2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/arch/arm/mm/nommu.c
Linus Torvalds 3883cbb6c1 ARM SoC specific changes
These changes are all to SoC-specific code, a total of 33 branches on
 17 platforms were pulled into this. Like last time, Renesas sh-mobile
 is now the platform with the most changes, followed by OMAP and EXYNOS.
 
 Two new platforms, TI Keystone and Rockchips RK3xxx are added in
 this branch, both containing almost no platform specific code at all,
 since they are using generic subsystem interfaces for clocks, pinctrl,
 interrupts etc. The device drivers are getting merged through the
 respective subsystem maintainer trees.
 
 One more SoC (u300) is now multiplatform capable and several others
 (shmobile, exynos, msm, integrator, kirkwood, clps711x) are moving
 towards that goal with this series but need more work.
 
 Also noteworthy is the work on PCI here, which is traditionally part of
 the SoC specific code. With the changes done by Thomas Petazzoni, we can
 now more easily have PCI host controller drivers as loadable modules and
 keep them separate from the platform code in drivers/pci/host. This has
 already led to the discovery that three platforms (exynos, spear and imx)
 are actually using an identical PCIe host controller and will be able
 to share a driver once support for spear and imx is added.
 
 Conflicts:
 * asm/glue-proc.h has one CPU type getting added that conflicts
   with another addition in 3.10-rc7
 * Simple context changes in arch/arm/Makefile and arch/arm/Kconfig
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.12 (GNU/Linux)
 
 iQIVAwUAUdLnpmCrR//JCVInAQLoFRAAyatR+MhVFwc91cO7yDw/mz81RO1V9jEd
 QMufoWi0BRfBsubqxnGlb510EEMTz7gxdrlYPILYNr8TqR+lNGhjKt2FQAjN3q2O
 IBvu4x8C+xcxnMNbkCnTQRxP/ziK6yCI6e7enQhwuMuJwvsnJtGbsqKi5ODMw6x0
 o5EQmIdj5NhhSJqJZPCmWsKbx100TH1UwaEnhNl0DSaFj51n3bVRrK6Nxce10GWZ
 HsS1/a63lq/YZLkwfUEvgin/PU9Jx5jMmqhlp3bZjG+f1ItdzJF+9IgS248vCIi2
 ystzWCH88Kh69UFcYFfCjeZe8H45XcP+Zykd8WC0DvF/a7Hwk5KTKE/ciT6RPRxb
 rkWW5EwjqZL9w9cU3rUHWtSVenayQMMEmCfksadr1AExyCrhPqfs9RINyBs2lK5a
 q2bdSFbXZsNzSyL+3yQAfChvRo1/2FdlFVQy+oVUCActV7L77Y7y6jl+b2qzFsSu
 xMKwvC/1vDXTvOnGk6A/qJu7yrHpqJrvw1eI+wnMswNBl7lCTgyyHnr5y8S092jI
 KU4hmSxsYP+y13HmKy4ewPy9DYJYBTSdReKfEFo79Dx8eqySAWjHFL/OPRqhCUYS
 kBq0eZpVZO7tJnHRaRz8n93wIYzb1UOhhgVwxdjPZF9L4d/jzh1BCv0OBWv8IXCu
 uWLAi92lL24=
 =0r9S
 -----END PGP SIGNATURE-----

Merge tag 'soc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC specific changes from Arnd Bergmann:
 "These changes are all to SoC-specific code, a total of 33 branches on
  17 platforms were pulled into this.  Like last time, Renesas sh-mobile
  is now the platform with the most changes, followed by OMAP and
  EXYNOS.

  Two new platforms, TI Keystone and Rockchips RK3xxx are added in this
  branch, both containing almost no platform specific code at all, since
  they are using generic subsystem interfaces for clocks, pinctrl,
  interrupts etc.  The device drivers are getting merged through the
  respective subsystem maintainer trees.

  One more SoC (u300) is now multiplatform capable and several others
  (shmobile, exynos, msm, integrator, kirkwood, clps711x) are moving
  towards that goal with this series but need more work.

  Also noteworthy is the work on PCI here, which is traditionally part
  of the SoC specific code.  With the changes done by Thomas Petazzoni,
  we can now more easily have PCI host controller drivers as loadable
  modules and keep them separate from the platform code in
  drivers/pci/host.  This has already led to the discovery that three
  platforms (exynos, spear and imx) are actually using an identical PCIe
  host controller and will be able to share a driver once support for
  spear and imx is added."

