mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-24 14:45:12 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
872 lines
25 KiB
C
872 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Meta External interrupt code.
|
|
*
|
|
* Copyright (C) 2005-2012 Imagination Technologies Ltd.
|
|
*
|
|
* External interrupts on Meta are configured at two-levels, in the CPU core and
|
|
* in the external trigger block. Interrupts from SoC peripherals are
|
|
* multiplexed onto a single Meta CPU "trigger" - traditionally it has always
|
|
* been trigger 2 (TR2). For info on how de-multiplexing happens check out
|
|
* meta_intc_irq_demux().
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqchip/metag-ext.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/syscore_ops.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/hwthread.h>
|
|
|
|
#define HWSTAT_STRIDE 8
|
|
#define HWVEC_BLK_STRIDE 0x1000
|
|
|
|
/**
|
|
* struct meta_intc_priv - private meta external interrupt data
|
|
* @nr_banks: Number of interrupt banks
|
|
* @domain: IRQ domain for all banks of external IRQs
|
|
* @unmasked: Record of unmasked IRQs
|
|
* @levels_altered: Record of altered level bits
|
|
*/
|
|
struct meta_intc_priv {
|
|
unsigned int nr_banks;
|
|
struct irq_domain *domain;
|
|
|
|
unsigned long unmasked[4];
|
|
|
|
#ifdef CONFIG_METAG_SUSPEND_MEM
|
|
unsigned long levels_altered[4];
|
|
#endif
|
|
};
|
|
|
|
/* Private data for the one and only external interrupt controller */
|
|
static struct meta_intc_priv meta_intc_priv;
|
|
|
|
/**
|
|
* meta_intc_offset() - Get the offset into the bank of a hardware IRQ number
|
|
* @hw: Hardware IRQ number (within external trigger block)
|
|
*
|
|
* Returns: Bit offset into the IRQ's bank registers
|
|
*/
|
|
static unsigned int meta_intc_offset(irq_hw_number_t hw)
|
|
{
|
|
return hw & 0x1f;
|
|
}
|
|
|
|
/**
|
|
* meta_intc_bank() - Get the bank number of a hardware IRQ number
|
|
* @hw: Hardware IRQ number (within external trigger block)
|
|
*
|
|
* Returns: Bank number indicating which register the IRQ's bits are
|
|
*/
|
|
static unsigned int meta_intc_bank(irq_hw_number_t hw)
|
|
{
|
|
return hw >> 5;
|
|
}
|
|
|
|
/**
|
|
* meta_intc_stat_addr() - Get the address of a HWSTATEXT register
|
|
* @hw: Hardware IRQ number (within external trigger block)
|
|
*
|
|
* Returns: Address of a HWSTATEXT register containing the status bit for
|
|
* the specified hardware IRQ number
|
|
*/
|
|
static void __iomem *meta_intc_stat_addr(irq_hw_number_t hw)
|
|
{
|
|
return (void __iomem *)(HWSTATEXT +
|
|
HWSTAT_STRIDE * meta_intc_bank(hw));
|
|
}
|
|
|
|
/**
|
|
* meta_intc_level_addr() - Get the address of a HWLEVELEXT register
|
|
* @hw: Hardware IRQ number (within external trigger block)
|
|
*
|
|
* Returns: Address of a HWLEVELEXT register containing the sense bit for
|
|
* the specified hardware IRQ number
|
|
*/
|
|
static void __iomem *meta_intc_level_addr(irq_hw_number_t hw)
|
|
{
|
|
return (void __iomem *)(HWLEVELEXT +
|
|
HWSTAT_STRIDE * meta_intc_bank(hw));
|
|
}
|
|
|
|
/**
|
|
* meta_intc_mask_addr() - Get the address of a HWMASKEXT register
|
|
* @hw: Hardware IRQ number (within external trigger block)
|
|
*
|
|
* Returns: Address of a HWMASKEXT register containing the mask bit for the
|
|
* specified hardware IRQ number
|
|
*/
|
|
static void __iomem *meta_intc_mask_addr(irq_hw_number_t hw)
|
|
{
|
|
return (void __iomem *)(HWMASKEXT +
|
|
HWSTAT_STRIDE * meta_intc_bank(hw));
|
|
}
|
|
|
|
/**
|
|
* meta_intc_vec_addr() - Get the vector address of a hardware interrupt
|
|
* @hw: Hardware IRQ number (within external trigger block)
|
|
*
|
|
* Returns: Address of a HWVECEXT register controlling the core trigger to
|
|
* vector the IRQ onto
|
|
*/
|
|
static inline void __iomem *meta_intc_vec_addr(irq_hw_number_t hw)
|
|
{
|
|
return (void __iomem *)(HWVEC0EXT +
|
|
HWVEC_BLK_STRIDE * meta_intc_bank(hw) +
|
|
HWVECnEXT_STRIDE * meta_intc_offset(hw));
|
|
}
|
|
|
|
/**
|
|
* meta_intc_startup_irq() - set up an external irq
|
|
* @data: data for the external irq to start up
|
|
*
|
|
* Multiplex interrupts for irq onto TR2. Clear any pending interrupts and
|
|
* unmask irq, both using the appropriate callbacks.
