2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 22:24:04 +08:00
linux-next/drivers/edac/skx_edac.c
Tony Luck 88ae80aa60 EDAC, skx_edac: Handle systems with segmented PCI busses
Large systems separate their PCI busses into segments since
the limit of only 256 PCI busses can be too restrictive.

Extend this driver to check whether <segment, bus-number> matches
when deciding how to group memory controller PCI devices to
CPU sockets.

Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Aristeu Rozanski <arozansk@redhat.com>
Cc: Charles Rose <charles.rose@dell.com>
Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/f58abfd10bf73c8bc5adc1fe4de7408128b00625.1506358467.git.tony.luck@intel.com
[ Make skx_dev.seg an int. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
2017-09-28 18:01:55 +02:00

1135 lines
28 KiB
C

/*
* EDAC driver for Intel(R) Xeon(R) Skylake processors
* Copyright (c) 2016, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/mce.h>
#include "edac_module.h"
#define EDAC_MOD_STR "skx_edac"
/*
* Debug macros
*/
#define skx_printk(level, fmt, arg...) \
edac_printk(level, "skx", fmt, ##arg)
#define skx_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
/*
* Get a bit field at register value <v>, from bit <lo> to bit <hi>
*/
#define GET_BITFIELD(v, lo, hi) \
(((v) & GENMASK_ULL((hi), (lo))) >> (lo))
static LIST_HEAD(skx_edac_list);
static u64 skx_tolm, skx_tohm;
#define NUM_IMC 2 /* memory controllers per socket */
#define NUM_CHANNELS 3 /* channels per memory controller */
#define NUM_DIMMS 2 /* Max DIMMS per channel */
#define MASK26 0x3FFFFFF /* Mask for 2^26 */
#define MASK29 0x1FFFFFFF /* Mask for 2^29 */
/*
* Each cpu socket contains some pci devices that provide global
* information, and also some that are local to each of the two
* memory controllers on the die.
*/
struct skx_dev {
struct list_head list;
u8 bus[4];
int seg;
struct pci_dev *sad_all;
struct pci_dev *util_all;
u32 mcroute;
struct skx_imc {
struct mem_ctl_info *mci;
u8 mc; /* system wide mc# */
u8 lmc; /* socket relative mc# */
u8 src_id, node_id;
struct skx_channel {
struct pci_dev *cdev;
struct skx_dimm {
u8 close_pg;
u8 bank_xor_enable;
u8 fine_grain_bank;
u8 rowbits;
u8 colbits;
} dimms[NUM_DIMMS];
} chan[NUM_CHANNELS];
} imc[NUM_IMC];
};
static int skx_num_sockets;
struct skx_pvt {
struct skx_imc *imc;
};
struct decoded_addr {
struct skx_dev *dev;
u64 addr;
int socket;
int imc;
int channel;
u64 chan_addr;
int sktways;
int chanways;
int dimm;
int rank;
int channel_rank;
u64 rank_address;
int row;
int column;
int bank_address;
int bank_group;
};
static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
{
struct skx_dev *d;
list_for_each_entry(d, &skx_edac_list, list) {
if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
return d;
}
return NULL;
}
enum munittype {
CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
};
struct munit {
u16 did;
u16 devfn[NUM_IMC];
u8 busidx;
u8 per_socket;
enum munittype mtype;
};
/*
* List of PCI device ids that we need together with some device
* number and function numbers to tell which memory controller the
* device belongs to.
*/
static const struct munit skx_all_munits[] = {
{ 0x2054, { }, 1, 1, SAD_ALL },
{ 0x2055, { }, 1, 1, UTIL_ALL },
{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
{ 0x208e, { }, 1, 0, SAD },
{ }
};
/*
* We use the per-socket device 0x2016 to count how many sockets are present,
* and to detemine which PCI buses are associated with each socket. Allocate
* and build the full list of all the skx_dev structures that we need here.
