mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 11:44:01 +08:00
9daa0a27a0
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl7ZC5kACgkQ+7dXa6fL C2uv9A/+NKlTSXyv2ZuvtmXADelndcXJ+nC+3bwI7Jh43aa8uCCsAVYD0VE+dxor Ingj/LUJ2sjjp6RXCeeqqETXCoCVt0zK2g216+An7k84KJ+ms+MDa8dNN7l6280S 1jw4hnT0+g9Ln6elgqBroV980MJC2NGL0Eaete8zFO8UqYZy5w1ge0HfGck2l45U 2lr6egCWYSUPmtFKXJnLV8luwRvq7DzvTk9WrJu3kwOjaY1AQP1+1VpdhChJLrRc /4Ddy1On5IXiFrPi5OtHA422bfirUpIv2HbmI047W9uiZ05MiXwSvNS1qJLTa1AA T/SK88d3FCeSYw3olAne2kEl9uewvGByr98fDKFOcDHZj18abd9/VtUp33RXxYBy lN2wqlWP++LlZ4sMCbbvLXX8OB1tekQzWQC0vJ5rhRSgveOlhL9TLG2Y05xokFs+ AwK8zTlDIZ6Pa/JIHfp2E0ZhXEazWTSmP+d7NkgzF0iiORukvsmxjOVUZC4+UCqK rYN6goJ5g8qpejRv5NhfP6/olb1NK33f/F2QSSFfxv9zda4HNlayvcoSnFrdUEnt IfBhSKPkeDVWs1yse7glDuw19tHp94B9UYwJ46qfHngQPArgy+gp23d0cSy41Pr5 FRQ23eNvBWIP4srt1gSCBexSGA1h/ACji41CPTJbF2jg5uWFAUE= =YVwD -----END PGP SIGNATURE----- Merge tag 'afs-next-20200604' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull AFS updates from David Howells: "There's some core VFS changes which affect a couple of filesystems: - Make the inode hash table RCU safe and providing some RCU-safe accessor functions. The search can then be done without taking the inode_hash_lock. Care must be taken because the object may be being deleted and no wait is made. - Allow iunique() to avoid taking the inode_hash_lock. - Allow AFS's callback processing to avoid taking the inode_hash_lock when using the inode table to find an inode to notify. - Improve Ext4's time updating. Konstantin Khlebnikov said "For now, I've plugged this issue with try-lock in ext4 lazy time update. This solution is much better." Then there's a set of changes to make a number of improvements to the AFS driver: - Improve callback (ie. third party change notification) processing by: (a) Relying more on the fact we're doing this under RCU and by using fewer locks. This makes use of the RCU-based inode searching outlined above. (b) Moving to keeping volumes in a tree indexed by volume ID rather than a flat list. (c) Making the server and volume records logically part of the cell. This means that a server record now points directly at the cell and the tree of volumes is there. This removes an N:M mapping table, simplifying things. - Improve keeping NAT or firewall channels open for the server callbacks to reach the client by actively polling the fileserver on a timed basis, instead of only doing it when we have an operation to process. - Improving detection of delayed or lost callbacks by including the parent directory in the list of file IDs to be queried when doing a bulk status fetch from lookup. We can then check to see if our copy of the directory has changed under us without us getting notified. - Determine aliasing of cells (such as a cell that is pointed to be a DNS alias). This allows us to avoid having ambiguity due to apparently different cells using the same volume and file servers. - Improve the fileserver rotation to do more probing when it detects that all of the addresses to a server are listed as non-responsive. It's possible that an address that previously stopped responding has become responsive again. Beyond that, lay some foundations for making some calls asynchronous: - Turn the fileserver cursor struct into a general operation struct and hang the parameters off of that rather than keeping them in local variables and hang results off of that rather than the call struct. - Implement some general operation handling code and simplify the callers of operations that affect a volume or a volume component (such as a file). Most of the operation is now done by core code. - Operations are supplied with a table of operations to issue different variants of RPCs and to manage the completion, where all the required data is held in the operation object, thereby allowing these to be called from a workqueue. - Put the standard "if (begin), while(select), call op, end" sequence into a canned function that just emulates the current behaviour for now. There are also some fixes interspersed: - Don't let the EACCES from ICMP6 mapping reach the user as such, since it's confusing as to whether it's a filesystem error. Convert it to EHOSTUNREACH. - Don't use the epoch value acquired through probing a server. If we have two servers with the same UUID but in different cells, it's hard to draw conclusions from them having different epoch values. - Don't interpret the argument to the CB.ProbeUuid RPC as a fileserver UUID and look up a fileserver from it. - Deal with servers in different cells having the same UUIDs. In the event that a CB.InitCallBackState3 RPC is received, we have to break the callback promises for every server record matching that UUID. - Don't let afs_statfs return values that go below 0. - Don't use running fileserver probe state to make server selection and address selection decisions on. Only make decisions on final state as the running state is cleared at the start of probing" Acked-by: Al Viro <viro@zeniv.linux.org.uk> (fs/inode.c part) * tag 'afs-next-20200604' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (27 commits) afs: Adjust the fileserver rotation algorithm to reprobe/retry more quickly afs: Show more a bit more server state in /proc/net/afs/servers afs: Don't use probe running state to make decisions outside probe code afs: Fix afs_statfs() to not let the values go below zero afs: Fix the by-UUID server tree to allow servers with the same UUID afs: Reorganise volume and server trees to be rooted on the cell afs: Add a tracepoint to track the lifetime of the afs_volume struct afs: Detect cell aliases 3 - YFS Cells with a canonical cell name op afs: Detect cell aliases 2 - Cells with no root volumes afs: Detect cell aliases 1 - Cells with root volumes afs: Implement client support for the YFSVL.GetCellName RPC op afs: Retain more of the VLDB record for alias detection afs: Fix handling of CB.ProbeUuid cache manager op afs: Don't get epoch from a server because it may be ambiguous afs: Build an abstraction around an "operation" concept afs: Rename struct afs_fs_cursor to afs_operation afs: Remove the error argument from afs_protocol_error() afs: Set error flag rather than return error from file status decode afs: Make callback processing more efficient. afs: Show more information in /proc/net/afs/servers ...
2381 lines
63 KiB
C
2381 lines
63 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* (C) 1997 Linus Torvalds
|
|
* (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
|
|
*/
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/security.h>
|
|
#include <linux/cdev.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/fscrypt.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/posix_acl.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/buffer_head.h> /* for inode_has_buffers */
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/list_lru.h>
|
|
#include <linux/iversion.h>
|
|
#include <trace/events/writeback.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Inode locking rules:
|
|
*
|
|
* inode->i_lock protects:
|
|
* inode->i_state, inode->i_hash, __iget()
|
|
* Inode LRU list locks protect:
|
|
* inode->i_sb->s_inode_lru, inode->i_lru
|
|
* inode->i_sb->s_inode_list_lock protects:
|
|
* inode->i_sb->s_inodes, inode->i_sb_list
|
|
* bdi->wb.list_lock protects:
|
|
* bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
|
|
* inode_hash_lock protects:
|
|
* inode_hashtable, inode->i_hash
|
|
*
|
|
* Lock ordering:
|
|
*
|
|
* inode->i_sb->s_inode_list_lock
|
|
* inode->i_lock
|
|
* Inode LRU list locks
|
|
*
|
|
* bdi->wb.list_lock
|
|
* inode->i_lock
|
|
*
|
|
* inode_hash_lock
|
|
* inode->i_sb->s_inode_list_lock
|
|
* inode->i_lock
|
|
*
|
|
* iunique_lock
|
|
* inode_hash_lock
|
|
*/
|
|
|
|
static unsigned int i_hash_mask __read_mostly;
|
|
static unsigned int i_hash_shift __read_mostly;
|
|
static struct hlist_head *inode_hashtable __read_mostly;
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
|
|
|
|
/*
|
|
* Empty aops. Can be used for the cases where the user does not
|
|
* define any of the address_space operations.
|
|
*/
|
|
const struct address_space_operations empty_aops = {
|
|
};
|
|
EXPORT_SYMBOL(empty_aops);
|
|
|
|
/*
|
|
* Statistics gathering..
|
|
*/
|
|
struct inodes_stat_t inodes_stat;
|
|
|
|
static DEFINE_PER_CPU(unsigned long, nr_inodes);
|
|
static DEFINE_PER_CPU(unsigned long, nr_unused);
|
|
|
|
static struct kmem_cache *inode_cachep __read_mostly;
|
|
|
|
static long get_nr_inodes(void)
|
|
{
|
|
int i;
|
|
long sum = 0;
|
|
for_each_possible_cpu(i)
|
|
sum += per_cpu(nr_inodes, i);
|
|
return sum < 0 ? 0 : sum;
|
|
}
|
|
|
|
static inline long get_nr_inodes_unused(void)
|
|
{
|
|
int i;
|
|
long sum = 0;
|
|
for_each_possible_cpu(i)
|
|
sum += per_cpu(nr_unused, i);
|
|
return sum < 0 ? 0 : sum;
|
|
}
|
|
|
|
long get_nr_dirty_inodes(void)
|
|
{
|
|
/* not actually dirty inodes, but a wild approximation */
|
|
long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
|
|
return nr_dirty > 0 ? nr_dirty : 0;
|
|
}
|
|
|
|
/*
|
|
* Handle nr_inode sysctl
|
|
*/
|
|
#ifdef CONFIG_SYSCTL
|
|
int proc_nr_inodes(struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
inodes_stat.nr_inodes = get_nr_inodes();
|
|
inodes_stat.nr_unused = get_nr_inodes_unused();
|
|
return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
|
|
}
|
|
#endif
|
|
|
|
static int no_open(struct inode *inode, struct file *file)
|
|
{
|
|
return -ENXIO;
|
|
}
|
|
|
|
/**
|
|
* inode_init_always - perform inode structure initialisation
|
|
* @sb: superblock inode belongs to
|
|
* @inode: inode to initialise
|
|
*
|
|
* These are initializations that need to be done on every inode
|
|
* allocation as the fields are not initialised by slab allocation.