|
|
*/
|
|
static unsigned int meta_intc_startup_irq(struct irq_data *data)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
void __iomem *vec_addr = meta_intc_vec_addr(hw);
|
|
int thread = hard_processor_id();
|
|
|
|
/* Perform any necessary acking. */
|
|
if (data->chip->irq_ack)
|
|
data->chip->irq_ack(data);
|
|
|
|
/* Wire up this interrupt to the core with HWVECxEXT. */
|
|
metag_out32(TBI_TRIG_VEC(TBID_SIGNUM_TR2(thread)), vec_addr);
|
|
|
|
/* Perform any necessary unmasking. */
|
|
data->chip->irq_unmask(data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* meta_intc_shutdown_irq() - turn off an external irq
|
|
* @data: data for the external irq to turn off
|
|
*
|
|
* Mask irq using the appropriate callback and stop muxing it onto TR2.
|
|
*/
|
|
static void meta_intc_shutdown_irq(struct irq_data *data)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
void __iomem *vec_addr = meta_intc_vec_addr(hw);
|
|
|
|
/* Mask the IRQ */
|
|
data->chip->irq_mask(data);
|
|
|
|
/*
|
|
* Disable the IRQ at the core by removing the interrupt from
|
|
* the HW vector mapping.
|
|
*/
|
|
metag_out32(0, vec_addr);
|
|
}
|
|
|
|
/**
|
|
* meta_intc_ack_irq() - acknowledge an external irq
|
|
* @data: data for the external irq to ack
|
|
*
|
|
* Clear down an edge interrupt in the status register.
|
|
*/
|
|
static void meta_intc_ack_irq(struct irq_data *data)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
unsigned int bit = 1 << meta_intc_offset(hw);
|
|
void __iomem *stat_addr = meta_intc_stat_addr(hw);
|
|
|
|
/* Ack the int, if it is still 'on'.
|
|
* NOTE - this only works for edge triggered interrupts.
|
|
*/
|
|
if (metag_in32(stat_addr) & bit)
|
|
metag_out32(bit, stat_addr);
|
|
}
|
|
|
|
/**
|
|
* record_irq_is_masked() - record the IRQ masked so it doesn't get handled
|
|
* @data: data for the external irq to record
|
|
*
|
|
* This should get called whenever an external IRQ is masked (by whichever
|
|
* callback is used). It records the IRQ masked so that it doesn't get handled
|
|
* if it still shows up in the status register.
|
|
*/
|
|
static void record_irq_is_masked(struct irq_data *data)
|
|
{
|
|
struct meta_intc_priv *priv = &meta_intc_priv;
|
|
irq_hw_number_t hw = data->hwirq;
|
|
|
|
clear_bit(meta_intc_offset(hw), &priv->unmasked[meta_intc_bank(hw)]);
|
|
}
|
|
|
|
/**
|
|
* record_irq_is_unmasked() - record the IRQ unmasked so it can be handled
|
|
* @data: data for the external irq to record
|
|
*
|
|
* This should get called whenever an external IRQ is unmasked (by whichever
|
|
* callback is used). It records the IRQ unmasked so that it gets handled if it
|
|
* shows up in the status register.
|
|
*/
|
|
static void record_irq_is_unmasked(struct irq_data *data)
|
|
{
|
|
struct meta_intc_priv *priv = &meta_intc_priv;
|
|
irq_hw_number_t hw = data->hwirq;
|
|
|
|
set_bit(meta_intc_offset(hw), &priv->unmasked[meta_intc_bank(hw)]);
|
|
}
|
|
|
|
/*
|
|
* For use by wrapper IRQ drivers
|
|
*/
|
|
|
|
/**
|
|
* meta_intc_mask_irq_simple() - minimal mask used by wrapper IRQ drivers
|
|
* @data: data for the external irq being masked
|
|
*
|
|
* This should be called by any wrapper IRQ driver mask functions. it doesn't do
|
|
* any masking but records the IRQ as masked so that the core code knows the
|
|
* mask has taken place. It is the callers responsibility to ensure that the IRQ
|
|
* won't trigger an interrupt to the core.