* tag 'soc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (480 commits)
  ARM: integrator: let pciv3 use mem/premem from device tree
  ARM: integrator: set local side PCI addresses right
  ARM: dts: Add pcie controller node for exynos5440-ssdk5440
  ARM: dts: Add pcie controller node for Samsung EXYNOS5440 SoC
  ARM: EXYNOS: Enable PCIe support for Exynos5440
  pci: Add PCIe driver for Samsung Exynos
  ARM: OMAP5: voltagedomain data: remove temporary OMAP4 voltage data
  ARM: keystone: Move CPU bringup code to dedicated asm file
  ARM: multiplatform: always pick one CPU type
  ARM: imx: select syscon for IMX6SL
  ARM: keystone: select ARM_ERRATA_798181 only for SMP
  ARM: imx: Synertronixx scb9328 needs to select SOC_IMX1
  ARM: OMAP2+: AM43x: resolve SMP related build error
  dmaengine: edma: enable build for AM33XX
  ARM: edma: Add EDMA crossbar event mux support
  ARM: edma: Add DT and runtime PM support to the private EDMA API
  dmaengine: edma: Add TI EDMA device tree binding
  arm: add basic support for Rockchip RK3066a boards
  arm: add debug uarts for rockchip rk29xx and rk3xxx series
  arm: Add basic clocks for Rockchip rk3066a SoCs
  ...
2013-07-02 13:43:38 -07:00