|
|
*/
|
|
int inode_init_always(struct super_block *sb, struct inode *inode)
|
|
{
|
|
static const struct inode_operations empty_iops;
|
|
static const struct file_operations no_open_fops = {.open = no_open};
|
|
struct address_space *const mapping = &inode->i_data;
|
|
|
|
inode->i_sb = sb;
|
|
inode->i_blkbits = sb->s_blocksize_bits;
|
|
inode->i_flags = 0;
|
|
atomic64_set(&inode->i_sequence, 0);
|
|
atomic_set(&inode->i_count, 1);
|
|
inode->i_op = &empty_iops;
|
|
inode->i_fop = &no_open_fops;
|
|
inode->__i_nlink = 1;
|
|
inode->i_opflags = 0;
|
|
if (sb->s_xattr)
|
|
inode->i_opflags |= IOP_XATTR;
|
|
i_uid_write(inode, 0);
|
|
i_gid_write(inode, 0);
|
|
atomic_set(&inode->i_writecount, 0);
|
|
inode->i_size = 0;
|
|
inode->i_write_hint = WRITE_LIFE_NOT_SET;
|
|
inode->i_blocks = 0;
|
|
inode->i_bytes = 0;
|
|
inode->i_generation = 0;
|
|
inode->i_pipe = NULL;
|
|
inode->i_bdev = NULL;
|
|
inode->i_cdev = NULL;
|
|
inode->i_link = NULL;
|
|
inode->i_dir_seq = 0;
|
|
inode->i_rdev = 0;
|
|
inode->dirtied_when = 0;
|
|
|
|
#ifdef CONFIG_CGROUP_WRITEBACK
|
|
inode->i_wb_frn_winner = 0;
|
|
inode->i_wb_frn_avg_time = 0;
|
|
inode->i_wb_frn_history = 0;
|
|
#endif
|
|
|
|
if (security_inode_alloc(inode))
|
|
goto out;
|
|
spin_lock_init(&inode->i_lock);
|
|
lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
|
|
|
|
init_rwsem(&inode->i_rwsem);
|
|
lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
|
|
|
|
atomic_set(&inode->i_dio_count, 0);
|
|
|
|
mapping->a_ops = &empty_aops;
|
|
mapping->host = inode;
|
|
mapping->flags = 0;
|
|
mapping->wb_err = 0;
|
|
atomic_set(&mapping->i_mmap_writable, 0);
|
|
#ifdef CONFIG_READ_ONLY_THP_FOR_FS
|
|
atomic_set(&mapping->nr_thps, 0);
|
|
#endif
|
|
mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
|
|
mapping->private_data = NULL;
|
|
mapping->writeback_index = 0;
|
|
inode->i_private = NULL;
|
|
inode->i_mapping = mapping;
|
|
INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
|
|
#ifdef CONFIG_FS_POSIX_ACL
|
|
inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FSNOTIFY
|
|
inode->i_fsnotify_mask = 0;
|
|
#endif
|
|
inode->i_flctx = NULL;
|
|
this_cpu_inc(nr_inodes);
|
|
|
|
return 0;
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL(inode_init_always);
|
|
|
|
void free_inode_nonrcu(struct inode *inode)
|
|
{
|
|
kmem_cache_free(inode_cachep, inode);
|
|
}
|
|
EXPORT_SYMBOL(free_inode_nonrcu);
|
|
|
|
static void i_callback(struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
if (inode->free_inode)
|
|
inode->free_inode(inode);
|
|
else
|
|
free_inode_nonrcu(inode);
|
|
}
|
|
|
|
static struct inode *alloc_inode(struct super_block *sb)
|
|
{
|
|
const struct super_operations *ops = sb->s_op;
|
|
struct inode *inode;
|
|
|
|
if (ops->alloc_inode)
|
|
inode = ops->alloc_inode(sb);
|
|
else
|
|
inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
|
|
|
|
if (!inode)
|
|
return NULL;
|
|
|
|
if (unlikely(inode_init_always(sb, inode))) {
|
|
if (ops->destroy_inode) {
|
|
ops->destroy_inode(inode);
|
|
if (!ops->free_inode)
|
|
return NULL;
|
|
}
|
|
inode->free_inode = ops->free_inode;
|
|
i_callback(&inode->i_rcu);
|
|
return NULL;
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
void __destroy_inode(struct inode *inode)
|
|
{
|
|
BUG_ON(inode_has_buffers(inode));
|
|
inode_detach_wb(inode);
|
|
security_inode_free(inode);
|
|
fsnotify_inode_delete(inode);
|
|
locks_free_lock_context(inode);
|
|
if (!inode->i_nlink) {
|
|
WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
|
|
atomic_long_dec(&inode->i_sb->s_remove_count);
|
|
}
|
|
|
|
#ifdef CONFIG_FS_POSIX_ACL
|
|
if (inode->i_acl && !is_uncached_acl(inode->i_acl))
|
|
posix_acl_release(inode->i_acl);
|
|
if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
|
|
posix_acl_release(inode->i_default_acl);
|
|
#endif
|
|
this_cpu_dec(nr_inodes);
|
|
}
|
|
EXPORT_SYMBOL(__destroy_inode);
|
|
|
|
static void destroy_inode(struct inode *inode)
|
|
{
|
|
const struct super_operations *ops = inode->i_sb->s_op;
|
|
|
|
BUG_ON(!list_empty(&inode->i_lru));
|
|
__destroy_inode(inode);
|
|
if (ops->destroy_inode) {
|
|
ops->destroy_inode(inode);
|
|
if (!ops->free_inode)
|
|
return;
|
|
}
|
|
inode->free_inode = ops->free_inode;
|
|
call_rcu(&inode->i_rcu, i_callback);
|
|
}
|
|
|
|
/**
|
|
* drop_nlink - directly drop an inode's link count
|
|
* @inode: inode
|
|
*
|
|
* This is a low-level filesystem helper to replace any
|
|
* direct filesystem manipulation of i_nlink. In cases
|
|
* where we are attempting to track writes to the
|
|
* filesystem, a decrement to zero means an imminent
|
|
* write when the file is truncated and actually unlinked
|
|
* on the filesystem.
|
|
*/
|
|
void drop_nlink(struct inode *inode)
|
|
{
|
|
WARN_ON(inode->i_nlink == 0);
|
|
inode->__i_nlink--;
|
|
if (!inode->i_nlink)
|
|
atomic_long_inc(&inode->i_sb->s_remove_count);
|
|
}
|
|
EXPORT_SYMBOL(drop_nlink);
|
|
|
|
/**
|
|
* clear_nlink - directly zero an inode's link count
|
|
* @inode: inode
|
|
*
|
|
* This is a low-level filesystem helper to replace any
|
|
* direct filesystem manipulation of i_nlink. See
|
|
* drop_nlink() for why we care about i_nlink hitting zero.
|
|
*/
|
|
void clear_nlink(struct inode *inode)
|
|
{
|
|
if (inode->i_nlink) {
|
|
inode->__i_nlink = 0;
|
|
atomic_long_inc(&inode->i_sb->s_remove_count);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(clear_nlink);
|
|
|
|
/**
|
|
* set_nlink - directly set an inode's link count
|
|
* @inode: inode
|
|
* @nlink: new nlink (should be non-zero)
|
|
*
|
|
* This is a low-level filesystem helper to replace any
|
|
* direct filesystem manipulation of i_nlink.
|
|
*/
|
|
void set_nlink(struct inode *inode, unsigned int nlink)
|
|
{
|
|
if (!nlink) {
|
|
clear_nlink(inode);
|
|
} else {
|
|
/* Yes, some filesystems do change nlink from zero to one */
|
|
if (inode->i_nlink == 0)
|
|
atomic_long_dec(&inode->i_sb->s_remove_count);
|
|
|
|
inode->__i_nlink = nlink;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(set_nlink);
|
|
|
|
/**
|
|
* inc_nlink - directly increment an inode's link count
|
|
* @inode: inode
|
|
*
|
|
* This is a low-level filesystem helper to replace any
|
|
* direct filesystem manipulation of i_nlink. Currently,
|
|
* it is only here for parity with dec_nlink().