|
|
*/
|
|
void meta_intc_mask_irq_simple(struct irq_data *data)
|
|
{
|
|
record_irq_is_masked(data);
|
|
}
|
|
|
|
/**
|
|
* meta_intc_unmask_irq_simple() - minimal unmask used by wrapper IRQ drivers
|
|
* @data: data for the external irq being unmasked
|
|
*
|
|
* This should be called by any wrapper IRQ driver unmask functions. it doesn't
|
|
* do any unmasking but records the IRQ as unmasked so that the core code knows
|
|
* the unmask has taken place. It is the callers responsibility to ensure that
|
|
* the IRQ can now trigger an interrupt to the core.
|
|
*/
|
|
void meta_intc_unmask_irq_simple(struct irq_data *data)
|
|
{
|
|
record_irq_is_unmasked(data);
|
|
}
|
|
|
|
|
|
/**
|
|
* meta_intc_mask_irq() - mask an external irq using HWMASKEXT
|
|
* @data: data for the external irq to mask
|
|
*
|
|
* This is a default implementation of a mask function which makes use of the
|
|
* HWMASKEXT registers available in newer versions.
|
|
*
|
|
* Earlier versions without these registers should use SoC level IRQ masking
|
|
* which call the meta_intc_*_simple() functions above, or if that isn't
|
|
* available should use the fallback meta_intc_*_nomask() functions below.
|
|
*/
|
|
static void meta_intc_mask_irq(struct irq_data *data)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
unsigned int bit = 1 << meta_intc_offset(hw);
|
|
void __iomem *mask_addr = meta_intc_mask_addr(hw);
|
|
unsigned long flags;
|
|
|
|
record_irq_is_masked(data);
|
|
|
|
/* update the interrupt mask */
|
|
__global_lock2(flags);
|
|
metag_out32(metag_in32(mask_addr) & ~bit, mask_addr);
|
|
__global_unlock2(flags);
|
|
}
|
|
|
|
/**
|
|
* meta_intc_unmask_irq() - unmask an external irq using HWMASKEXT
|
|
* @data: data for the external irq to unmask
|
|
*
|
|
* This is a default implementation of an unmask function which makes use of the
|
|
* HWMASKEXT registers available on new versions. It should be paired with
|
|
* meta_intc_mask_irq() above.
|
|
*/
|
|
static void meta_intc_unmask_irq(struct irq_data *data)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
unsigned int bit = 1 << meta_intc_offset(hw);
|
|
void __iomem *mask_addr = meta_intc_mask_addr(hw);
|
|
unsigned long flags;
|
|
|
|
record_irq_is_unmasked(data);
|
|
|
|
/* update the interrupt mask */
|
|
__global_lock2(flags);
|
|
metag_out32(metag_in32(mask_addr) | bit, mask_addr);
|
|
__global_unlock2(flags);
|
|
}
|
|
|
|
/**
|
|
* meta_intc_mask_irq_nomask() - mask an external irq by unvectoring
|
|
* @data: data for the external irq to mask
|
|
*
|
|
* This is the version of the mask function for older versions which don't have
|
|
* HWMASKEXT registers, or a SoC level means of masking IRQs. Instead the IRQ is
|
|
* unvectored from the core and retriggered if necessary later.
|
|
*/
|
|
static void meta_intc_mask_irq_nomask(struct irq_data *data)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
void __iomem *vec_addr = meta_intc_vec_addr(hw);
|
|
|
|
record_irq_is_masked(data);
|
|
|
|
/* there is no interrupt mask, so unvector the interrupt */
|
|
metag_out32(0, vec_addr);
|
|
}
|
|
|
|
/**
|
|
* meta_intc_unmask_edge_irq_nomask() - unmask an edge irq by revectoring
|
|
* @data: data for the external irq to unmask
|
|
*
|
|
* This is the version of the unmask function for older versions which don't
|
|
* have HWMASKEXT registers, or a SoC level means of masking IRQs. Instead the
|
|
* IRQ is revectored back to the core and retriggered if necessary.
|
|
*
|
|
* The retriggering done by this function is specific to edge interrupts.
