mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-09 14:14:00 +08:00
a131bfc69b
The EEH core has a concept of a "PE tree" to support PowerNV. The PE tree follows the PCI bus structures because a reset asserted on an upstream bridge will be propagated to the downstream bridges. On pseries there's a 1-1 correspondence between what the guest sees are a PHB and a PE so the "tree" is really just a single node. Current the EEH core is reponsible for setting up this PE tree which it does by traversing the pci_dn tree. The structure of the pci_dn tree matches the bus tree on PowerNV which leads to the PE tree being "correct" this setup method doesn't make a whole lot of sense and it's actively confusing for the pseries case where it doesn't really do anything. We want to remove the dependence on pci_dn anyway so this patch move choosing where to insert a new PE into the platform code rather than being part of the generic EEH code. For PowerNV this simplifies the tree building logic and removes the use of pci_dn. For pseries we keep the existing logic. I'm not really convinced it does anything due to the 1-1 PE-to-PHB correspondence so every device under that PHB should be in the same PE, but I'd rather not remove it entirely until we've had a chance to look at it more deeply. Signed-off-by: Oliver O'Halloran <oohall@gmail.com> Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200725081231.39076-14-oohall@gmail.com
902 lines
22 KiB
C
902 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* The file intends to implement PE based on the information from
|
|
* platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
|
|
* All the PEs should be organized as hierarchy tree. The first level
|
|
* of the tree will be associated to existing PHBs since the particular
|
|
* PE is only meaningful in one PHB domain.
|
|
*
|
|
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/string.h>
|
|
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/ppc-pci.h>
|
|
|
|
static int eeh_pe_aux_size = 0;
|
|
static LIST_HEAD(eeh_phb_pe);
|
|
|
|
/**
|
|
* eeh_set_pe_aux_size - Set PE auxillary data size
|
|
* @size: PE auxillary data size
|
|
*
|
|
* Set PE auxillary data size
|
|
*/
|
|
void eeh_set_pe_aux_size(int size)
|
|
{
|
|
if (size < 0)
|
|
return;
|
|
|
|
eeh_pe_aux_size = size;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_alloc - Allocate PE
|
|
* @phb: PCI controller
|
|
* @type: PE type
|
|
*
|
|
* Allocate PE instance dynamically.
|
|
*/
|
|
static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
|
|
{
|
|
struct eeh_pe *pe;
|
|
size_t alloc_size;
|
|
|
|
alloc_size = sizeof(struct eeh_pe);
|
|
if (eeh_pe_aux_size) {
|
|
alloc_size = ALIGN(alloc_size, cache_line_size());
|
|
alloc_size += eeh_pe_aux_size;
|
|
}
|
|
|
|
/* Allocate PHB PE */
|
|
pe = kzalloc(alloc_size, GFP_KERNEL);
|
|
if (!pe) return NULL;
|
|
|
|
/* Initialize PHB PE */
|
|
pe->type = type;
|
|
pe->phb = phb;
|
|
INIT_LIST_HEAD(&pe->child_list);
|
|
INIT_LIST_HEAD(&pe->edevs);
|
|
|
|
pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
|
|
cache_line_size());
|
|
return pe;
|
|
}
|
|
|
|
/**
|
|
* eeh_phb_pe_create - Create PHB PE
|
|
* @phb: PCI controller
|
|
*
|
|
* The function should be called while the PHB is detected during
|
|
* system boot or PCI hotplug in order to create PHB PE.
|
|
*/
|
|
int eeh_phb_pe_create(struct pci_controller *phb)
|
|
{
|
|
struct eeh_pe *pe;
|
|
|
|
/* Allocate PHB PE */
|
|
pe = eeh_pe_alloc(phb, EEH_PE_PHB);
|
|
if (!pe) {
|
|
pr_err("%s: out of memory!\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Put it into the list */
|
|
list_add_tail(&pe->child, &eeh_phb_pe);
|
|
|
|
pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_wait_state - Wait for PE state
|
|
* @pe: EEH PE
|
|
* @max_wait: maximal period in millisecond
|
|
*
|
|
* Wait for the state of associated PE. It might take some time
|
|
* to retrieve the PE's state.