|
|
*/
|
|
void inc_nlink(struct inode *inode)
|
|
{
|
|
if (unlikely(inode->i_nlink == 0)) {
|
|
WARN_ON(!(inode->i_state & I_LINKABLE));
|
|
atomic_long_dec(&inode->i_sb->s_remove_count);
|
|
}
|
|
|
|
inode->__i_nlink++;
|
|
}
|
|
EXPORT_SYMBOL(inc_nlink);
|
|
|
|
static void __address_space_init_once(struct address_space *mapping)
|
|
{
|
|
xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
|
|
init_rwsem(&mapping->i_mmap_rwsem);
|
|
INIT_LIST_HEAD(&mapping->private_list);
|
|
spin_lock_init(&mapping->private_lock);
|
|
mapping->i_mmap = RB_ROOT_CACHED;
|
|
}
|
|
|
|
void address_space_init_once(struct address_space *mapping)
|
|
{
|
|
memset(mapping, 0, sizeof(*mapping));
|
|
__address_space_init_once(mapping);
|
|
}
|
|
EXPORT_SYMBOL(address_space_init_once);
|
|
|
|
/*
|
|
* These are initializations that only need to be done
|
|
* once, because the fields are idempotent across use
|
|
* of the inode, so let the slab aware of that.
|
|
*/
|
|
void inode_init_once(struct inode *inode)
|
|
{
|
|
memset(inode, 0, sizeof(*inode));
|
|
INIT_HLIST_NODE(&inode->i_hash);
|
|
INIT_LIST_HEAD(&inode->i_devices);
|
|
INIT_LIST_HEAD(&inode->i_io_list);
|
|
INIT_LIST_HEAD(&inode->i_wb_list);
|
|
INIT_LIST_HEAD(&inode->i_lru);
|
|
__address_space_init_once(&inode->i_data);
|
|
i_size_ordered_init(inode);
|
|
}
|
|
EXPORT_SYMBOL(inode_init_once);
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct inode *inode = (struct inode *) foo;
|
|
|
|
inode_init_once(inode);
|
|
}
|
|
|
|
/*
|
|
* inode->i_lock must be held
|
|
*/
|
|
void __iget(struct inode *inode)
|
|
{
|
|
atomic_inc(&inode->i_count);
|
|
}
|
|
|
|
/*
|
|
* get additional reference to inode; caller must already hold one.
|
|
*/
|
|
void ihold(struct inode *inode)
|
|
{
|
|
WARN_ON(atomic_inc_return(&inode->i_count) < 2);
|
|
}
|
|
EXPORT_SYMBOL(ihold);
|
|
|
|
static void inode_lru_list_add(struct inode *inode)
|
|
{
|
|
if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
|
|
this_cpu_inc(nr_unused);
|
|
else
|
|
inode->i_state |= I_REFERENCED;
|
|
}
|
|
|
|
/*
|
|
* Add inode to LRU if needed (inode is unused and clean).
|
|
*
|
|
* Needs inode->i_lock held.
|
|
*/
|
|
void inode_add_lru(struct inode *inode)
|
|
{
|
|
if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
|
|
I_FREEING | I_WILL_FREE)) &&
|
|
!atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
|
|
inode_lru_list_add(inode);
|
|
}
|
|
|
|
|
|
static void inode_lru_list_del(struct inode *inode)
|
|
{
|
|
|
|
if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
|
|
this_cpu_dec(nr_unused);
|
|
}
|
|
|
|
/**
|
|
* inode_sb_list_add - add inode to the superblock list of inodes
|
|
* @inode: inode to add
|
|
*/
|
|
void inode_sb_list_add(struct inode *inode)
|
|
{
|
|
spin_lock(&inode->i_sb->s_inode_list_lock);
|
|
list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
|
|
spin_unlock(&inode->i_sb->s_inode_list_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(inode_sb_list_add);
|
|
|
|
static inline void inode_sb_list_del(struct inode *inode)
|
|
{
|
|
if (!list_empty(&inode->i_sb_list)) {
|
|
spin_lock(&inode->i_sb->s_inode_list_lock);
|
|
list_del_init(&inode->i_sb_list);
|
|
spin_unlock(&inode->i_sb->s_inode_list_lock);
|
|
}
|
|
}
|
|
|
|
static unsigned long hash(struct super_block *sb, unsigned long hashval)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
|
|
L1_CACHE_BYTES;
|
|
tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
|
|
return tmp & i_hash_mask;
|
|
}
|
|
|
|
/**
|
|
* __insert_inode_hash - hash an inode
|
|
* @inode: unhashed inode
|
|
* @hashval: unsigned long value used to locate this object in the
|
|
* inode_hashtable.
|
|
*
|
|
* Add an inode to the inode hash for this superblock.
|
|
*/
|
|
void __insert_inode_hash(struct inode *inode, unsigned long hashval)
|
|
{
|
|
struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
|
|
|
|
spin_lock(&inode_hash_lock);
|
|
spin_lock(&inode->i_lock);
|
|
hlist_add_head_rcu(&inode->i_hash, b);
|
|
spin_unlock(&inode->i_lock);
|
|
spin_unlock(&inode_hash_lock);
|
|
}
|
|
EXPORT_SYMBOL(__insert_inode_hash);
|
|
|
|
/**
|
|
* __remove_inode_hash - remove an inode from the hash
|
|
* @inode: inode to unhash
|
|
*
|
|
* Remove an inode from the superblock.
|
|
*/
|
|
void __remove_inode_hash(struct inode *inode)
|
|
{
|
|
spin_lock(&inode_hash_lock);
|
|
spin_lock(&inode->i_lock);
|
|
hlist_del_init_rcu(&inode->i_hash);
|
|
spin_unlock(&inode->i_lock);
|
|
spin_unlock(&inode_hash_lock);
|
|
}
|
|
EXPORT_SYMBOL(__remove_inode_hash);
|
|
|
|
void clear_inode(struct inode *inode)
|
|
{
|
|
/*
|
|
* We have to cycle the i_pages lock here because reclaim can be in the
|
|
* process of removing the last page (in __delete_from_page_cache())
|
|
* and we must not free the mapping under it.
|
|
*/
|
|
xa_lock_irq(&inode->i_data.i_pages);
|
|
BUG_ON(inode->i_data.nrpages);
|
|
BUG_ON(inode->i_data.nrexceptional);
|
|
xa_unlock_irq(&inode->i_data.i_pages);
|
|
BUG_ON(!list_empty(&inode->i_data.private_list));
|
|
BUG_ON(!(inode->i_state & I_FREEING));
|
|
BUG_ON(inode->i_state & I_CLEAR);
|
|
BUG_ON(!list_empty(&inode->i_wb_list));
|
|
/* don't need i_lock here, no concurrent mods to i_state */
|
|
inode->i_state = I_FREEING | I_CLEAR;
|
|
}
|
|
EXPORT_SYMBOL(clear_inode);
|
|
|
|
/*
|
|
* Free the inode passed in, removing it from the lists it is still connected
|
|
* to. We remove any pages still attached to the inode and wait for any IO that
|
|
* is still in progress before finally destroying the inode.
|
|
*
|
|
* An inode must already be marked I_FREEING so that we avoid the inode being
|
|
* moved back onto lists if we race with other code that manipulates the lists
|
|
* (e.g. writeback_single_inode). The caller is responsible for setting this.
|
|
*
|
|
* An inode must already be removed from the LRU list before being evicted from
|
|
* the cache. This should occur atomically with setting the I_FREEING state
|
|
* flag, so no inodes here should ever be on the LRU when being evicted.
|
|
*/
|
|
static void evict(struct inode *inode)
|
|
{
|
|
const struct super_operations *op = inode->i_sb->s_op;
|
|
|
|
BUG_ON(!(inode->i_state & I_FREEING));
|
|
BUG_ON(!list_empty(&inode->i_lru));
|
|
|
|
if (!list_empty(&inode->i_io_list))
|
|
inode_io_list_del(inode);
|
|
|
|
inode_sb_list_del(inode);
|
|
|
|
/*
|
|
* Wait for flusher thread to be done with the inode so that filesystem
|
|
* does not start destroying it while writeback is still running. Since
|
|
* the inode has I_FREEING set, flusher thread won't start new work on
|
|
* the inode. We just have to wait for running writeback to finish.
|
|
*/
|
|
inode_wait_for_writeback(inode);
|
|
|
|
if (op->evict_inode) {
|
|
op->evict_inode(inode);
|
|
} else {
|
|
truncate_inode_pages_final(&inode->i_data);
|
|
clear_inode(inode);
|
|
}
|
|
if (S_ISBLK(inode->i_mode) && inode->i_bdev)
|
|
bd_forget(inode);
|
|
if (S_ISCHR(inode->i_mode) && inode->i_cdev)
|
|
cd_forget(inode);
|
|
|
|
remove_inode_hash(inode);
|
|
|
|
spin_lock(&inode->i_lock);
|
|
wake_up_bit(&inode->i_state, __I_NEW);
|
|
BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
destroy_inode(inode);
|
|
}
|
|
|
|
/*
|
|
* dispose_list - dispose of the contents of a local list
|
|
* @head: the head of the list to free
|
|
*
|
|
* Dispose-list gets a local list with local inodes in it, so it doesn't
|
|
* need to worry about list corruption and SMP locks.
|
|
*/
|
|
static void dispose_list(struct list_head *head)
|
|
{
|
|
while (!list_empty(head)) {
|
|
struct inode *inode;
|
|
|
|
inode = list_first_entry(head, struct inode, i_lru);
|
|
list_del_init(&inode->i_lru);
|
|
|
|
evict(inode);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* evict_inodes - evict all evictable inodes for a superblock
|
|
* @sb: superblock to operate on
|
|
*
|
|
* Make sure that no inodes with zero refcount are retained. This is
|
|
* called by superblock shutdown after having SB_ACTIVE flag removed,
|
|
* so any inode reaching zero refcount during or after that call will
|
|
* be immediately evicted.