|
|
*/
|
|
static void meta_intc_unmask_edge_irq_nomask(struct irq_data *data)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
unsigned int bit = 1 << meta_intc_offset(hw);
|
|
void __iomem *stat_addr = meta_intc_stat_addr(hw);
|
|
void __iomem *vec_addr = meta_intc_vec_addr(hw);
|
|
unsigned int thread = hard_processor_id();
|
|
|
|
record_irq_is_unmasked(data);
|
|
|
|
/* there is no interrupt mask, so revector the interrupt */
|
|
metag_out32(TBI_TRIG_VEC(TBID_SIGNUM_TR2(thread)), vec_addr);
|
|
|
|
/*
|
|
* Re-trigger interrupt
|
|
*
|
|
* Writing a 1 toggles, and a 0->1 transition triggers. We only
|
|
* retrigger if the status bit is already set, which means we
|
|
* need to clear it first. Retriggering is fundamentally racy
|
|
* because if the interrupt fires again after we clear it we
|
|
* could end up clearing it again and the interrupt handler
|
|
* thinking it hasn't fired. Therefore we need to keep trying to
|
|
* retrigger until the bit is set.
|
|
*/
|
|
if (metag_in32(stat_addr) & bit) {
|
|
metag_out32(bit, stat_addr);
|
|
while (!(metag_in32(stat_addr) & bit))
|
|
metag_out32(bit, stat_addr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* meta_intc_unmask_level_irq_nomask() - unmask a level irq by revectoring
|
|
* @data: data for the external irq to unmask
|
|
*
|
|
* This is the version of the unmask function for older versions which don't
|
|
* have HWMASKEXT registers, or a SoC level means of masking IRQs. Instead the
|
|
* IRQ is revectored back to the core and retriggered if necessary.
|
|
*
|
|
* The retriggering done by this function is specific to level interrupts.
|
|
*/
|
|
static void meta_intc_unmask_level_irq_nomask(struct irq_data *data)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
unsigned int bit = 1 << meta_intc_offset(hw);
|
|
void __iomem *stat_addr = meta_intc_stat_addr(hw);
|
|
void __iomem *vec_addr = meta_intc_vec_addr(hw);
|
|
unsigned int thread = hard_processor_id();
|
|
|
|
record_irq_is_unmasked(data);
|
|
|
|
/* there is no interrupt mask, so revector the interrupt */
|
|
metag_out32(TBI_TRIG_VEC(TBID_SIGNUM_TR2(thread)), vec_addr);
|
|
|
|
/* Re-trigger interrupt */
|
|
/* Writing a 1 triggers interrupt */
|
|
if (metag_in32(stat_addr) & bit)
|
|
metag_out32(bit, stat_addr);
|
|
}
|
|
|
|
/**
|
|
* meta_intc_irq_set_type() - set the type of an external irq
|
|
* @data: data for the external irq to set the type of
|
|
* @flow_type: new irq flow type
|
|
*
|
|
* Set the flow type of an external interrupt. This updates the irq chip and irq
|
|
* handler depending on whether the irq is edge or level sensitive (the polarity
|
|
* is ignored), and also sets up the bit in HWLEVELEXT so the hardware knows
|
|
* when to trigger.
|
|
*/
|
|
static int meta_intc_irq_set_type(struct irq_data *data, unsigned int flow_type)
|
|
{
|
|
#ifdef CONFIG_METAG_SUSPEND_MEM
|
|
struct meta_intc_priv *priv = &meta_intc_priv;
|
|
#endif
|
|
irq_hw_number_t hw = data->hwirq;
|
|
unsigned int bit = 1 << meta_intc_offset(hw);
|
|
void __iomem *level_addr = meta_intc_level_addr(hw);
|
|
unsigned long flags;
|
|
unsigned int level;
|
|
|
|
/* update the chip/handler */
|
|
if (flow_type & IRQ_TYPE_LEVEL_MASK)
|
|
irq_set_chip_handler_name_locked(data, &meta_intc_level_chip,
|
|
handle_level_irq, NULL);
|
|
else
|
|
irq_set_chip_handler_name_locked(data, &meta_intc_edge_chip,
|
|
handle_edge_irq, NULL);
|
|
|
|
/* and clear/set the bit in HWLEVELEXT */
|
|
__global_lock2(flags);
|
|
level = metag_in32(level_addr);
|
|
if (flow_type & IRQ_TYPE_LEVEL_MASK)
|
|
level |= bit;
|
|
else
|
|
level &= ~bit;
|
|
metag_out32(level, level_addr);
|
|
#ifdef CONFIG_METAG_SUSPEND_MEM
|
|
priv->levels_altered[meta_intc_bank(hw)] |= bit;
|
|
#endif
|
|
__global_unlock2(flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* meta_intc_irq_demux() - external irq de-multiplexer
|
|
* @desc: the interrupt description structure for this irq
|
|
*
|
|
* The cpu receives an interrupt on TR2 when a SoC interrupt has occurred. It is
|
|
* this function's job to demux this irq and figure out exactly which external
|
|
* irq needs servicing.