|
|
*/
|
|
int eeh_wait_state(struct eeh_pe *pe, int max_wait)
|
|
{
|
|
int ret;
|
|
int mwait;
|
|
|
|
/*
|
|
* According to PAPR, the state of PE might be temporarily
|
|
* unavailable. Under the circumstance, we have to wait
|
|
* for indicated time determined by firmware. The maximal
|
|
* wait time is 5 minutes, which is acquired from the original
|
|
* EEH implementation. Also, the original implementation
|
|
* also defined the minimal wait time as 1 second.
|
|
*/
|
|
#define EEH_STATE_MIN_WAIT_TIME (1000)
|
|
#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
|
|
|
|
while (1) {
|
|
ret = eeh_ops->get_state(pe, &mwait);
|
|
|
|
if (ret != EEH_STATE_UNAVAILABLE)
|
|
return ret;
|
|
|
|
if (max_wait <= 0) {
|
|
pr_warn("%s: Timeout when getting PE's state (%d)\n",
|
|
__func__, max_wait);
|
|
return EEH_STATE_NOT_SUPPORT;
|
|
}
|
|
|
|
if (mwait < EEH_STATE_MIN_WAIT_TIME) {
|
|
pr_warn("%s: Firmware returned bad wait value %d\n",
|
|
__func__, mwait);
|
|
mwait = EEH_STATE_MIN_WAIT_TIME;
|
|
} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
|
|
pr_warn("%s: Firmware returned too long wait value %d\n",
|
|
__func__, mwait);
|
|
mwait = EEH_STATE_MAX_WAIT_TIME;
|
|
}
|
|
|
|
msleep(min(mwait, max_wait));
|
|
max_wait -= mwait;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
|
|
* @phb: PCI controller
|
|
*
|
|
* The overall PEs form hierarchy tree. The first layer of the
|
|
* hierarchy tree is composed of PHB PEs. The function is used
|
|
* to retrieve the corresponding PHB PE according to the given PHB.
|
|
*/
|
|
struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
|
|
{
|
|
struct eeh_pe *pe;
|
|
|
|
list_for_each_entry(pe, &eeh_phb_pe, child) {
|
|
/*
|
|
* Actually, we needn't check the type since
|
|
* the PE for PHB has been determined when that
|
|
* was created.
|
|
*/
|
|
if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
|
|
return pe;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_next - Retrieve the next PE in the tree
|
|
* @pe: current PE
|
|
* @root: root PE
|
|
*
|
|
* The function is used to retrieve the next PE in the
|
|
* hierarchy PE tree.
|
|
*/
|
|
struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
|
|
{
|
|
struct list_head *next = pe->child_list.next;
|
|
|
|
if (next == &pe->child_list) {
|
|
while (1) {
|
|
if (pe == root)
|
|
return NULL;
|
|
next = pe->child.next;
|
|
if (next != &pe->parent->child_list)
|
|
break;
|
|
pe = pe->parent;
|
|
}
|
|
}
|
|
|
|
return list_entry(next, struct eeh_pe, child);
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_traverse - Traverse PEs in the specified PHB
|
|
* @root: root PE
|
|
* @fn: callback
|
|
* @flag: extra parameter to callback
|
|
*
|
|
* The function is used to traverse the specified PE and its
|
|
* child PEs. The traversing is to be terminated once the
|
|
* callback returns something other than NULL, or no more PEs
|
|
* to be traversed.
|
|
*/
|
|
void *eeh_pe_traverse(struct eeh_pe *root,
|
|
eeh_pe_traverse_func fn, void *flag)
|
|
{
|
|
struct eeh_pe *pe;
|
|
void *ret;
|
|
|
|
eeh_for_each_pe(root, pe) {
|
|
ret = fn(pe, flag);
|
|
if (ret) return ret;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_dev_traverse - Traverse the devices from the PE
|
|
* @root: EEH PE
|
|
* @fn: function callback
|
|
* @flag: extra parameter to callback
|
|
*
|
|
* The function is used to traverse the devices of the specified
|
|
* PE and its child PEs.