|
|
*/
|
|
void evict_inodes(struct super_block *sb)
|
|
{
|
|
struct inode *inode, *next;
|
|
LIST_HEAD(dispose);
|
|
|
|
again:
|
|
spin_lock(&sb->s_inode_list_lock);
|
|
list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
|
|
if (atomic_read(&inode->i_count))
|
|
continue;
|
|
|
|
spin_lock(&inode->i_lock);
|
|
if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
|
|
spin_unlock(&inode->i_lock);
|
|
continue;
|
|
}
|
|
|
|
inode->i_state |= I_FREEING;
|
|
inode_lru_list_del(inode);
|
|
spin_unlock(&inode->i_lock);
|
|
list_add(&inode->i_lru, &dispose);
|
|
|
|
/*
|
|
* We can have a ton of inodes to evict at unmount time given
|
|
* enough memory, check to see if we need to go to sleep for a
|
|
* bit so we don't livelock.
|
|
*/
|
|
if (need_resched()) {
|
|
spin_unlock(&sb->s_inode_list_lock);
|
|
cond_resched();
|
|
dispose_list(&dispose);
|
|
goto again;
|
|
}
|
|
}
|
|
spin_unlock(&sb->s_inode_list_lock);
|
|
|
|
dispose_list(&dispose);
|
|
}
|
|
EXPORT_SYMBOL_GPL(evict_inodes);
|
|
|
|
/**
|
|
* invalidate_inodes - attempt to free all inodes on a superblock
|
|
* @sb: superblock to operate on
|
|
* @kill_dirty: flag to guide handling of dirty inodes
|
|
*
|
|
* Attempts to free all inodes for a given superblock. If there were any
|
|
* busy inodes return a non-zero value, else zero.
|
|
* If @kill_dirty is set, discard dirty inodes too, otherwise treat
|
|
* them as busy.
|
|
*/
|
|
int invalidate_inodes(struct super_block *sb, bool kill_dirty)
|
|
{
|
|
int busy = 0;
|
|
struct inode *inode, *next;
|
|
LIST_HEAD(dispose);
|
|
|
|
again:
|
|
spin_lock(&sb->s_inode_list_lock);
|
|
list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
|
|
spin_lock(&inode->i_lock);
|
|
if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
|
|
spin_unlock(&inode->i_lock);
|
|
continue;
|
|
}
|
|
if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
|
|
spin_unlock(&inode->i_lock);
|
|
busy = 1;
|
|
continue;
|
|
}
|
|
if (atomic_read(&inode->i_count)) {
|
|
spin_unlock(&inode->i_lock);
|
|
busy = 1;
|
|
continue;
|
|
}
|
|
|
|
inode->i_state |= I_FREEING;
|
|
inode_lru_list_del(inode);
|
|
spin_unlock(&inode->i_lock);
|
|
list_add(&inode->i_lru, &dispose);
|
|
if (need_resched()) {
|
|
spin_unlock(&sb->s_inode_list_lock);
|
|
cond_resched();
|
|
dispose_list(&dispose);
|
|
goto again;
|
|
}
|
|
}
|
|
spin_unlock(&sb->s_inode_list_lock);
|
|
|
|
dispose_list(&dispose);
|
|
|
|
return busy;
|
|
}
|
|
|
|
/*
|
|
* Isolate the inode from the LRU in preparation for freeing it.
|
|
*
|
|
* Any inodes which are pinned purely because of attached pagecache have their
|
|
* pagecache removed. If the inode has metadata buffers attached to
|
|
* mapping->private_list then try to remove them.
|
|
*
|
|
* If the inode has the I_REFERENCED flag set, then it means that it has been
|
|
* used recently - the flag is set in iput_final(). When we encounter such an
|
|
* inode, clear the flag and move it to the back of the LRU so it gets another
|
|
* pass through the LRU before it gets reclaimed. This is necessary because of
|
|
* the fact we are doing lazy LRU updates to minimise lock contention so the
|
|
* LRU does not have strict ordering. Hence we don't want to reclaim inodes
|
|
* with this flag set because they are the inodes that are out of order.
|
|
*/
|
|
static enum lru_status inode_lru_isolate(struct list_head *item,
|
|
struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
|
|
{
|
|
struct list_head *freeable = arg;
|
|
struct inode *inode = container_of(item, struct inode, i_lru);
|
|
|
|
/*
|
|
* we are inverting the lru lock/inode->i_lock here, so use a trylock.
|
|
* If we fail to get the lock, just skip it.
|
|
*/
|
|
if (!spin_trylock(&inode->i_lock))
|
|
return LRU_SKIP;
|
|
|
|
/*
|
|
* Referenced or dirty inodes are still in use. Give them another pass
|
|
* through the LRU as we canot reclaim them now.
|
|
*/
|
|
if (atomic_read(&inode->i_count) ||
|
|
(inode->i_state & ~I_REFERENCED)) {
|
|
list_lru_isolate(lru, &inode->i_lru);
|
|
spin_unlock(&inode->i_lock);
|
|
this_cpu_dec(nr_unused);
|
|
return LRU_REMOVED;
|
|
}
|
|
|
|
/* recently referenced inodes get one more pass */
|
|
if (inode->i_state & I_REFERENCED) {
|
|
inode->i_state &= ~I_REFERENCED;
|
|
spin_unlock(&inode->i_lock);
|
|
return LRU_ROTATE;
|
|
}
|
|
|
|
if (inode_has_buffers(inode) || inode->i_data.nrpages) {
|
|
__iget(inode);
|
|
spin_unlock(&inode->i_lock);
|
|
spin_unlock(lru_lock);
|
|
if (remove_inode_buffers(inode)) {
|
|
unsigned long reap;
|
|
reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
|
|
if (current_is_kswapd())
|
|
__count_vm_events(KSWAPD_INODESTEAL, reap);
|
|
else
|
|
__count_vm_events(PGINODESTEAL, reap);
|
|
if (current->reclaim_state)
|
|
current->reclaim_state->reclaimed_slab += reap;
|
|
}
|
|
iput(inode);
|
|
spin_lock(lru_lock);
|
|
return LRU_RETRY;
|
|
}
|
|
|
|
WARN_ON(inode->i_state & I_NEW);
|
|
inode->i_state |= I_FREEING;
|
|
list_lru_isolate_move(lru, &inode->i_lru, freeable);
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
this_cpu_dec(nr_unused);
|
|
return LRU_REMOVED;
|
|
}
|
|
|
|
/*
|
|
* Walk the superblock inode LRU for freeable inodes and attempt to free them.
|
|
* This is called from the superblock shrinker function with a number of inodes
|
|
* to trim from the LRU. Inodes to be freed are moved to a temporary list and
|
|
* then are freed outside inode_lock by dispose_list().
|
|
*/
|
|
long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
|
|
{
|
|
LIST_HEAD(freeable);
|
|
long freed;
|
|
|
|
freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
|
|
inode_lru_isolate, &freeable);
|
|
dispose_list(&freeable);
|
|
return freed;
|
|
}
|
|
|
|
static void __wait_on_freeing_inode(struct inode *inode);
|
|
/*
|
|
* Called with the inode lock held.
|
|
*/
|
|
static struct inode *find_inode(struct super_block *sb,
|
|
struct hlist_head *head,
|
|
int (*test)(struct inode *, void *),
|
|
void *data)
|
|
{
|
|
struct inode *inode = NULL;
|
|
|
|
repeat:
|
|
hlist_for_each_entry(inode, head, i_hash) {
|
|
if (inode->i_sb != sb)
|
|
continue;
|
|
if (!test(inode, data))
|
|
continue;
|
|
spin_lock(&inode->i_lock);
|
|
if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
|
|
__wait_on_freeing_inode(inode);
|
|
goto repeat;
|
|
}
|
|
if (unlikely(inode->i_state & I_CREATING)) {
|
|
spin_unlock(&inode->i_lock);
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
__iget(inode);
|
|
spin_unlock(&inode->i_lock);
|
|
return inode;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find_inode_fast is the fast path version of find_inode, see the comment at
|
|
* iget_locked for details.
|
|
*/
|
|
static struct inode *find_inode_fast(struct super_block *sb,
|
|
struct hlist_head *head, unsigned long ino)
|
|
{
|
|
struct inode *inode = NULL;
|
|
|
|
repeat:
|
|
hlist_for_each_entry(inode, head, i_hash) {
|
|
if (inode->i_ino != ino)
|
|
continue;
|
|
if (inode->i_sb != sb)
|
|
continue;
|
|
spin_lock(&inode->i_lock);
|
|
if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
|
|
__wait_on_freeing_inode(inode);
|
|
goto repeat;
|
|
}
|
|
if (unlikely(inode->i_state & I_CREATING)) {
|
|
spin_unlock(&inode->i_lock);
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
__iget(inode);
|
|
spin_unlock(&inode->i_lock);
|
|
return inode;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Each cpu owns a range of LAST_INO_BATCH numbers.
|
|
* 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
|
|
* to renew the exhausted range.
|
|
*
|
|
* This does not significantly increase overflow rate because every CPU can
|
|
* consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
|
|
* NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
|
|
* 2^32 range, and is a worst-case. Even a 50% wastage would only increase
|
|
* overflow rate by 2x, which does not seem too significant.
|
|
*
|
|
* On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
|
|
* error if st_ino won't fit in target struct field. Use 32bit counter
|
|
* here to attempt to avoid that.