|
|
*
|
|
* Whilst using TR2 to detect external interrupts is a software convention it is
|
|
* (hopefully) unlikely to change.
|
|
*/
|
|
static void meta_intc_irq_demux(struct irq_desc *desc)
|
|
{
|
|
struct meta_intc_priv *priv = &meta_intc_priv;
|
|
irq_hw_number_t hw;
|
|
unsigned int bank, irq_no, status;
|
|
void __iomem *stat_addr = meta_intc_stat_addr(0);
|
|
|
|
/*
|
|
* Locate which interrupt has caused our handler to run.
|
|
*/
|
|
for (bank = 0; bank < priv->nr_banks; ++bank) {
|
|
/* Which interrupts are currently pending in this bank? */
|
|
recalculate:
|
|
status = metag_in32(stat_addr) & priv->unmasked[bank];
|
|
|
|
for (hw = bank*32; status; status >>= 1, ++hw) {
|
|
if (status & 0x1) {
|
|
/*
|
|
* Map the hardware IRQ number to a virtual
|
|
* Linux IRQ number.
|
|
*/
|
|
irq_no = irq_linear_revmap(priv->domain, hw);
|
|
|
|
/*
|
|
* Only fire off external interrupts that are
|
|
* registered to be handled by the kernel.
|
|
* Other external interrupts are probably being
|
|
* handled by other Meta hardware threads.
|
|
*/
|
|
generic_handle_irq(irq_no);
|
|
|
|
/*
|
|
* The handler may have re-enabled interrupts
|
|
* which could have caused a nested invocation
|
|
* of this code and make the copy of the
|
|
* status register we are using invalid.
|
|
*/
|
|
goto recalculate;
|
|
}
|
|
}
|
|
stat_addr += HWSTAT_STRIDE;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* meta_intc_set_affinity() - set the affinity for an interrupt
|
|
* @data: data for the external irq to set the affinity of
|
|
* @cpumask: cpu mask representing cpus which can handle the interrupt
|
|
* @force: whether to force (ignored)
|
|
*
|
|
* Revector the specified external irq onto a specific cpu's TR2 trigger, so
|
|
* that that cpu tends to be the one who handles it.
|
|
*/
|
|
static int meta_intc_set_affinity(struct irq_data *data,
|
|
const struct cpumask *cpumask, bool force)
|
|
{
|
|
irq_hw_number_t hw = data->hwirq;
|
|
void __iomem *vec_addr = meta_intc_vec_addr(hw);
|
|
unsigned int cpu, thread;
|
|
|
|
/*
|
|
* Wire up this interrupt from HWVECxEXT to the Meta core.
|
|
*
|
|
* Note that we can't wire up HWVECxEXT to interrupt more than
|
|
* one cpu (the interrupt code doesn't support it), so we just
|
|
* pick the first cpu we find in 'cpumask'.