*/
static int get_all_bus_mappings(void)
{
struct pci_dev *pdev, *prev;
struct skx_dev *d;
u32 reg;
int ndev = 0;
prev = NULL;
for (;;) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
if (!pdev)
break;
ndev++;
d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d) {
pci_dev_put(pdev);
return -ENOMEM;
}
d->seg = pci_domain_nr(pdev->bus);
pci_read_config_dword(pdev, 0xCC, &reg);
d->bus[0] = GET_BITFIELD(reg, 0, 7);
d->bus[1] = GET_BITFIELD(reg, 8, 15);
d->bus[2] = GET_BITFIELD(reg, 16, 23);
d->bus[3] = GET_BITFIELD(reg, 24, 31);
edac_dbg(2, "busses: %x, %x, %x, %x\n",
d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
list_add_tail(&d->list, &skx_edac_list);
skx_num_sockets++;
prev = pdev;
}
return ndev;
}
static int get_all_munits(const struct munit *m)
{
struct pci_dev *pdev, *prev;
struct skx_dev *d;
u32 reg;
int i = 0, ndev = 0;
prev = NULL;
for (;;) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
if (!pdev)
break;
ndev++;
if (m->per_socket == NUM_IMC) {
for (i = 0; i < NUM_IMC; i++)
if (m->devfn[i] == pdev->devfn)
break;
if (i == NUM_IMC)
goto fail;
}
d = get_skx_dev(pdev->bus, m->busidx);
if (!d)
goto fail;
/* Be sure that the device is enabled */
if (unlikely(pci_enable_device(pdev) < 0)) {
skx_printk(KERN_ERR,
"Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
goto fail;
}
switch (m->mtype) {
case CHAN0: case CHAN1: case CHAN2:
pci_dev_get(pdev);
d->imc[i].chan[m->mtype].cdev = pdev;
break;
case SAD_ALL:
pci_dev_get(pdev);
d->sad_all = pdev;
break;
case UTIL_ALL:
pci_dev_get(pdev);
d->util_all = pdev;
break;
case SAD:
/*
* one of these devices per core, including cores
* that don't exist on this SKU. Ignore any that
* read a route table of zero, make sure all the
* non-zero values match.
*/
pci_read_config_dword(pdev, 0xB4, &reg);
if (reg != 0) {
if (d->mcroute == 0)
d->mcroute = reg;
else if (d->mcroute != reg) {
skx_printk(KERN_ERR,
"mcroute mismatch\n");
goto fail;
}
}
ndev--;
break;
}
prev = pdev;
}
return ndev;
fail:
pci_dev_put(pdev);
return -ENODEV;
}
static const struct x86_cpu_id skx_cpuids[] = {
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
{ }
};
MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
static u8 get_src_id(struct skx_dev *d)
{
u32 reg;
pci_read_config_dword(d->util_all, 0xF0, &reg);
return GET_BITFIELD(reg, 12, 14);
}
static u8 skx_get_node_id(struct skx_dev *d)
{
u32 reg;
pci_read_config_dword(d->util_all, 0xF4, &reg);
return GET_BITFIELD(reg, 0, 2);
}
static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
int maxval, char *name)
{
u32 val = GET_BITFIELD(reg, lobit, hibit);
if (val < minval || val > maxval) {
edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
return -EINVAL;
}
return val + add;
}
#define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15)
#define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks")
#define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
#define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
static int get_width(u32 mtr)
{
switch (GET_BITFIELD(mtr, 8, 9)) {
case 0:
return DEV_X4;
case 1:
return DEV_X8;
case 2:
return DEV_X16;
}
return DEV_UNKNOWN;
}
static int skx_get_hi_lo(void)
{
struct pci_dev *pdev;
u32 reg;
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
if (!pdev) {
edac_dbg(0, "Can't get tolm/tohm\n");
return -ENODEV;
}
pci_read_config_dword(pdev, 0xD0, &reg);
skx_tolm = reg;
pci_read_config_dword(pdev, 0xD4, &reg);
skx_tohm = reg;
pci_read_config_dword(pdev, 0xD8, &reg);
skx_tohm |= (u64)reg << 32;
pci_dev_put(pdev);
edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
return 0;
}
static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
struct skx_imc *imc, int chan, int dimmno)
{
int banks = 16, ranks, rows, cols, npages;
u64 size;
if (!IS_DIMM_PRESENT(mtr))
return 0;
ranks = numrank(mtr);
rows = numrow(mtr);
cols = numcol(mtr);
/*
* Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
*/
size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
npages = MiB_TO_PAGES(size);
edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
imc->mc, chan, dimmno, size, npages,
banks, 1 << ranks, rows, cols);
imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