373 lines
9.7 KiB
C

/*
* linux/arch/arm/mm/nommu.c
*
* ARM uCLinux supporting functions.
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/io.h>
#include <linux/memblock.h>
#include <linux/kernel.h>
#include <asm/cacheflush.h>
#include <asm/sections.h>
#include <asm/page.h>
#include <asm/setup.h>
#include <asm/traps.h>
#include <asm/mach/arch.h>
#include <asm/cputype.h>
#include <asm/mpu.h>
#include "mm.h"
#ifdef CONFIG_ARM_MPU
struct mpu_rgn_info mpu_rgn_info;
/* Region number */
static void rgnr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
}
/* Data-side / unified region attributes */
/* Region access control register */
static void dracr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
}
/* Region size register */
static void drsr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
}
/* Region base address register */
static void drbar_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
}
static u32 drbar_read(void)
{
u32 v;
asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
return v;
}
/* Optional instruction-side region attributes */
/* I-side Region access control register */
static void iracr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
}
/* I-side Region size register */
static void irsr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
}
/* I-side Region base address register */
static void irbar_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
}
static unsigned long irbar_read(void)
{
unsigned long v;
asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
return v;
}
/* MPU initialisation functions */
void __init sanity_check_meminfo_mpu(void)
{
int i;
struct membank *bank = meminfo.bank;
phys_addr_t phys_offset = PHYS_OFFSET;
phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
/* Initially only use memory continuous from PHYS_OFFSET */
if (bank_phys_start(&bank[0]) != phys_offset)
panic("First memory bank must be contiguous from PHYS_OFFSET");
/* Banks have already been sorted by start address */
for (i = 1; i < meminfo.nr_banks; i++) {
if (bank[i].start <= bank_phys_end(&bank[0]) &&
bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) {
bank[0].size = bank_phys_end(&bank[i]) - bank[0].start;
} else {
pr_notice("Ignoring RAM after 0x%.8lx. "
"First non-contiguous (ignored) bank start: 0x%.8lx\n",
(unsigned long)bank_phys_end(&bank[0]),
(unsigned long)bank_phys_start(&bank[i]));
break;
}
}
/* All contiguous banks are now merged in to the first bank */
meminfo.nr_banks = 1;
specified_mem_size = bank[0].size;
/*
* MPU has curious alignment requirements: Size must be power of 2, and
* region start must be aligned to the region size
*/
if (phys_offset != 0)
pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
/*
* Maximum aligned region might overflow phys_addr_t if phys_offset is
* 0. Hence we keep everything below 4G until we take the smaller of
* the aligned_region_size and rounded_mem_size, one of which is
* guaranteed to be smaller than the maximum physical address.
*/
aligned_region_size = (phys_offset - 1) ^ (phys_offset);
/* Find the max power-of-two sized region that fits inside our bank */
rounded_mem_size = (1 << __fls(bank[0].size)) - 1;
/* The actual region size is the smaller of the two */
aligned_region_size = aligned_region_size < rounded_mem_size
? aligned_region_size + 1
: rounded_mem_size + 1;
if (aligned_region_size != specified_mem_size)
pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)",
(unsigned long)specified_mem_size,
(unsigned long)aligned_region_size);
meminfo.bank[0].size = aligned_region_size;
pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n",
(unsigned long)phys_offset,
(unsigned long)aligned_region_size,
(unsigned long)bank_phys_end(&bank[0]));
}
static int mpu_present(void)
{
return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
}
static int mpu_max_regions(void)
{
/*
* We don't support a different number of I/D side regions so if we
* have separate instruction and data memory maps then return
* whichever side has a smaller number of supported regions.
*/
u32 dregions, iregions, mpuir;
mpuir = read_cpuid(CPUID_MPUIR);
dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
/* Check for separate d-side and i-side memory maps */
if (mpuir & MPUIR_nU)
iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
/* Use the smallest of the two maxima */
return min(dregions, iregions);
}
static int mpu_iside_independent(void)
{
/* MPUIR.nU specifies whether there is *not* a unified memory map */
return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
}
static int mpu_min_region_order(void)
{
u32 drbar_result, irbar_result;
/* We've kept a region free for this probing */
rgnr_write(MPU_PROBE_REGION);
isb();
/*
* As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
* region order
*/
drbar_write(0xFFFFFFFC);
drbar_result = irbar_result = drbar_read();
drbar_write(0x0);
/* If the MPU is non-unified, we use the larger of the two minima*/
if (mpu_iside_independent()) {
irbar_write(0xFFFFFFFC);
irbar_result = irbar_read();
irbar_write(0x0);
}
isb(); /* Ensure that MPU region operations have completed */
/* Return whichever result is larger */
return __ffs(max(drbar_result, irbar_result));
}
static int mpu_setup_region(unsigned int number, phys_addr_t start,
unsigned int size_order, unsigned int properties)
{
u32 size_data;
/* We kept a region free for probing resolution of MPU regions*/
if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
return -ENOENT;
if (size_order > 32)
return -ENOMEM;
if (size_order < mpu_min_region_order())
return -ENOMEM;
/* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
dsb(); /* Ensure all previous data accesses occur with old mappings */
rgnr_write(number);
isb();
drbar_write(start);
dracr_write(properties);
isb(); /* Propagate properties before enabling region */
drsr_write(size_data);
/* Check for independent I-side registers */
if (mpu_iside_independent()) {
irbar_write(start);
iracr_write(properties);
isb();
irsr_write(size_data);
}
isb();
/* Store region info (we treat i/d side the same, so only store d) */
mpu_rgn_info.rgns[number].dracr = properties;
mpu_rgn_info.rgns[number].drbar = start;
mpu_rgn_info.rgns[number].drsr = size_data;
return 0;
}
/*
* Set up default MPU regions, doing nothing if there is no MPU
*/
void __init mpu_setup(void)
{
int region_err;
if (!mpu_present())
return;
region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
ilog2(meminfo.bank[0].size),
MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
if (region_err) {
panic("MPU region initialization failure! %d", region_err);
} else {
pr_info("Using ARMv7 PMSA Compliant MPU. "
"Region independence: %s, Max regions: %d\n",
mpu_iside_independent() ? "Yes" : "No",
mpu_max_regions());
}
}
#else
static void sanity_check_meminfo_mpu(void) {}
static void __init mpu_setup(void) {}
#endif /* CONFIG_ARM_MPU */
void __init arm_mm_memblock_reserve(void)
{
#ifndef CONFIG_CPU_V7M
/*
* Register the exception vector page.
* some architectures which the DRAM is the exception vector to trap,
* alloc_page breaks with error, although it is not NULL, but "0."
*/
memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
#else /* ifndef CONFIG_CPU_V7M */
/*
* There is no dedicated vector page on V7-M. So nothing needs to be
* reserved here.
*/
#endif
}
void __init sanity_check_meminfo(void)
{
phys_addr_t end;
sanity_check_meminfo_mpu();
end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]);
high_memory = __va(end - 1) + 1;
}
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps, and sets up the zero page, bad page and bad page tables.
*/
void __init paging_init(struct machine_desc *mdesc)
{
early_trap_init((void *)CONFIG_VECTORS_BASE);
mpu_setup();
bootmem_init();
}
/*
* We don't need to do anything here for nommu machines.
*/
void setup_mm_for_reboot(void)
{
}
void flush_dcache_page(struct page *page)
{
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}
EXPORT_SYMBOL(flush_dcache_page);
void flush_kernel_dcache_page(struct page *page)
{
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}
EXPORT_SYMBOL(flush_kernel_dcache_page);
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long uaddr, void *dst, const void *src,
unsigned long len)
{
memcpy(dst, src, len);
if (vma->vm_flags & VM_EXEC)
__cpuc_coherent_user_range(uaddr, uaddr + len);
}
void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
size_t size, unsigned int mtype)
{
if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
return NULL;
return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
}
EXPORT_SYMBOL(__arm_ioremap_pfn);
void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
size_t size, unsigned int mtype, void *caller)
{
return __arm_ioremap_pfn(pfn, offset, size, mtype);
}
void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
unsigned int mtype)
{
return (void __iomem *)phys_addr;
}
EXPORT_SYMBOL(__arm_ioremap);
void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
unsigned int mtype, void *caller)
{
return __arm_ioremap(phys_addr, size, mtype);
}
void (*arch_iounmap)(volatile void __iomem *);
void __arm_iounmap(volatile void __iomem *addr)
{
}
EXPORT_SYMBOL(__arm_iounmap);