|
|
*/
|
|
cpu = cpumask_any_and(cpumask, cpu_online_mask);
|
|
thread = cpu_2_hwthread_id[cpu];
|
|
|
|
metag_out32(TBI_TRIG_VEC(TBID_SIGNUM_TR2(thread)), vec_addr);
|
|
|
|
irq_data_update_effective_affinity(data, cpumask_of(cpu));
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define meta_intc_set_affinity NULL
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
#define META_INTC_CHIP_FLAGS (IRQCHIP_MASK_ON_SUSPEND \
|
|
| IRQCHIP_SKIP_SET_WAKE)
|
|
#else
|
|
#define META_INTC_CHIP_FLAGS 0
|
|
#endif
|
|
|
|
/* public edge/level irq chips which SoCs can override */
|
|
|
|
struct irq_chip meta_intc_edge_chip = {
|
|
.irq_startup = meta_intc_startup_irq,
|
|
.irq_shutdown = meta_intc_shutdown_irq,
|
|
.irq_ack = meta_intc_ack_irq,
|
|
.irq_mask = meta_intc_mask_irq,
|
|
.irq_unmask = meta_intc_unmask_irq,
|
|
.irq_set_type = meta_intc_irq_set_type,
|
|
.irq_set_affinity = meta_intc_set_affinity,
|
|
.flags = META_INTC_CHIP_FLAGS,
|
|
};
|
|
|
|
struct irq_chip meta_intc_level_chip = {
|
|
.irq_startup = meta_intc_startup_irq,
|
|
.irq_shutdown = meta_intc_shutdown_irq,
|
|
.irq_set_type = meta_intc_irq_set_type,
|
|
.irq_mask = meta_intc_mask_irq,
|
|
.irq_unmask = meta_intc_unmask_irq,
|
|
.irq_set_affinity = meta_intc_set_affinity,
|
|
.flags = META_INTC_CHIP_FLAGS,
|
|
};
|
|
|
|
/**
|
|
* meta_intc_map() - map an external irq
|
|
* @d: irq domain of external trigger block
|
|
* @irq: virtual irq number
|
|
* @hw: hardware irq number within external trigger block
|
|
*
|
|
* This sets up a virtual irq for a specified hardware interrupt. The irq chip
|
|
* and handler is configured, using the HWLEVELEXT registers to determine
|
|
* edge/level flow type. These registers will have been set when the irq type is
|
|
* set (or set to a default at init time).
|
|
*/
|
|
static int meta_intc_map(struct irq_domain *d, unsigned int irq,
|
|
irq_hw_number_t hw)
|
|
{
|
|
unsigned int bit = 1 << meta_intc_offset(hw);
|
|
void __iomem *level_addr = meta_intc_level_addr(hw);
|
|
|
|
/* Go by the current sense in the HWLEVELEXT register */
|
|
if (metag_in32(level_addr) & bit)
|
|
irq_set_chip_and_handler(irq, &meta_intc_level_chip,
|
|
handle_level_irq);
|
|
else
|
|
irq_set_chip_and_handler(irq, &meta_intc_edge_chip,
|
|
handle_edge_irq);
|
|
|
|
irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
|
|
return 0;
|
|
}
|
|
|
|
static const struct irq_domain_ops meta_intc_domain_ops = {
|
|
.map = meta_intc_map,
|
|
.xlate = irq_domain_xlate_twocell,
|
|
};
|
|
|
|
#ifdef CONFIG_METAG_SUSPEND_MEM
|
|
|
|
/**
|
|
* struct meta_intc_context - suspend context
|
|
* @levels: State of HWLEVELEXT registers
|
|
* @masks: State of HWMASKEXT registers
|
|
* @vectors: State of HWVECEXT registers
|
|
* @txvecint: State of TxVECINT registers
|
|
*
|
|
* This structure stores the IRQ state across suspend.
|
|
*/
|
|
struct meta_intc_context {
|
|
u32 levels[4];
|
|
u32 masks[4];
|
|
u8 vectors[4*32];
|
|
|
|
u8 txvecint[4][4];
|
|
};
|
|
|
|
/* suspend context */
|
|
static struct meta_intc_context *meta_intc_context;
|
|
|
|
/**
|
|
* meta_intc_suspend() - store irq state
|
|
*
|
|
* To avoid interfering with other threads we only save the IRQ state of IRQs in
|
|
* use by Linux.