imc->chan[chan].dimms[dimmno].rowbits = rows;
imc->chan[chan].dimms[dimmno].colbits = cols;
dimm->nr_pages = npages;
dimm->grain = 32;
dimm->dtype = get_width(mtr);
dimm->mtype = MEM_DDR4;
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
imc->src_id, imc->lmc, chan, dimmno);
return 1;
}
#define SKX_GET_MTMTR(dev, reg) \
pci_read_config_dword((dev), 0x87c, &reg)
static bool skx_check_ecc(struct pci_dev *pdev)
{
u32 mtmtr;
SKX_GET_MTMTR(pdev, mtmtr);
return !!GET_BITFIELD(mtmtr, 2, 2);
}
static int skx_get_dimm_config(struct mem_ctl_info *mci)
{
struct skx_pvt *pvt = mci->pvt_info;
struct skx_imc *imc = pvt->imc;
struct dimm_info *dimm;
int i, j;
u32 mtr, amap;
int ndimms;
for (i = 0; i < NUM_CHANNELS; i++) {
ndimms = 0;
pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
for (j = 0; j < NUM_DIMMS; j++) {
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
mci->n_layers, i, j, 0);
pci_read_config_dword(imc->chan[i].cdev,
0x80 + 4*j, &mtr);
ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
}
if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
return -ENODEV;
}
}
return 0;
}
static void skx_unregister_mci(struct skx_imc *imc)
{
struct mem_ctl_info *mci = imc->mci;
if (!mci)
return;
edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
/* Remove MC sysfs nodes */
edac_mc_del_mc(mci->pdev);
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
kfree(mci->ctl_name);
edac_mc_free(mci);
}
static int skx_register_mci(struct skx_imc *imc)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct pci_dev *pdev = imc->chan[0].cdev;
struct skx_pvt *pvt;
int rc;
/* allocate a new MC control structure */
layers[0].type = EDAC_MC_LAYER_CHANNEL;
layers[0].size = NUM_CHANNELS;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_SLOT;
layers[1].size = NUM_DIMMS;
layers[1].is_virt_csrow = true;
mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
sizeof(struct skx_pvt));
if (unlikely(!mci))
return -ENOMEM;
edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
/* Associate skx_dev and mci for future usage */
imc->mci = mci;
pvt = mci->pvt_info;
pvt->imc = imc;
mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", imc->node_id, imc->lmc);
if (!mci->ctl_name) {
rc = -ENOMEM;
goto fail0;
}
mci->mtype_cap = MEM_FLAG_DDR4;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = EDAC_MOD_STR;
mci->dev_name = pci_name(imc->chan[0].cdev);
mci->ctl_page_to_phys = NULL;
rc = skx_get_dimm_config(mci);
if (rc < 0)
goto fail;
/* record ptr to the generic device */
mci->pdev = &pdev->dev;
/* add this new MC control structure to EDAC's list of MCs */
if (unlikely(edac_mc_add_mc(mci))) {
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
rc = -EINVAL;
goto fail;
}
return 0;
fail:
kfree(mci->ctl_name);
fail0:
edac_mc_free(mci);
imc->mci = NULL;
return rc;
}
#define SKX_MAX_SAD 24
#define SKX_GET_SAD(d, i, reg) \
pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
#define SKX_GET_ILV(d, i, reg) \
pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
#define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
#define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
#define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
#define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
#define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
#define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
#define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
#define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
#define SKX_ILV_TARGET(tgt) ((tgt) & 7)
static bool skx_sad_decode(struct decoded_addr *res)
{
struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
u64 addr = res->addr;
int i, idx, tgt, lchan, shift;
u32 sad, ilv;
u64 limit, prev_limit;
int remote = 0;
/* Simple sanity check for I/O space or out of range */
if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
edac_dbg(0, "Address %llx out of range\n", addr);
return false;
}
restart:
prev_limit = 0;
for (i = 0; i < SKX_MAX_SAD; i++) {
SKX_GET_SAD(d, i, sad);
limit = SKX_SAD_LIMIT(sad);
if (SKX_SAD_ENABLE(sad)) {
if (addr >= prev_limit && addr <= limit)
goto sad_found;
}
prev_limit = limit + 1;
}