|
|
*/
|
|
void eeh_pe_dev_traverse(struct eeh_pe *root,
|
|
eeh_edev_traverse_func fn, void *flag)
|
|
{
|
|
struct eeh_pe *pe;
|
|
struct eeh_dev *edev, *tmp;
|
|
|
|
if (!root) {
|
|
pr_warn("%s: Invalid PE %p\n",
|
|
__func__, root);
|
|
return;
|
|
}
|
|
|
|
/* Traverse root PE */
|
|
eeh_for_each_pe(root, pe)
|
|
eeh_pe_for_each_dev(pe, edev, tmp)
|
|
fn(edev, flag);
|
|
}
|
|
|
|
/**
|
|
* __eeh_pe_get - Check the PE address
|
|
* @data: EEH PE
|
|
* @flag: EEH device
|
|
*
|
|
* For one particular PE, it can be identified by PE address
|
|
* or tranditional BDF address. BDF address is composed of
|
|
* Bus/Device/Function number. The extra data referred by flag
|
|
* indicates which type of address should be used.
|
|
*/
|
|
struct eeh_pe_get_flag {
|
|
int pe_no;
|
|
int config_addr;
|
|
};
|
|
|
|
static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
|
|
{
|
|
struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
|
|
|
|
/* Unexpected PHB PE */
|
|
if (pe->type & EEH_PE_PHB)
|
|
return NULL;
|
|
|
|
/*
|
|
* We prefer PE address. For most cases, we should
|
|
* have non-zero PE address
|
|
*/
|
|
if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
|
|
if (tmp->pe_no == pe->addr)
|
|
return pe;
|
|
} else {
|
|
if (tmp->pe_no &&
|
|
(tmp->pe_no == pe->addr))
|
|
return pe;
|
|
}
|
|
|
|
/* Try BDF address */
|
|
if (tmp->config_addr &&
|
|
(tmp->config_addr == pe->config_addr))
|
|
return pe;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_get - Search PE based on the given address
|
|
* @phb: PCI controller
|
|
* @pe_no: PE number
|
|
* @config_addr: Config address
|
|
*
|
|
* Search the corresponding PE based on the specified address which
|
|
* is included in the eeh device. The function is used to check if
|
|
* the associated PE has been created against the PE address. It's
|
|
* notable that the PE address has 2 format: traditional PE address
|
|
* which is composed of PCI bus/device/function number, or unified
|
|
* PE address.
|
|
*/
|
|
struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
|
|
int pe_no, int config_addr)
|
|
{
|
|
struct eeh_pe *root = eeh_phb_pe_get(phb);
|
|
struct eeh_pe_get_flag tmp = { pe_no, config_addr };
|
|
struct eeh_pe *pe;
|
|
|
|
pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
|
|
|
|
return pe;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_tree_insert - Add EEH device to parent PE
|
|
* @edev: EEH device
|
|
* @new_pe_parent: PE to create additional PEs under
|
|
*
|
|
* Add EEH device to the PE in edev->pe_config_addr. If a PE already
|
|
* exists with that address then @edev is added to that PE. Otherwise
|
|
* a new PE is created and inserted into the PE tree as a child of
|
|
* @new_pe_parent.
|
|
*
|
|
* If @new_pe_parent is NULL then the new PE will be inserted under
|
|
* directly under the the PHB.
|
|
*/
|
|
int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
|
|
{
|
|
struct pci_controller *hose = edev->controller;
|
|
struct eeh_pe *pe, *parent;
|
|
|
|
/* Check if the PE number is valid */
|
|
if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
|
|
eeh_edev_err(edev, "PE#0 is invalid for this PHB!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Search the PE has been existing or not according
|
|
* to the PE address. If that has been existing, the
|
|
* PE should be composed of PCI bus and its subordinate
|
|
* components.
|
|
*/
|
|
pe = eeh_pe_get(hose, edev->pe_config_addr, edev->bdfn);
|
|
if (pe) {
|
|
if (pe->type & EEH_PE_INVALID) {
|
|
list_add_tail(&edev->entry, &pe->edevs);
|
|
edev->pe = pe;
|
|
/*
|
|
* We're running to here because of PCI hotplug caused by
|
|
* EEH recovery. We need clear EEH_PE_INVALID until the top.