|
|
*/
|
|
static int meta_intc_suspend(void)
|
|
{
|
|
struct meta_intc_priv *priv = &meta_intc_priv;
|
|
int i, j;
|
|
irq_hw_number_t hw;
|
|
unsigned int bank;
|
|
unsigned long flags;
|
|
struct meta_intc_context *context;
|
|
void __iomem *level_addr, *mask_addr, *vec_addr;
|
|
u32 mask, bit;
|
|
|
|
context = kzalloc(sizeof(*context), GFP_ATOMIC);
|
|
if (!context)
|
|
return -ENOMEM;
|
|
|
|
hw = 0;
|
|
level_addr = meta_intc_level_addr(0);
|
|
mask_addr = meta_intc_mask_addr(0);
|
|
for (bank = 0; bank < priv->nr_banks; ++bank) {
|
|
vec_addr = meta_intc_vec_addr(hw);
|
|
|
|
/* create mask of interrupts in use */
|
|
mask = 0;
|
|
for (bit = 1; bit; bit <<= 1) {
|
|
i = irq_linear_revmap(priv->domain, hw);
|
|
/* save mapped irqs which are enabled or have actions */
|
|
if (i && (!irqd_irq_disabled(irq_get_irq_data(i)) ||
|
|
irq_has_action(i))) {
|
|
mask |= bit;
|
|
|
|
/* save trigger vector */
|
|
context->vectors[hw] = metag_in32(vec_addr);
|
|
}
|
|
|
|
++hw;
|
|
vec_addr += HWVECnEXT_STRIDE;
|
|
}
|
|
|
|
/* save level state if any IRQ levels altered */
|
|
if (priv->levels_altered[bank])
|
|
context->levels[bank] = metag_in32(level_addr);
|
|
/* save mask state if any IRQs in use */
|
|
if (mask)
|
|
context->masks[bank] = metag_in32(mask_addr);
|
|
|
|
level_addr += HWSTAT_STRIDE;
|
|
mask_addr += HWSTAT_STRIDE;
|
|
}
|
|
|
|
/* save trigger matrixing */
|
|
__global_lock2(flags);
|
|
for (i = 0; i < 4; ++i)
|
|
for (j = 0; j < 4; ++j)
|
|
context->txvecint[i][j] = metag_in32(T0VECINT_BHALT +
|
|
TnVECINT_STRIDE*i +
|
|
8*j);
|
|
__global_unlock2(flags);
|
|
|
|
meta_intc_context = context;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* meta_intc_resume() - restore saved irq state
|
|
*
|
|
* Restore the saved IRQ state and drop it.
|
|
*/
|
|
static void meta_intc_resume(void)
|
|
{
|
|
struct meta_intc_priv *priv = &meta_intc_priv;
|
|
int i, j;
|
|
irq_hw_number_t hw;
|
|
unsigned int bank;
|
|
unsigned long flags;
|
|
struct meta_intc_context *context = meta_intc_context;
|
|
void __iomem *level_addr, *mask_addr, *vec_addr;
|
|
u32 mask, bit, tmp;
|
|
|
|
meta_intc_context = NULL;
|
|
|
|
hw = 0;
|
|
level_addr = meta_intc_level_addr(0);
|
|
mask_addr = meta_intc_mask_addr(0);
|
|
for (bank = 0; bank < priv->nr_banks; ++bank) {
|
|
vec_addr = meta_intc_vec_addr(hw);
|
|
|
|
/* create mask of interrupts in use */
|
|
mask = 0;
|
|
for (bit = 1; bit; bit <<= 1) {
|
|
i = irq_linear_revmap(priv->domain, hw);
|
|
/* restore mapped irqs, enabled or with actions */
|
|
if (i && (!irqd_irq_disabled(irq_get_irq_data(i)) ||
|
|
irq_has_action(i))) {
|
|
mask |= bit;
|
|
|
|
/* restore trigger vector */
|
|
metag_out32(context->vectors[hw], vec_addr);
|
|
}
|
|
|
|
++hw;
|
|
vec_addr += HWVECnEXT_STRIDE;
|
|
}
|
|
|
|
if (mask) {
|
|
/* restore mask state */
|
|
__global_lock2(flags);
|
|
tmp = metag_in32(mask_addr);
|
|
tmp = (tmp & ~mask) | (context->masks[bank] & mask);
|
|
metag_out32(tmp, mask_addr);
|
|
__global_unlock2(flags);
|
|
}
|
|
|
|
mask = priv->levels_altered[bank];
|
|
if (mask) {
|
|
/* restore level state */
|
|
__global_lock2(flags);
|
|
tmp = metag_in32(level_addr);
|
|
tmp = (tmp & ~mask) | (context->levels[bank] & mask);
|
|
metag_out32(tmp, level_addr);
|
|
__global_unlock2(flags);
|
|
}
|
|
|
|
level_addr += HWSTAT_STRIDE;
|
|
mask_addr += HWSTAT_STRIDE;
|
|
}
|
|
|
|
/* restore trigger matrixing */
|
|
__global_lock2(flags);
|
|
for (i = 0; i < 4; ++i) {
|
|
for (j = 0; j < 4; ++j) {
|
|
metag_out32(context->txvecint[i][j],
|
|
T0VECINT_BHALT +
|
|
TnVECINT_STRIDE*i +
|
|
8*j);
|
|
}
|
|
}
|
|
__global_unlock2(flags);
|
|
|
|
kfree(context);
|
|
}
|
|
|
|
static struct syscore_ops meta_intc_syscore_ops = {
|
|
.suspend = meta_intc_suspend,
|
|
.resume = meta_intc_resume,
|
|
};
|
|
|
|
static void __init meta_intc_init_syscore_ops(struct meta_intc_priv *priv)
|
|
{
|
|
register_syscore_ops(&meta_intc_syscore_ops);
|
|
}
|
|
#else
|
|
#define meta_intc_init_syscore_ops(priv) do {} while (0)
|
|
#endif
|
|
|
|
/**
|
|
* meta_intc_init_cpu() - register with a Meta cpu
|
|
* @priv: private interrupt controller data
|
|
* @cpu: the CPU to register on
|
|
*
|
|
* Configure @cpu's TR2 irq so that we can demux external irqs.