edac_dbg(0, "No SAD entry for %llx\n", addr);
return false;
sad_found:
SKX_GET_ILV(d, i, ilv);
switch (SKX_SAD_INTERLEAVE(sad)) {
case 0:
idx = GET_BITFIELD(addr, 6, 8);
break;
case 1:
idx = GET_BITFIELD(addr, 8, 10);
break;
case 2:
idx = GET_BITFIELD(addr, 12, 14);
break;
case 3:
idx = GET_BITFIELD(addr, 30, 32);
break;
}
tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
/* If point to another node, find it and start over */
if (SKX_ILV_REMOTE(tgt)) {
if (remote) {
edac_dbg(0, "Double remote!\n");
return false;
}
remote = 1;
list_for_each_entry(d, &skx_edac_list, list) {
if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
goto restart;
}
edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
return false;
}
if (SKX_SAD_MOD3(sad) == 0)
lchan = SKX_ILV_TARGET(tgt);
else {
switch (SKX_SAD_MOD3MODE(sad)) {
case 0:
shift = 6;
break;
case 1:
shift = 8;
break;
case 2:
shift = 12;
break;
default:
edac_dbg(0, "illegal mod3mode\n");
return false;
}
switch (SKX_SAD_MOD3ASMOD2(sad)) {
case 0:
lchan = (addr >> shift) % 3;
break;
case 1:
lchan = (addr >> shift) % 2;
break;
case 2:
lchan = (addr >> shift) % 2;
lchan = (lchan << 1) | ~lchan;
break;
case 3:
lchan = ((addr >> shift) % 2) << 1;
break;
}
lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
}
res->dev = d;
res->socket = d->imc[0].src_id;
res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
res->addr, res->socket, res->imc, res->channel);
return true;
}
#define SKX_MAX_TAD 8
#define SKX_GET_TADBASE(d, mc, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
#define SKX_GET_TADWAYNESS(d, mc, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
#define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
#define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
#define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
#define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
#define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
#define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
#define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
/* which bit used for both socket and channel interleave */
static int skx_granularity[] = { 6, 8, 12, 30 };
static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
{
addr >>= shift;
addr /= ways;
addr <<= shift;
return addr | (lowbits & ((1ull << shift) - 1));
}
static bool skx_tad_decode(struct decoded_addr *res)
{
int i;
u32 base, wayness, chnilvoffset;
int skt_interleave_bit, chn_interleave_bit;
u64 channel_addr;
for (i = 0; i < SKX_MAX_TAD; i++) {
SKX_GET_TADBASE(res->dev, res->imc, i, base);
SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
goto tad_found;
}
edac_dbg(0, "No TAD entry for %llx\n", res->addr);
return false;
tad_found:
res->sktways = SKX_TAD_SKTWAYS(wayness);
res->chanways = SKX_TAD_CHNWAYS(wayness);
skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
/* Must handle channel first, then socket */
channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
res->chanways, channel_addr);
channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
res->sktways, channel_addr);
} else {
/* Handle socket then channel. Preserve low bits from original address */
channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
res->sktways, res->addr);
channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
res->chanways, res->addr);
}
res->chan_addr = channel_addr;
edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
res->addr, res->chan_addr, res->sktways, res->chanways);
return true;
}
#define SKX_MAX_RIR 4
#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
0x108 + 4 * (i), &reg)
#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
0x120 + 16 * idx + 4 * (i), &reg)
#define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
#define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
#define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
#define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
#define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
static bool skx_rir_decode(struct decoded_addr *res)
{
int i, idx, chan_rank;
int shift;
u32 rirway, rirlv;
u64 rank_addr, prev_limit = 0, limit;
if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