|
|
*/
|
|
parent = pe;
|
|
while (parent) {
|
|
if (!(parent->type & EEH_PE_INVALID))
|
|
break;
|
|
parent->type &= ~EEH_PE_INVALID;
|
|
parent = parent->parent;
|
|
}
|
|
|
|
eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
|
|
pe->parent->addr);
|
|
} else {
|
|
/* Mark the PE as type of PCI bus */
|
|
pe->type = EEH_PE_BUS;
|
|
edev->pe = pe;
|
|
|
|
/* Put the edev to PE */
|
|
list_add_tail(&edev->entry, &pe->edevs);
|
|
eeh_edev_dbg(edev, "Added to bus PE\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Create a new EEH PE */
|
|
if (edev->physfn)
|
|
pe = eeh_pe_alloc(hose, EEH_PE_VF);
|
|
else
|
|
pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
|
|
if (!pe) {
|
|
pr_err("%s: out of memory!\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
pe->addr = edev->pe_config_addr;
|
|
pe->config_addr = edev->bdfn;
|
|
|
|
/*
|
|
* Put the new EEH PE into hierarchy tree. If the parent
|
|
* can't be found, the newly created PE will be attached
|
|
* to PHB directly. Otherwise, we have to associate the
|
|
* PE with its parent.
|
|
*/
|
|
if (!new_pe_parent) {
|
|
new_pe_parent = eeh_phb_pe_get(hose);
|
|
if (!new_pe_parent) {
|
|
pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
|
|
__func__, hose->global_number);
|
|
edev->pe = NULL;
|
|
kfree(pe);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
|
|
/* link new PE into the tree */
|
|
pe->parent = new_pe_parent;
|
|
list_add_tail(&pe->child, &new_pe_parent->child_list);
|
|
|
|
/*
|
|
* Put the newly created PE into the child list and
|
|
* link the EEH device accordingly.
|
|
*/
|
|
list_add_tail(&edev->entry, &pe->edevs);
|
|
edev->pe = pe;
|
|
eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
|
|
new_pe_parent->addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_tree_remove - Remove one EEH device from the associated PE
|
|
* @edev: EEH device
|
|
*
|
|
* The PE hierarchy tree might be changed when doing PCI hotplug.
|
|
* Also, the PCI devices or buses could be removed from the system
|
|
* during EEH recovery. So we have to call the function remove the
|
|
* corresponding PE accordingly if necessary.
|
|
*/
|
|
int eeh_pe_tree_remove(struct eeh_dev *edev)
|
|
{
|
|
struct eeh_pe *pe, *parent, *child;
|
|
bool keep, recover;
|
|
int cnt;
|
|
|
|
pe = eeh_dev_to_pe(edev);
|
|
if (!pe) {
|
|
eeh_edev_dbg(edev, "No PE found for device.\n");
|
|
return -EEXIST;
|
|
}
|
|
|
|
/* Remove the EEH device */
|
|
edev->pe = NULL;
|
|
list_del(&edev->entry);
|
|
|
|
/*
|
|
* Check if the parent PE includes any EEH devices.
|
|
* If not, we should delete that. Also, we should
|
|
* delete the parent PE if it doesn't have associated
|
|
* child PEs and EEH devices.
|
|
*/
|
|
while (1) {
|
|
parent = pe->parent;
|
|
|
|
/* PHB PEs should never be removed */
|
|
if (pe->type & EEH_PE_PHB)
|
|
break;
|
|
|
|
/*
|
|
* XXX: KEEP is set while resetting a PE. I don't think it's
|
|
* ever set without RECOVERING also being set. I could
|
|
* be wrong though so catch that with a WARN.
|
|
*/
|
|
keep = !!(pe->state & EEH_PE_KEEP);
|
|
recover = !!(pe->state & EEH_PE_RECOVERING);
|
|
WARN_ON(keep && !recover);
|
|
|
|
if (!keep && !recover) {
|
|
if (list_empty(&pe->edevs) &&
|
|
list_empty(&pe->child_list)) {
|
|
list_del(&pe->child);
|
|
kfree(pe);
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
/*
|
|
* Mark the PE as invalid. At the end of the recovery
|
|
* process any invalid PEs will be garbage collected.
|
|
*
|
|
* We need to delay the free()ing of them since we can
|
|
* remove edev's while traversing the PE tree which
|
|
* might trigger the removal of a PE and we can't
|
|
* deal with that (yet).