|
|
*/
|
|
static void __init meta_intc_init_cpu(struct meta_intc_priv *priv, int cpu)
|
|
{
|
|
unsigned int thread = cpu_2_hwthread_id[cpu];
|
|
unsigned int signum = TBID_SIGNUM_TR2(thread);
|
|
int irq = tbisig_map(signum);
|
|
|
|
/* Register the multiplexed IRQ handler */
|
|
irq_set_chained_handler(irq, meta_intc_irq_demux);
|
|
irq_set_irq_type(irq, IRQ_TYPE_LEVEL_LOW);
|
|
}
|
|
|
|
/**
|
|
* meta_intc_no_mask() - indicate lack of HWMASKEXT registers
|
|
*
|
|
* Called from SoC code (or init code below) to dynamically indicate the lack of
|
|
* HWMASKEXT registers (for example depending on some SoC revision register).
|
|
* This alters the irq mask and unmask callbacks to use the fallback
|
|
* unvectoring/retriggering technique instead of using HWMASKEXT registers.
|
|
*/
|
|
void __init meta_intc_no_mask(void)
|
|
{
|
|
meta_intc_edge_chip.irq_mask = meta_intc_mask_irq_nomask;
|
|
meta_intc_edge_chip.irq_unmask = meta_intc_unmask_edge_irq_nomask;
|
|
meta_intc_level_chip.irq_mask = meta_intc_mask_irq_nomask;
|
|
meta_intc_level_chip.irq_unmask = meta_intc_unmask_level_irq_nomask;
|
|
}
|
|
|
|
/**
|
|
* init_external_IRQ() - initialise the external irq controller
|
|
*
|
|
* Set up the external irq controller using device tree properties. This is
|
|
* called from init_IRQ().
|
|
*/
|
|
int __init init_external_IRQ(void)
|
|
{
|
|
struct meta_intc_priv *priv = &meta_intc_priv;
|
|
struct device_node *node;
|
|
int ret, cpu;
|
|
u32 val;
|
|
bool no_masks = false;
|
|
|
|
node = of_find_compatible_node(NULL, NULL, "img,meta-intc");
|
|
if (!node)
|
|
return -ENOENT;
|
|
|
|
/* Get number of banks */
|
|
ret = of_property_read_u32(node, "num-banks", &val);
|
|
if (ret) {
|
|
pr_err("meta-intc: No num-banks property found\n");
|
|
return ret;
|
|
}
|
|
if (val < 1 || val > 4) {
|
|
pr_err("meta-intc: num-banks (%u) out of range\n", val);
|
|
return -EINVAL;
|
|
}
|
|
priv->nr_banks = val;
|
|
|
|
/* Are any mask registers present? */
|
|
if (of_get_property(node, "no-mask", NULL))
|
|
no_masks = true;
|
|
|
|
/* No HWMASKEXT registers present? */
|
|
if (no_masks)
|
|
meta_intc_no_mask();
|
|
|
|
/* Set up an IRQ domain */
|
|
/*
|
|
* This is a legacy IRQ domain for now until all the platform setup code
|
|
* has been converted to devicetree.
|
|
*/
|
|
priv->domain = irq_domain_add_linear(node, priv->nr_banks*32,
|
|
&meta_intc_domain_ops, priv);
|
|
if (unlikely(!priv->domain)) {
|
|
pr_err("meta-intc: cannot add IRQ domain\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Setup TR2 for all cpus. */
|
|
for_each_possible_cpu(cpu)
|
|
meta_intc_init_cpu(priv, cpu);
|
|
|
|
/* Set up system suspend/resume callbacks */
|
|
meta_intc_init_syscore_ops(priv);
|
|
|
|
pr_info("meta-intc: External IRQ controller initialised (%u IRQs)\n",
|
|
priv->nr_banks*32);
|
|
|
|
return 0;
|
|
}
|