|
|
*/
|
|
#define LAST_INO_BATCH 1024
|
|
static DEFINE_PER_CPU(unsigned int, last_ino);
|
|
|
|
unsigned int get_next_ino(void)
|
|
{
|
|
unsigned int *p = &get_cpu_var(last_ino);
|
|
unsigned int res = *p;
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
|
|
static atomic_t shared_last_ino;
|
|
int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
|
|
|
|
res = next - LAST_INO_BATCH;
|
|
}
|
|
#endif
|
|
|
|
res++;
|
|
/* get_next_ino should not provide a 0 inode number */
|
|
if (unlikely(!res))
|
|
res++;
|
|
*p = res;
|
|
put_cpu_var(last_ino);
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(get_next_ino);
|
|
|
|
/**
|
|
* new_inode_pseudo - obtain an inode
|
|
* @sb: superblock
|
|
*
|
|
* Allocates a new inode for given superblock.
|
|
* Inode wont be chained in superblock s_inodes list
|
|
* This means :
|
|
* - fs can't be unmount
|
|
* - quotas, fsnotify, writeback can't work
|
|
*/
|
|
struct inode *new_inode_pseudo(struct super_block *sb)
|
|
{
|
|
struct inode *inode = alloc_inode(sb);
|
|
|
|
if (inode) {
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_state = 0;
|
|
spin_unlock(&inode->i_lock);
|
|
INIT_LIST_HEAD(&inode->i_sb_list);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
/**
|
|
* new_inode - obtain an inode
|
|
* @sb: superblock
|
|
*
|
|
* Allocates a new inode for given superblock. The default gfp_mask
|
|
* for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
|
|
* If HIGHMEM pages are unsuitable or it is known that pages allocated
|
|
* for the page cache are not reclaimable or migratable,
|
|
* mapping_set_gfp_mask() must be called with suitable flags on the
|
|
* newly created inode's mapping
|
|
*
|
|
*/
|
|
struct inode *new_inode(struct super_block *sb)
|
|
{
|
|
struct inode *inode;
|
|
|
|
spin_lock_prefetch(&sb->s_inode_list_lock);
|
|
|
|
inode = new_inode_pseudo(sb);
|
|
if (inode)
|
|
inode_sb_list_add(inode);
|
|
return inode;
|
|
}
|
|
EXPORT_SYMBOL(new_inode);
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
void lockdep_annotate_inode_mutex_key(struct inode *inode)
|
|
{
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
struct file_system_type *type = inode->i_sb->s_type;
|
|
|
|
/* Set new key only if filesystem hasn't already changed it */
|
|
if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
|
|
/*
|
|
* ensure nobody is actually holding i_mutex
|
|
*/
|
|
// mutex_destroy(&inode->i_mutex);
|
|
init_rwsem(&inode->i_rwsem);
|
|
lockdep_set_class(&inode->i_rwsem,
|
|
&type->i_mutex_dir_key);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
|
|
#endif
|
|
|
|
/**
|
|
* unlock_new_inode - clear the I_NEW state and wake up any waiters
|
|
* @inode: new inode to unlock
|
|
*
|
|
* Called when the inode is fully initialised to clear the new state of the
|
|
* inode and wake up anyone waiting for the inode to finish initialisation.
|
|
*/
|
|
void unlock_new_inode(struct inode *inode)
|
|
{
|
|
lockdep_annotate_inode_mutex_key(inode);
|
|
spin_lock(&inode->i_lock);
|
|
WARN_ON(!(inode->i_state & I_NEW));
|
|
inode->i_state &= ~I_NEW & ~I_CREATING;
|
|
smp_mb();
|
|
wake_up_bit(&inode->i_state, __I_NEW);
|
|
spin_unlock(&inode->i_lock);
|
|
}
|
|
EXPORT_SYMBOL(unlock_new_inode);
|
|
|
|
void discard_new_inode(struct inode *inode)
|
|
{
|
|
lockdep_annotate_inode_mutex_key(inode);
|
|
spin_lock(&inode->i_lock);
|
|
WARN_ON(!(inode->i_state & I_NEW));
|
|
inode->i_state &= ~I_NEW;
|
|
smp_mb();
|
|
wake_up_bit(&inode->i_state, __I_NEW);
|
|
spin_unlock(&inode->i_lock);
|
|
iput(inode);
|
|
}
|
|
EXPORT_SYMBOL(discard_new_inode);
|
|
|
|
/**
|
|
* lock_two_nondirectories - take two i_mutexes on non-directory objects
|
|
*
|
|
* Lock any non-NULL argument that is not a directory.
|
|
* Zero, one or two objects may be locked by this function.
|
|
*
|
|
* @inode1: first inode to lock
|
|
* @inode2: second inode to lock
|
|
*/
|
|
void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
|
|
{
|
|
if (inode1 > inode2)
|
|
swap(inode1, inode2);
|
|
|
|
if (inode1 && !S_ISDIR(inode1->i_mode))
|
|
inode_lock(inode1);
|
|
if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
|
|
inode_lock_nested(inode2, I_MUTEX_NONDIR2);
|
|
}
|
|
EXPORT_SYMBOL(lock_two_nondirectories);
|
|
|
|
/**
|
|
* unlock_two_nondirectories - release locks from lock_two_nondirectories()
|
|
* @inode1: first inode to unlock
|
|
* @inode2: second inode to unlock
|
|
*/
|
|
void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
|
|
{
|
|
if (inode1 && !S_ISDIR(inode1->i_mode))
|
|
inode_unlock(inode1);
|
|
if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
|
|
inode_unlock(inode2);
|
|
}
|
|
EXPORT_SYMBOL(unlock_two_nondirectories);
|
|
|
|
/**
|
|
* inode_insert5 - obtain an inode from a mounted file system
|
|
* @inode: pre-allocated inode to use for insert to cache
|
|
* @hashval: hash value (usually inode number) to get
|
|
* @test: callback used for comparisons between inodes
|
|
* @set: callback used to initialize a new struct inode
|
|
* @data: opaque data pointer to pass to @test and @set
|
|
*
|
|
* Search for the inode specified by @hashval and @data in the inode cache,
|
|
* and if present it is return it with an increased reference count. This is
|
|
* a variant of iget5_locked() for callers that don't want to fail on memory
|
|
* allocation of inode.
|
|
*
|
|
* If the inode is not in cache, insert the pre-allocated inode to cache and
|
|
* return it locked, hashed, and with the I_NEW flag set. The file system gets
|
|
* to fill it in before unlocking it via unlock_new_inode().
|
|
*
|
|
* Note both @test and @set are called with the inode_hash_lock held, so can't
|
|
* sleep.
|
|
*/
|
|
struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
|
|
int (*test)(struct inode *, void *),
|
|
int (*set)(struct inode *, void *), void *data)
|
|
{
|
|
struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
|
|
struct inode *old;
|
|
bool creating = inode->i_state & I_CREATING;
|
|
|
|
again:
|
|
spin_lock(&inode_hash_lock);
|
|
old = find_inode(inode->i_sb, head, test, data);
|
|
if (unlikely(old)) {
|
|
/*
|
|
* Uhhuh, somebody else created the same inode under us.
|
|
* Use the old inode instead of the preallocated one.
|
|
*/
|
|
spin_unlock(&inode_hash_lock);
|
|
if (IS_ERR(old))
|
|
return NULL;
|
|
wait_on_inode(old);
|
|
if (unlikely(inode_unhashed(old))) {
|
|
iput(old);
|
|
goto again;
|
|
}
|
|
return old;
|
|
}
|
|
|
|
if (set && unlikely(set(inode, data))) {
|
|
inode = NULL;
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Return the locked inode with I_NEW set, the
|
|
* caller is responsible for filling in the contents
|
|
*/
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_state |= I_NEW;
|
|
hlist_add_head_rcu(&inode->i_hash, head);
|
|
spin_unlock(&inode->i_lock);
|
|
if (!creating)
|
|
inode_sb_list_add(inode);
|
|
unlock:
|
|
spin_unlock(&inode_hash_lock);
|
|
|
|
return inode;
|
|
}
|
|
EXPORT_SYMBOL(inode_insert5);
|
|
|
|
/**
|
|
* iget5_locked - obtain an inode from a mounted file system
|
|
* @sb: super block of file system
|
|
* @hashval: hash value (usually inode number) to get
|
|
* @test: callback used for comparisons between inodes
|
|
* @set: callback used to initialize a new struct inode
|
|
* @data: opaque data pointer to pass to @test and @set
|
|
*
|
|
* Search for the inode specified by @hashval and @data in the inode cache,
|
|
* and if present it is return it with an increased reference count. This is
|
|
* a generalized version of iget_locked() for file systems where the inode
|
|
* number is not sufficient for unique identification of an inode.
|
|
*
|
|
* If the inode is not in cache, allocate a new inode and return it locked,
|
|
* hashed, and with the I_NEW flag set. The file system gets to fill it in
|
|
* before unlocking it via unlock_new_inode().
|
|
*
|
|
* Note both @test and @set are called with the inode_hash_lock held, so can't
|
|
* sleep.
