, param, get)
*
* Negotiate the window size. This is a type 1 parameter and
* will be negotiated independently for each station
*
*/
static int irlap_param_window_size(void *instance, irda_param_t *param,
int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.window_size.bits;
else
self->qos_tx.window_size.bits = (__u8) param->pv.i;
return 0;
}
/*
* Function irlap_param_additional_bofs (instance, param, get)
*
* Negotiate additional BOF characters. This is a type 1 parameter and
* will be negotiated independently for each station.
*/
static int irlap_param_additional_bofs(void *instance, irda_param_t *param, int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.additional_bofs.bits;
else
self->qos_tx.additional_bofs.bits = (__u8) param->pv.i;
return 0;
}
/*
* Function irlap_param_min_turn_time (instance, param, get)
*
* Negotiate the minimum turn around time. This is a type 1 parameter and
* will be negotiated independently for each station
*/
static int irlap_param_min_turn_time(void *instance, irda_param_t *param,
int get)
{
struct irlap_cb *self = (struct irlap_cb *) instance;
IRDA_ASSERT(self != NULL, return -1;);
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
if (get)
param->pv.i = self->qos_rx.min_turn_time.bits;
else
self->qos_tx.min_turn_time.bits = (__u8) param->pv.i;
return 0;
}
/*
* Function irlap_max_line_capacity (speed, max_turn_time, min_turn_time)
*
* Calculate the maximum line capacity
*
*/
__u32 irlap_max_line_capacity(__u32 speed, __u32 max_turn_time)
{
__u32 line_capacity;
int i,j;
IRDA_DEBUG(2, "%s(), speed=%d, max_turn_time=%d\n",
__func__, speed, max_turn_time);
i = value_index(speed, baud_rates, 10);
j = value_index(max_turn_time, max_turn_times, 4);
IRDA_ASSERT(((i >=0) && (i <10)), return 0;);
IRDA_ASSERT(((j >=0) && (j <4)), return 0;);
line_capacity = max_line_capacities[i][j];
IRDA_DEBUG(2, "%s(), line capacity=%d bytes\n",
__func__, line_capacity);
return line_capacity;
}
#ifndef CONFIG_IRDA_DYNAMIC_WINDOW
static __u32 irlap_requested_line_capacity(struct qos_info *qos)
{
__u32 line_capacity;
line_capacity = qos->window_size.value *
(qos->data_size.value + 6 + qos->additional_bofs.value) +
irlap_min_turn_time_in_bytes(qos->baud_rate.value,
qos->min_turn_time.value);
IRDA_DEBUG(2, "%s(), requested line capacity=%d\n",
__func__, line_capacity);
return line_capacity;
}
#endif
void irda_qos_bits_to_value(struct qos_info *qos)
{
int index;
IRDA_ASSERT(qos != NULL, return;);
index = msb_index(qos->baud_rate.bits);
qos->baud_rate.value = baud_rates[index];
index = msb_index(qos->data_size.bits);
qos->data_size.value = data_sizes[index];
index = msb_index(qos->window_size.bits);
qos->window_size.value = index+1;
index = msb_index(qos->min_turn_time.bits);
qos->min_turn_time.value = min_turn_times[index];
index = msb_index(qos->max_turn_time.bits);
qos->max_turn_time.value = max_turn_times[index];
index = msb_index(qos->link_disc_time.bits);
qos->link_disc_time.value = link_disc_times[index];
index = msb_index(qos->additional_bofs.bits);
qos->additional_bofs.value = add_bofs[index];
}
EXPORT_SYMBOL(irda_qos_bits_to_value);