shift = 6;
else
shift = 13;
for (i = 0; i < SKX_MAX_RIR; i++) {
SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
limit = SKX_RIR_LIMIT(rirway);
if (SKX_RIR_VALID(rirway)) {
if (prev_limit <= res->chan_addr &&
res->chan_addr <= limit)
goto rir_found;
}
prev_limit = limit;
}
edac_dbg(0, "No RIR entry for %llx\n", res->addr);
return false;
rir_found:
rank_addr = res->chan_addr >> shift;
rank_addr /= SKX_RIR_WAYS(rirway);
rank_addr <<= shift;
rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
res->rank_address = rank_addr;
idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
chan_rank = SKX_RIR_CHAN_RANK(rirlv);
res->channel_rank = chan_rank;
res->dimm = chan_rank / 4;
res->rank = chan_rank % 4;
edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
res->addr, res->dimm, res->rank,
res->channel_rank, res->rank_address);
return true;
}
static u8 skx_close_row[] = {
15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
};
static u8 skx_close_column[] = {
3, 4, 5, 14, 19, 23, 24, 25, 26, 27
};
static u8 skx_open_row[] = {
14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
};
static u8 skx_open_column[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};
static u8 skx_open_fine_column[] = {
3, 4, 5, 7, 8, 9, 10, 11, 12, 13
};
static int skx_bits(u64 addr, int nbits, u8 *bits)
{
int i, res = 0;
for (i = 0; i < nbits; i++)
res |= ((addr >> bits[i]) & 1) << i;
return res;
}
static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
{
int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
if (do_xor)
ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
return ret;
}
static bool skx_mad_decode(struct decoded_addr *r)
{
struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
int bg0 = dimm->fine_grain_bank ? 6 : 13;
if (dimm->close_pg) {
r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
r->column |= 0x400; /* C10 is autoprecharge, always set */
r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
} else {
r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
if (dimm->fine_grain_bank)
r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
else
r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
}
r->row &= (1u << dimm->rowbits) - 1;
edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
r->addr, r->row, r->column, r->bank_address,
r->bank_group);
return true;
}
static bool skx_decode(struct decoded_addr *res)
{
return skx_sad_decode(res) && skx_tad_decode(res) &&
skx_rir_decode(res) && skx_mad_decode(res);
}
#ifdef CONFIG_EDAC_DEBUG
/*
* Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
* Write an address to this file to exercise the address decode
* logic in this driver.
*/
static struct dentry *skx_test;
static u64 skx_fake_addr;
static int debugfs_u64_set(void *data, u64 val)
{
struct decoded_addr res;
res.addr = val;
skx_decode(&res);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
static struct dentry *mydebugfs_create(const char *name, umode_t mode,
struct dentry *parent, u64 *value)
{
return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
}
static void setup_skx_debug(void)
{
skx_test = debugfs_create_dir("skx_edac_test", NULL);
mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
}
static void teardown_skx_debug(void)
{
debugfs_remove_recursive(skx_test);
}
#else
static void setup_skx_debug(void)
{
}
static void teardown_skx_debug(void)
{
}
#endif /*CONFIG_EDAC_DEBUG*/
static void skx_mce_output_error(struct mem_ctl_info *mci,
const struct mce *m,
struct decoded_addr *res)
{
enum hw_event_mc_err_type tp_event;
char *type, *optype, msg[256];
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
bool overflow = GET_BITFIELD(m->status, 62, 62);
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
bool recoverable;
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
u32 mscod = GET_BITFIELD(m->status, 16, 31);
u32 errcode = GET_BITFIELD(m->status, 0, 15);
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
recoverable = GET_BITFIELD(m->status, 56, 56);
if (uncorrected_error) {
if (ripv) {
type = "FATAL";
tp_event = HW_EVENT_ERR_FATAL;
} else {
type = "NON_FATAL";
tp_event = HW_EVENT_ERR_UNCORRECTED;
}
} else {
type = "CORRECTED";