|
|
*/
|
|
struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
|
|
int (*test)(struct inode *, void *),
|
|
int (*set)(struct inode *, void *), void *data)
|
|
{
|
|
struct inode *inode = ilookup5(sb, hashval, test, data);
|
|
|
|
if (!inode) {
|
|
struct inode *new = alloc_inode(sb);
|
|
|
|
if (new) {
|
|
new->i_state = 0;
|
|
inode = inode_insert5(new, hashval, test, set, data);
|
|
if (unlikely(inode != new))
|
|
destroy_inode(new);
|
|
}
|
|
}
|
|
return inode;
|
|
}
|
|
EXPORT_SYMBOL(iget5_locked);
|
|
|
|
/**
|
|
* iget_locked - obtain an inode from a mounted file system
|
|
* @sb: super block of file system
|
|
* @ino: inode number to get
|
|
*
|
|
* Search for the inode specified by @ino in the inode cache and if present
|
|
* return it with an increased reference count. This is for file systems
|
|
* where the inode number is sufficient for unique identification of an inode.
|
|
*
|
|
* If the inode is not in cache, allocate a new inode and return it locked,
|
|
* hashed, and with the I_NEW flag set. The file system gets to fill it in
|
|
* before unlocking it via unlock_new_inode().
|
|
*/
|
|
struct inode *iget_locked(struct super_block *sb, unsigned long ino)
|
|
{
|
|
struct hlist_head *head = inode_hashtable + hash(sb, ino);
|
|
struct inode *inode;
|
|
again:
|
|
spin_lock(&inode_hash_lock);
|
|
inode = find_inode_fast(sb, head, ino);
|
|
spin_unlock(&inode_hash_lock);
|
|
if (inode) {
|
|
if (IS_ERR(inode))
|
|
return NULL;
|
|
wait_on_inode(inode);
|
|
if (unlikely(inode_unhashed(inode))) {
|
|
iput(inode);
|
|
goto again;
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
inode = alloc_inode(sb);
|
|
if (inode) {
|
|
struct inode *old;
|
|
|
|
spin_lock(&inode_hash_lock);
|
|
/* We released the lock, so.. */
|
|
old = find_inode_fast(sb, head, ino);
|
|
if (!old) {
|
|
inode->i_ino = ino;
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_state = I_NEW;
|
|
hlist_add_head_rcu(&inode->i_hash, head);
|
|
spin_unlock(&inode->i_lock);
|
|
inode_sb_list_add(inode);
|
|
spin_unlock(&inode_hash_lock);
|
|
|
|
/* Return the locked inode with I_NEW set, the
|
|
* caller is responsible for filling in the contents
|
|
*/
|
|
return inode;
|
|
}
|
|
|
|
/*
|
|
* Uhhuh, somebody else created the same inode under
|
|
* us. Use the old inode instead of the one we just
|
|
* allocated.
|
|
*/
|
|
spin_unlock(&inode_hash_lock);
|
|
destroy_inode(inode);
|
|
if (IS_ERR(old))
|
|
return NULL;
|
|
inode = old;
|
|
wait_on_inode(inode);
|
|
if (unlikely(inode_unhashed(inode))) {
|
|
iput(inode);
|
|
goto again;
|
|
}
|
|
}
|
|
return inode;
|
|
}
|
|
EXPORT_SYMBOL(iget_locked);
|
|
|
|
/*
|
|
* search the inode cache for a matching inode number.
|
|
* If we find one, then the inode number we are trying to
|
|
* allocate is not unique and so we should not use it.
|
|
*
|
|
* Returns 1 if the inode number is unique, 0 if it is not.
|
|
*/
|
|
static int test_inode_iunique(struct super_block *sb, unsigned long ino)
|
|
{
|
|
struct hlist_head *b = inode_hashtable + hash(sb, ino);
|
|
struct inode *inode;
|
|
|
|
hlist_for_each_entry_rcu(inode, b, i_hash) {
|
|
if (inode->i_ino == ino && inode->i_sb == sb)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* iunique - get a unique inode number
|
|
* @sb: superblock
|
|
* @max_reserved: highest reserved inode number
|
|
*
|
|
* Obtain an inode number that is unique on the system for a given
|
|
* superblock. This is used by file systems that have no natural
|
|
* permanent inode numbering system. An inode number is returned that
|
|
* is higher than the reserved limit but unique.
|
|
*
|
|
* BUGS:
|
|
* With a large number of inodes live on the file system this function
|
|
* currently becomes quite slow.
|
|
*/
|
|
ino_t iunique(struct super_block *sb, ino_t max_reserved)
|
|
{
|
|
/*
|
|
* On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
|
|
* error if st_ino won't fit in target struct field. Use 32bit counter
|
|
* here to attempt to avoid that.
|
|
*/
|
|
static DEFINE_SPINLOCK(iunique_lock);
|
|
static unsigned int counter;
|
|
ino_t res;
|
|
|
|
rcu_read_lock();
|
|
spin_lock(&iunique_lock);
|
|
do {
|
|
if (counter <= max_reserved)
|
|
counter = max_reserved + 1;
|
|
res = counter++;
|
|
} while (!test_inode_iunique(sb, res));
|
|
spin_unlock(&iunique_lock);
|
|
rcu_read_unlock();
|
|
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(iunique);
|
|
|
|
struct inode *igrab(struct inode *inode)
|
|
{
|
|
spin_lock(&inode->i_lock);
|
|
if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
|
|
__iget(inode);
|
|
spin_unlock(&inode->i_lock);
|
|
} else {
|
|
spin_unlock(&inode->i_lock);
|
|
/*
|
|
* Handle the case where s_op->clear_inode is not been
|
|
* called yet, and somebody is calling igrab
|
|
* while the inode is getting freed.
|
|
*/
|
|
inode = NULL;
|
|
}
|
|
return inode;
|
|
}
|
|
EXPORT_SYMBOL(igrab);
|
|
|
|
/**
|
|
* ilookup5_nowait - search for an inode in the inode cache
|
|
* @sb: super block of file system to search
|
|
* @hashval: hash value (usually inode number) to search for
|
|
* @test: callback used for comparisons between inodes
|
|
* @data: opaque data pointer to pass to @test
|
|
*
|
|
* Search for the inode specified by @hashval and @data in the inode cache.
|
|
* If the inode is in the cache, the inode is returned with an incremented
|
|
* reference count.
|
|
*
|
|
* Note: I_NEW is not waited upon so you have to be very careful what you do
|
|
* with the returned inode. You probably should be using ilookup5() instead.
|
|
*
|
|
* Note2: @test is called with the inode_hash_lock held, so can't sleep.
|
|
*/
|
|
struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
|
|
int (*test)(struct inode *, void *), void *data)
|
|
{
|
|
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
|
|
struct inode *inode;
|
|
|
|
spin_lock(&inode_hash_lock);
|
|
inode = find_inode(sb, head, test, data);
|
|
spin_unlock(&inode_hash_lock);
|
|
|
|
return IS_ERR(inode) ? NULL : inode;
|
|
}
|
|
EXPORT_SYMBOL(ilookup5_nowait);
|
|
|
|
/**
|
|
* ilookup5 - search for an inode in the inode cache
|
|
* @sb: super block of file system to search
|
|
* @hashval: hash value (usually inode number) to search for
|
|
* @test: callback used for comparisons between inodes
|
|
* @data: opaque data pointer to pass to @test
|
|
*
|
|
* Search for the inode specified by @hashval and @data in the inode cache,
|
|
* and if the inode is in the cache, return the inode with an incremented
|
|
* reference count. Waits on I_NEW before returning the inode.
|
|
* returned with an incremented reference count.
|
|
*
|
|
* This is a generalized version of ilookup() for file systems where the
|
|
* inode number is not sufficient for unique identification of an inode.
|
|
*
|
|
* Note: @test is called with the inode_hash_lock held, so can't sleep.
|
|
*/
|
|
struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
|
|
int (*test)(struct inode *, void *), void *data)
|
|
{
|
|
struct inode *inode;
|
|
again:
|
|
inode = ilookup5_nowait(sb, hashval, test, data);
|
|
if (inode) {
|
|
wait_on_inode(inode);
|
|
if (unlikely(inode_unhashed(inode))) {
|
|
iput(inode);
|
|
goto again;
|
|
}
|
|
}
|
|
return inode;
|
|
}
|
|
EXPORT_SYMBOL(ilookup5);
|
|
|
|
/**
|
|
* ilookup - search for an inode in the inode cache
|
|
* @sb: super block of file system to search
|
|
* @ino: inode number to search for
|
|
*
|
|
* Search for the inode @ino in the inode cache, and if the inode is in the
|
|
* cache, the inode is returned with an incremented reference count.
|
|
*/
|
|
struct inode *ilookup(struct super_block *sb, unsigned long ino)
|
|
{
|
|
struct hlist_head *head = inode_hashtable + hash(sb, ino);
|
|
struct inode *inode;
|
|
again:
|
|
spin_lock(&inode_hash_lock);
|
|
inode = find_inode_fast(sb, head, ino);
|
|
spin_unlock(&inode_hash_lock);
|
|
|
|
if (inode) {
|
|
if (IS_ERR(inode))
|
|
return NULL;
|
|
wait_on_inode(inode);
|
|
if (unlikely(inode_unhashed(inode))) {
|
|
iput(inode);
|
|
goto again;
|
|
}
|
|
}
|
|
return inode;
|
|
}
|
|
EXPORT_SYMBOL(ilookup);
|
|
|
|
/**
|
|
* find_inode_nowait - find an inode in the inode cache
|
|
* @sb: super block of file system to search
|
|
* @hashval: hash value (usually inode number) to search for
|
|
* @match: callback used for comparisons between inodes
|
|
* @data: opaque data pointer to pass to @match
|
|
*
|
|
* Search for the inode specified by @hashval and @data in the inode
|
|
* cache, where the helper function @match will return 0 if the inode
|
|
* does not match, 1 if the inode does match, and -1 if the search
|
|
* should be stopped. The @match function must be responsible for
|
|
* taking the i_lock spin_lock and checking i_state for an inode being
|
|
* freed or being initialized, and incrementing the reference count
|
|
* before returning 1. It also must not sleep, since it is called with
|
|
* the inode_hash_lock spinlock held.