|
|
*/
|
|
if (list_empty(&pe->edevs)) {
|
|
cnt = 0;
|
|
list_for_each_entry(child, &pe->child_list, child) {
|
|
if (!(child->type & EEH_PE_INVALID)) {
|
|
cnt++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!cnt)
|
|
pe->type |= EEH_PE_INVALID;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
pe = parent;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_update_time_stamp - Update PE's frozen time stamp
|
|
* @pe: EEH PE
|
|
*
|
|
* We have time stamp for each PE to trace its time of getting
|
|
* frozen in last hour. The function should be called to update
|
|
* the time stamp on first error of the specific PE. On the other
|
|
* handle, we needn't account for errors happened in last hour.
|
|
*/
|
|
void eeh_pe_update_time_stamp(struct eeh_pe *pe)
|
|
{
|
|
time64_t tstamp;
|
|
|
|
if (!pe) return;
|
|
|
|
if (pe->freeze_count <= 0) {
|
|
pe->freeze_count = 0;
|
|
pe->tstamp = ktime_get_seconds();
|
|
} else {
|
|
tstamp = ktime_get_seconds();
|
|
if (tstamp - pe->tstamp > 3600) {
|
|
pe->tstamp = tstamp;
|
|
pe->freeze_count = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_state_mark - Mark specified state for PE and its associated device
|
|
* @pe: EEH PE
|
|
*
|
|
* EEH error affects the current PE and its child PEs. The function
|
|
* is used to mark appropriate state for the affected PEs and the
|
|
* associated devices.
|
|
*/
|
|
void eeh_pe_state_mark(struct eeh_pe *root, int state)
|
|
{
|
|
struct eeh_pe *pe;
|
|
|
|
eeh_for_each_pe(root, pe)
|
|
if (!(pe->state & EEH_PE_REMOVED))
|
|
pe->state |= state;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
|
|
|
|
/**
|
|
* eeh_pe_mark_isolated
|
|
* @pe: EEH PE
|
|
*
|
|
* Record that a PE has been isolated by marking the PE and it's children as
|
|
* EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
|
|
* as pci_channel_io_frozen.
|
|
*/
|
|
void eeh_pe_mark_isolated(struct eeh_pe *root)
|
|
{
|
|
struct eeh_pe *pe;
|
|
struct eeh_dev *edev;
|
|
struct pci_dev *pdev;
|
|
|
|
eeh_pe_state_mark(root, EEH_PE_ISOLATED);
|
|
eeh_for_each_pe(root, pe) {
|
|
list_for_each_entry(edev, &pe->edevs, entry) {
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (pdev)
|
|
pdev->error_state = pci_channel_io_frozen;
|
|
}
|
|
/* Block PCI config access if required */
|
|
if (pe->state & EEH_PE_CFG_RESTRICTED)
|
|
pe->state |= EEH_PE_CFG_BLOCKED;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
|
|
|
|
static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
|
|
{
|
|
int mode = *((int *)flag);
|
|
|
|
edev->mode |= mode;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_dev_state_mark - Mark state for all device under the PE
|
|
* @pe: EEH PE
|
|
*
|
|
* Mark specific state for all child devices of the PE.
|
|
*/
|
|
void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
|
|
{
|
|
eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_state_clear - Clear state for the PE
|
|
* @data: EEH PE
|
|
* @state: state
|
|
* @include_passed: include passed-through devices?
|
|
*
|
|
* The function is used to clear the indicated state from the
|
|
* given PE. Besides, we also clear the check count of the PE
|
|
* as well.
|
|
*/
|
|
void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
|
|
{
|
|
struct eeh_pe *pe;
|
|
struct eeh_dev *edev, *tmp;
|
|
struct pci_dev *pdev;
|
|
|
|
eeh_for_each_pe(root, pe) {
|
|
/* Keep the state of permanently removed PE intact */
|
|
if (pe->state & EEH_PE_REMOVED)
|
|
continue;
|
|
|
|
if (!include_passed && eeh_pe_passed(pe))
|
|
continue;
|
|
|
|
pe->state &= ~state;
|
|
|
|
/*
|
|
* Special treatment on clearing isolated state. Clear
|
|
* check count since last isolation and put all affected
|
|
* devices to normal state.