tp_event = HW_EVENT_ERR_CORRECTED;
}
/*
* According with Table 15-9 of the Intel Architecture spec vol 3A,
* memory errors should fit in this mask:
* 000f 0000 1mmm cccc (binary)
* where:
* f = Correction Report Filtering Bit. If 1, subsequent errors
* won't be shown
* mmm = error type
* cccc = channel
* If the mask doesn't match, report an error to the parsing logic
*/
if (!((errcode & 0xef80) == 0x80)) {
optype = "Can't parse: it is not a mem";
} else {
switch (optypenum) {
case 0:
optype = "generic undef request error";
break;
case 1:
optype = "memory read error";
break;
case 2:
optype = "memory write error";
break;
case 3:
optype = "addr/cmd error";
break;
case 4:
optype = "memory scrubbing error";
break;
default:
optype = "reserved";
break;
}
}
snprintf(msg, sizeof(msg),
"%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "",
mscod, errcode,
res->socket, res->imc, res->rank,
res->bank_group, res->bank_address, res->row, res->column);
edac_dbg(0, "%s\n", msg);
/* Call the helper to output message */
edac_mc_handle_error(tp_event, mci, core_err_cnt,
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
res->channel, res->dimm, -1,
optype, msg);
}
static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
struct decoded_addr res;
struct mem_ctl_info *mci;
char *type;
if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
return NOTIFY_DONE;
/* ignore unless this is memory related with an address */
if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
return NOTIFY_DONE;
res.addr = mce->addr;
if (!skx_decode(&res))
return NOTIFY_DONE;
mci = res.dev->imc[res.imc].mci;
if (mce->mcgstatus & MCG_STATUS_MCIP)
type = "Exception";
else
type = "Event";
skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
"Bank %d: %016Lx\n", mce->extcpu, type,
mce->mcgstatus, mce->bank, mce->status);
skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
"%u APIC %x\n", mce->cpuvendor, mce->cpuid,
mce->time, mce->socketid, mce->apicid);
skx_mce_output_error(mci, mce, &res);
return NOTIFY_DONE;
}
static struct notifier_block skx_mce_dec = {
.notifier_call = skx_mce_check_error,
.priority = MCE_PRIO_EDAC,
};
static void skx_remove(void)
{
int i, j;
struct skx_dev *d, *tmp;
edac_dbg(0, "\n");
list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
list_del(&d->list);
for (i = 0; i < NUM_IMC; i++) {
skx_unregister_mci(&d->imc[i]);
for (j = 0; j < NUM_CHANNELS; j++)
pci_dev_put(d->imc[i].chan[j].cdev);
}
pci_dev_put(d->util_all);
pci_dev_put(d->sad_all);
kfree(d);
}
}
/*
* skx_init:
* make sure we are running on the correct cpu model
* search for all the devices we need
* check which DIMMs are present.
*/
static int __init skx_init(void)
{
const struct x86_cpu_id *id;
const struct munit *m;
const char *owner;
int rc = 0, i;
u8 mc = 0, src_id, node_id;
struct skx_dev *d;
edac_dbg(2, "\n");
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
id = x86_match_cpu(skx_cpuids);
if (!id)
return -ENODEV;
rc = skx_get_hi_lo();
if (rc)
return rc;
rc = get_all_bus_mappings();
if (rc < 0)
goto fail;
if (rc == 0) {
edac_dbg(2, "No memory controllers found\n");
return -ENODEV;
}
for (m = skx_all_munits; m->did; m++) {
rc = get_all_munits(m);
if (rc < 0)
goto fail;
if (rc != m->per_socket * skx_num_sockets) {
edac_dbg(2, "Expected %d, got %d of %x\n",
m->per_socket * skx_num_sockets, rc, m->did);
rc = -ENODEV;
goto fail;
}
}
list_for_each_entry(d, &skx_edac_list, list) {
src_id = get_src_id(d);
node_id = skx_get_node_id(d);
edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
for (i = 0; i < NUM_IMC; i++) {
d->imc[i].mc = mc++;
d->imc[i].lmc = i;
d->imc[i].src_id = src_id;
d->imc[i].node_id = node_id;
rc = skx_register_mci(&d->imc[i]);
if (rc < 0)
goto fail;
}
}
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
setup_skx_debug();
mce_register_decode_chain(&skx_mce_dec);
return 0;
fail:
skx_remove();
return rc;
}
static void __exit skx_exit(void)
{
edac_dbg(2, "\n");
mce_unregister_decode_chain(&skx_mce_dec);
skx_remove();
teardown_skx_debug();
}
module_init(skx_init);
module_exit(skx_exit);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tony Luck");
MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");