|
|
*
|
|
* This is a even more generalized version of ilookup5() when the
|
|
* function must never block --- find_inode() can block in
|
|
* __wait_on_freeing_inode() --- or when the caller can not increment
|
|
* the reference count because the resulting iput() might cause an
|
|
* inode eviction. The tradeoff is that the @match funtion must be
|
|
* very carefully implemented.
|
|
*/
|
|
struct inode *find_inode_nowait(struct super_block *sb,
|
|
unsigned long hashval,
|
|
int (*match)(struct inode *, unsigned long,
|
|
void *),
|
|
void *data)
|
|
{
|
|
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
|
|
struct inode *inode, *ret_inode = NULL;
|
|
int mval;
|
|
|
|
spin_lock(&inode_hash_lock);
|
|
hlist_for_each_entry(inode, head, i_hash) {
|
|
if (inode->i_sb != sb)
|
|
continue;
|
|
mval = match(inode, hashval, data);
|
|
if (mval == 0)
|
|
continue;
|
|
if (mval == 1)
|
|
ret_inode = inode;
|
|
goto out;
|
|
}
|
|
out:
|
|
spin_unlock(&inode_hash_lock);
|
|
return ret_inode;
|
|
}
|
|
EXPORT_SYMBOL(find_inode_nowait);
|
|
|
|
/**
|
|
* find_inode_rcu - find an inode in the inode cache
|
|
* @sb: Super block of file system to search
|
|
* @hashval: Key to hash
|
|
* @test: Function to test match on an inode
|
|
* @data: Data for test function
|
|
*
|
|
* Search for the inode specified by @hashval and @data in the inode cache,
|
|
* where the helper function @test will return 0 if the inode does not match
|
|
* and 1 if it does. The @test function must be responsible for taking the
|
|
* i_lock spin_lock and checking i_state for an inode being freed or being
|
|
* initialized.
|
|
*
|
|
* If successful, this will return the inode for which the @test function
|
|
* returned 1 and NULL otherwise.
|
|
*
|
|
* The @test function is not permitted to take a ref on any inode presented.
|
|
* It is also not permitted to sleep.
|
|
*
|
|
* The caller must hold the RCU read lock.
|
|
*/
|
|
struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
|
|
int (*test)(struct inode *, void *), void *data)
|
|
{
|
|
struct hlist_head *head = inode_hashtable + hash(sb, hashval);
|
|
struct inode *inode;
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
|
|
"suspicious find_inode_rcu() usage");
|
|
|
|
hlist_for_each_entry_rcu(inode, head, i_hash) {
|
|
if (inode->i_sb == sb &&
|
|
!(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
|
|
test(inode, data))
|
|
return inode;
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(find_inode_rcu);
|
|
|
|
/**
|
|
* find_inode_by_rcu - Find an inode in the inode cache
|
|
* @sb: Super block of file system to search
|
|
* @ino: The inode number to match
|
|
*
|
|
* Search for the inode specified by @hashval and @data in the inode cache,
|
|
* where the helper function @test will return 0 if the inode does not match
|
|
* and 1 if it does. The @test function must be responsible for taking the
|
|
* i_lock spin_lock and checking i_state for an inode being freed or being
|
|
* initialized.
|
|
*
|
|
* If successful, this will return the inode for which the @test function
|
|
* returned 1 and NULL otherwise.
|
|
*
|
|
* The @test function is not permitted to take a ref on any inode presented.
|
|
* It is also not permitted to sleep.
|
|
*
|
|
* The caller must hold the RCU read lock.
|
|
*/
|
|
struct inode *find_inode_by_ino_rcu(struct super_block *sb,
|
|
unsigned long ino)
|
|
{
|
|
struct hlist_head *head = inode_hashtable + hash(sb, ino);
|
|
struct inode *inode;
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
|
|
"suspicious find_inode_by_ino_rcu() usage");
|
|
|
|
hlist_for_each_entry_rcu(inode, head, i_hash) {
|
|
if (inode->i_ino == ino &&
|
|
inode->i_sb == sb &&
|
|
!(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
|
|
return inode;
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(find_inode_by_ino_rcu);
|
|
|
|
int insert_inode_locked(struct inode *inode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
ino_t ino = inode->i_ino;
|
|
struct hlist_head *head = inode_hashtable + hash(sb, ino);
|
|
|
|
while (1) {
|
|
struct inode *old = NULL;
|
|
spin_lock(&inode_hash_lock);
|
|
hlist_for_each_entry(old, head, i_hash) {
|
|
if (old->i_ino != ino)
|
|
continue;
|
|
if (old->i_sb != sb)
|
|
continue;
|
|
spin_lock(&old->i_lock);
|
|
if (old->i_state & (I_FREEING|I_WILL_FREE)) {
|
|
spin_unlock(&old->i_lock);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (likely(!old)) {
|
|
spin_lock(&inode->i_lock);
|
|
inode->i_state |= I_NEW | I_CREATING;
|
|
hlist_add_head_rcu(&inode->i_hash, head);
|
|
spin_unlock(&inode->i_lock);
|
|
spin_unlock(&inode_hash_lock);
|
|
return 0;
|
|
}
|
|
if (unlikely(old->i_state & I_CREATING)) {
|
|
spin_unlock(&old->i_lock);
|
|
spin_unlock(&inode_hash_lock);
|
|
return -EBUSY;
|
|
}
|
|
__iget(old);
|
|
spin_unlock(&old->i_lock);
|
|
spin_unlock(&inode_hash_lock);
|
|
wait_on_inode(old);
|
|
if (unlikely(!inode_unhashed(old))) {
|
|
iput(old);
|
|
return -EBUSY;
|
|
}
|
|
iput(old);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(insert_inode_locked);
|
|
|
|
int insert_inode_locked4(struct inode *inode, unsigned long hashval,
|
|
int (*test)(struct inode *, void *), void *data)
|
|
{
|
|
struct inode *old;
|
|
|
|
inode->i_state |= I_CREATING;
|
|
old = inode_insert5(inode, hashval, test, NULL, data);
|
|
|
|
if (old != inode) {
|
|
iput(old);
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(insert_inode_locked4);
|
|
|
|
|
|
int generic_delete_inode(struct inode *inode)
|
|
{
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(generic_delete_inode);
|
|
|
|
/*
|
|
* Called when we're dropping the last reference
|
|
* to an inode.
|
|
*
|
|
* Call the FS "drop_inode()" function, defaulting to
|
|
* the legacy UNIX filesystem behaviour. If it tells
|
|
* us to evict inode, do so. Otherwise, retain inode
|
|
* in cache if fs is alive, sync and evict if fs is
|
|
* shutting down.
|
|
*/
|
|
static void iput_final(struct inode *inode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
const struct super_operations *op = inode->i_sb->s_op;
|
|
unsigned long state;
|
|
int drop;
|
|
|
|
WARN_ON(inode->i_state & I_NEW);
|
|
|
|
if (op->drop_inode)
|
|
drop = op->drop_inode(inode);
|
|
else
|
|
drop = generic_drop_inode(inode);
|
|
|
|
if (!drop && (sb->s_flags & SB_ACTIVE)) {
|
|
inode_add_lru(inode);
|
|
spin_unlock(&inode->i_lock);
|
|
return;
|
|
}
|
|
|
|
state = inode->i_state;
|
|
if (!drop) {
|
|
WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
write_inode_now(inode, 1);
|
|
|
|
spin_lock(&inode->i_lock);
|
|
state = inode->i_state;
|
|
WARN_ON(state & I_NEW);
|
|
state &= ~I_WILL_FREE;
|
|
}
|
|
|
|
WRITE_ONCE(inode->i_state, state | I_FREEING);
|
|
if (!list_empty(&inode->i_lru))
|
|
inode_lru_list_del(inode);
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
evict(inode);
|
|
}
|
|
|
|
/**
|
|
* iput - put an inode
|
|
* @inode: inode to put
|
|
*
|
|
* Puts an inode, dropping its usage count. If the inode use count hits
|
|
* zero, the inode is then freed and may also be destroyed.
|
|
*
|
|
* Consequently, iput() can sleep.
|
|
*/
|
|
void iput(struct inode *inode)
|
|
{
|
|
if (!inode)
|
|
return;
|
|
BUG_ON(inode->i_state & I_CLEAR);
|
|
retry:
|
|
if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
|
|
if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
|
|
atomic_inc(&inode->i_count);
|
|
spin_unlock(&inode->i_lock);
|
|
trace_writeback_lazytime_iput(inode);
|
|
mark_inode_dirty_sync(inode);
|
|
goto retry;
|
|
}
|
|
iput_final(inode);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(iput);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
/**
|
|
* bmap - find a block number in a file
|
|
* @inode: inode owning the block number being requested
|
|
* @block: pointer containing the block to find
|
|
*
|
|
* Replaces the value in ``*block`` with the block number on the device holding
|
|
* corresponding to the requested block number in the file.