|
|
*/
|
|
if (!(state & EEH_PE_ISOLATED))
|
|
continue;
|
|
|
|
pe->check_count = 0;
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (!pdev)
|
|
continue;
|
|
|
|
pdev->error_state = pci_channel_io_normal;
|
|
}
|
|
|
|
/* Unblock PCI config access if required */
|
|
if (pe->state & EEH_PE_CFG_RESTRICTED)
|
|
pe->state &= ~EEH_PE_CFG_BLOCKED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some PCI bridges (e.g. PLX bridges) have primary/secondary
|
|
* buses assigned explicitly by firmware, and we probably have
|
|
* lost that after reset. So we have to delay the check until
|
|
* the PCI-CFG registers have been restored for the parent
|
|
* bridge.
|
|
*
|
|
* Don't use normal PCI-CFG accessors, which probably has been
|
|
* blocked on normal path during the stage. So we need utilize
|
|
* eeh operations, which is always permitted.
|
|
*/
|
|
static void eeh_bridge_check_link(struct eeh_dev *edev)
|
|
{
|
|
int cap;
|
|
uint32_t val;
|
|
int timeout = 0;
|
|
|
|
/*
|
|
* We only check root port and downstream ports of
|
|
* PCIe switches
|
|
*/
|
|
if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
|
|
return;
|
|
|
|
eeh_edev_dbg(edev, "Checking PCIe link...\n");
|
|
|
|
/* Check slot status */
|
|
cap = edev->pcie_cap;
|
|
eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
|
|
if (!(val & PCI_EXP_SLTSTA_PDS)) {
|
|
eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
|
|
return;
|
|
}
|
|
|
|
/* Check power status if we have the capability */
|
|
eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
|
|
if (val & PCI_EXP_SLTCAP_PCP) {
|
|
eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
|
|
if (val & PCI_EXP_SLTCTL_PCC) {
|
|
eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
|
|
val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
|
|
val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
|
|
eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
|
|
msleep(2 * 1000);
|
|
}
|
|
}
|
|
|
|
/* Enable link */
|
|
eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
|
|
val &= ~PCI_EXP_LNKCTL_LD;
|
|
eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
|
|
|
|
/* Check link */
|
|
eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val);
|
|
if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
|
|
eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
|
|
msleep(1000);
|
|
return;
|
|
}
|
|
|
|
/* Wait the link is up until timeout (5s) */
|
|
timeout = 0;
|
|
while (timeout < 5000) {
|
|
msleep(20);
|
|
timeout += 20;
|
|
|
|
eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
|
|
if (val & PCI_EXP_LNKSTA_DLLLA)
|
|
break;
|
|
}
|
|
|
|
if (val & PCI_EXP_LNKSTA_DLLLA)
|
|
eeh_edev_dbg(edev, "Link up (%s)\n",
|
|
(val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
|
|
else
|
|
eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
|
|
}
|
|
|
|
#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
|
|
#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
|
|
|
|
static void eeh_restore_bridge_bars(struct eeh_dev *edev)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Device BARs: 0x10 - 0x18
|
|
* Bus numbers and windows: 0x18 - 0x30
|
|
*/
|
|
for (i = 4; i < 13; i++)
|
|
eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
|
|
/* Rom: 0x38 */
|
|
eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
|
|
|
|
/* Cache line & Latency timer: 0xC 0xD */
|
|
eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
|
|
SAVED_BYTE(PCI_CACHE_LINE_SIZE));
|
|
eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
|
|
SAVED_BYTE(PCI_LATENCY_TIMER));
|
|
/* Max latency, min grant, interrupt ping and line: 0x3C */
|
|
eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
|
|
|
|
/* PCI Command: 0x4 */
|
|
eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
|
|
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
|
|
|
|
/* Check the PCIe link is ready */
|
|
eeh_bridge_check_link(edev);
|
|
}
|
|
|
|
static void eeh_restore_device_bars(struct eeh_dev *edev)
|
|
{
|
|
int i;
|
|
u32 cmd;
|
|
|
|
for (i = 4; i < 10; i++)
|
|
eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
|
|
/* 12 == Expansion ROM Address */
|
|
eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
|
|
|
|
eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
|
|
SAVED_BYTE(PCI_CACHE_LINE_SIZE));
|
|
eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
|
|
SAVED_BYTE(PCI_LATENCY_TIMER));
|
|
|
|
/* max latency, min grant, interrupt pin and line */
|
|
eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
|
|
|
|
/*
|
|
* Restore PERR & SERR bits, some devices require it,
|
|
* don't touch the other command bits
|
|
*/
|
|
eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
|
|
if (edev->config_space[1] & PCI_COMMAND_PARITY)
|
|
cmd |= PCI_COMMAND_PARITY;
|
|
else
|
|
cmd &= ~PCI_COMMAND_PARITY;
|
|
if (edev->config_space[1] & PCI_COMMAND_SERR)
|
|
cmd |= PCI_COMMAND_SERR;
|
|
else
|
|
cmd &= ~PCI_COMMAND_SERR;
|
|
eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
|
|
}
|
|
|
|
/**
|
|
* eeh_restore_one_device_bars - Restore the Base Address Registers for one device
|
|
* @data: EEH device
|
|
* @flag: Unused
|
|
*
|
|
* Loads the PCI configuration space base address registers,
|
|
* the expansion ROM base address, the latency timer, and etc.
|
|
* from the saved values in the device node.
|
|
*/
|
|
static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
|
|
{
|
|
/* Do special restore for bridges */
|
|
if (edev->mode & EEH_DEV_BRIDGE)
|
|
eeh_restore_bridge_bars(edev);
|
|
else
|
|
eeh_restore_device_bars(edev);
|
|
|
|
if (eeh_ops->restore_config)
|
|
eeh_ops->restore_config(edev);
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_restore_bars - Restore the PCI config space info
|
|
* @pe: EEH PE
|
|
*
|
|
* This routine performs a recursive walk to the children
|
|
* of this device as well.
|
|
*/
|
|
void eeh_pe_restore_bars(struct eeh_pe *pe)
|
|
{
|
|
/*
|
|
* We needn't take the EEH lock since eeh_pe_dev_traverse()
|
|
* will take that.
|
|
*/
|
|
eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_loc_get - Retrieve location code binding to the given PE
|
|
* @pe: EEH PE
|
|
*
|
|
* Retrieve the location code of the given PE. If the primary PE bus
|
|
* is root bus, we will grab location code from PHB device tree node
|
|
* or root port. Otherwise, the upstream bridge's device tree node
|
|
* of the primary PE bus will be checked for the location code.
|
|
*/
|
|
const char *eeh_pe_loc_get(struct eeh_pe *pe)
|
|
{
|
|
struct pci_bus *bus = eeh_pe_bus_get(pe);
|
|
struct device_node *dn;
|
|
const char *loc = NULL;
|
|
|
|
while (bus) {
|
|
dn = pci_bus_to_OF_node(bus);
|
|
if (!dn) {
|
|
bus = bus->parent;
|
|
continue;
|
|
}
|
|
|
|
if (pci_is_root_bus(bus))
|
|
loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
|
|
else
|
|
loc = of_get_property(dn, "ibm,slot-location-code",
|
|
NULL);
|
|
|
|
if (loc)
|
|
return loc;
|
|
|
|
bus = bus->parent;
|
|
}
|
|
|
|
return "N/A";
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_bus_get - Retrieve PCI bus according to the given PE
|
|
* @pe: EEH PE
|
|
*
|
|
* Retrieve the PCI bus according to the given PE. Basically,
|
|
* there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
|
|
* primary PCI bus will be retrieved. The parent bus will be
|
|
* returned for BUS PE. However, we don't have associated PCI
|
|
* bus for DEVICE PE.
|
|
*/
|
|
struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
|
|
{
|
|
struct eeh_dev *edev;
|
|
struct pci_dev *pdev;
|
|
|
|
if (pe->type & EEH_PE_PHB)
|
|
return pe->phb->bus;
|
|
|
|
/* The primary bus might be cached during probe time */
|
|
if (pe->state & EEH_PE_PRI_BUS)
|
|
return pe->bus;
|
|
|
|
/* Retrieve the parent PCI bus of first (top) PCI device */
|
|
edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (pdev)
|
|
return pdev->bus;
|
|
|
|
return NULL;
|
|
}
|