|
|
* That is, asked for block 4 of inode 1 the function will replace the
|
|
* 4 in ``*block``, with disk block relative to the disk start that holds that
|
|
* block of the file.
|
|
*
|
|
* Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
|
|
* hole, returns 0 and ``*block`` is also set to 0.
|
|
*/
|
|
int bmap(struct inode *inode, sector_t *block)
|
|
{
|
|
if (!inode->i_mapping->a_ops->bmap)
|
|
return -EINVAL;
|
|
|
|
*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(bmap);
|
|
#endif
|
|
|
|
/*
|
|
* With relative atime, only update atime if the previous atime is
|
|
* earlier than either the ctime or mtime or if at least a day has
|
|
* passed since the last atime update.
|
|
*/
|
|
static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
|
|
struct timespec64 now)
|
|
{
|
|
|
|
if (!(mnt->mnt_flags & MNT_RELATIME))
|
|
return 1;
|
|
/*
|
|
* Is mtime younger than atime? If yes, update atime:
|
|
*/
|
|
if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
|
|
return 1;
|
|
/*
|
|
* Is ctime younger than atime? If yes, update atime:
|
|
*/
|
|
if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
|
|
return 1;
|
|
|
|
/*
|
|
* Is the previous atime value older than a day? If yes,
|
|
* update atime:
|
|
*/
|
|
if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
|
|
return 1;
|
|
/*
|
|
* Good, we can skip the atime update:
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
|
|
{
|
|
int iflags = I_DIRTY_TIME;
|
|
bool dirty = false;
|
|
|
|
if (flags & S_ATIME)
|
|
inode->i_atime = *time;
|
|
if (flags & S_VERSION)
|
|
dirty = inode_maybe_inc_iversion(inode, false);
|
|
if (flags & S_CTIME)
|
|
inode->i_ctime = *time;
|
|
if (flags & S_MTIME)
|
|
inode->i_mtime = *time;
|
|
if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
|
|
!(inode->i_sb->s_flags & SB_LAZYTIME))
|
|
dirty = true;
|
|
|
|
if (dirty)
|
|
iflags |= I_DIRTY_SYNC;
|
|
__mark_inode_dirty(inode, iflags);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(generic_update_time);
|
|
|
|
/*
|
|
* This does the actual work of updating an inodes time or version. Must have
|
|
* had called mnt_want_write() before calling this.
|
|
*/
|
|
static int update_time(struct inode *inode, struct timespec64 *time, int flags)
|
|
{
|
|
if (inode->i_op->update_time)
|
|
return inode->i_op->update_time(inode, time, flags);
|
|
return generic_update_time(inode, time, flags);
|
|
}
|
|
|
|
/**
|
|
* touch_atime - update the access time
|
|
* @path: the &struct path to update
|
|
* @inode: inode to update
|
|
*
|
|
* Update the accessed time on an inode and mark it for writeback.
|
|
* This function automatically handles read only file systems and media,
|
|
* as well as the "noatime" flag and inode specific "noatime" markers.
|
|
*/
|
|
bool atime_needs_update(const struct path *path, struct inode *inode)
|
|
{
|
|
struct vfsmount *mnt = path->mnt;
|
|
struct timespec64 now;
|
|
|
|
if (inode->i_flags & S_NOATIME)
|
|
return false;
|
|
|
|
/* Atime updates will likely cause i_uid and i_gid to be written
|
|
* back improprely if their true value is unknown to the vfs.
|
|
*/
|
|
if (HAS_UNMAPPED_ID(inode))
|
|
return false;
|
|
|
|
if (IS_NOATIME(inode))
|
|
return false;
|
|
if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
|
|
return false;
|
|
|
|
if (mnt->mnt_flags & MNT_NOATIME)
|
|
return false;
|
|
if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
|
|
return false;
|
|
|
|
now = current_time(inode);
|
|
|
|
if (!relatime_need_update(mnt, inode, now))
|
|
return false;
|
|
|
|
if (timespec64_equal(&inode->i_atime, &now))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void touch_atime(const struct path *path)
|
|
{
|
|
struct vfsmount *mnt = path->mnt;
|
|
struct inode *inode = d_inode(path->dentry);
|
|
struct timespec64 now;
|
|
|
|
if (!atime_needs_update(path, inode))
|
|
return;
|
|
|
|
if (!sb_start_write_trylock(inode->i_sb))
|
|
return;
|
|
|
|
if (__mnt_want_write(mnt) != 0)
|
|
goto skip_update;
|
|
/*
|
|
* File systems can error out when updating inodes if they need to
|
|
* allocate new space to modify an inode (such is the case for
|
|
* Btrfs), but since we touch atime while walking down the path we
|
|
* really don't care if we failed to update the atime of the file,
|
|
* so just ignore the return value.
|
|
* We may also fail on filesystems that have the ability to make parts
|
|
* of the fs read only, e.g. subvolumes in Btrfs.
|
|
*/
|
|
now = current_time(inode);
|
|
update_time(inode, &now, S_ATIME);
|
|
__mnt_drop_write(mnt);
|
|
skip_update:
|
|
sb_end_write(inode->i_sb);
|
|
}
|
|
EXPORT_SYMBOL(touch_atime);
|
|
|
|
/*
|
|
* The logic we want is
|
|
*
|
|
* if suid or (sgid and xgrp)
|
|
* remove privs
|
|
*/
|
|
int should_remove_suid(struct dentry *dentry)
|
|
{
|
|
umode_t mode = d_inode(dentry)->i_mode;
|
|
int kill = 0;
|
|
|
|
/* suid always must be killed */
|
|
if (unlikely(mode & S_ISUID))
|
|
kill = ATTR_KILL_SUID;
|
|
|
|
/*
|
|
* sgid without any exec bits is just a mandatory locking mark; leave
|
|
* it alone. If some exec bits are set, it's a real sgid; kill it.
|
|
*/
|
|
if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
|
|
kill |= ATTR_KILL_SGID;
|
|
|
|
if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
|
|
return kill;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(should_remove_suid);
|
|
|
|
/*
|
|
* Return mask of changes for notify_change() that need to be done as a
|
|
* response to write or truncate. Return 0 if nothing has to be changed.
|
|
* Negative value on error (change should be denied).
|
|
*/
|
|
int dentry_needs_remove_privs(struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
int mask = 0;
|
|
int ret;
|
|
|
|
if (IS_NOSEC(inode))
|
|
return 0;
|
|
|
|
mask = should_remove_suid(dentry);
|
|
ret = security_inode_need_killpriv(dentry);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret)
|
|
mask |= ATTR_KILL_PRIV;
|
|
return mask;
|
|
}
|
|
|
|
static int __remove_privs(struct dentry *dentry, int kill)
|
|
{
|
|
struct iattr newattrs;
|
|
|
|
newattrs.ia_valid = ATTR_FORCE | kill;
|
|
/*
|
|
* Note we call this on write, so notify_change will not
|
|
* encounter any conflicting delegations:
|
|
*/
|
|
return notify_change(dentry, &newattrs, NULL);
|
|
}
|
|
|
|
/*
|
|
* Remove special file priviledges (suid, capabilities) when file is written
|
|
* to or truncated.
|
|
*/
|
|
int file_remove_privs(struct file *file)
|
|
{
|
|
struct dentry *dentry = file_dentry(file);
|
|
struct inode *inode = file_inode(file);
|
|
int kill;
|
|
int error = 0;
|
|
|
|
/*
|
|
* Fast path for nothing security related.
|
|
* As well for non-regular files, e.g. blkdev inodes.
|
|
* For example, blkdev_write_iter() might get here
|
|
* trying to remove privs which it is not allowed to.
|
|
*/
|
|
if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
|
|
return 0;
|
|
|
|
kill = dentry_needs_remove_privs(dentry);
|
|
if (kill < 0)
|
|
return kill;
|
|
if (kill)
|
|
error = __remove_privs(dentry, kill);
|
|
if (!error)
|
|
inode_has_no_xattr(inode);
|
|
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL(file_remove_privs);
|
|
|
|
/**
|
|
* file_update_time - update mtime and ctime time
|
|
* @file: file accessed
|
|
*
|
|
* Update the mtime and ctime members of an inode and mark the inode
|
|
* for writeback. Note that this function is meant exclusively for
|
|
* usage in the file write path of filesystems, and filesystems may
|
|
* choose to explicitly ignore update via this function with the
|
|
* S_NOCMTIME inode flag, e.g. for network filesystem where these
|
|
* timestamps are handled by the server. This can return an error for
|
|
* file systems who need to allocate space in order to update an inode.
|
|
*/
|
|
|
|
int file_update_time(struct file *file)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct timespec64 now;
|
|
int sync_it = 0;
|
|
int ret;
|
|
|
|
/* First try to exhaust all avenues to not sync */
|
|
if (IS_NOCMTIME(inode))
|
|
return 0;
|
|
|
|
now = current_time(inode);
|
|
if (!timespec64_equal(&inode->i_mtime, &now))
|
|
sync_it = S_MTIME;
|
|
|
|
if (!timespec64_equal(&inode->i_ctime, &now))
|
|
sync_it |= S_CTIME;
|
|
|
|
if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
|
|
sync_it |= S_VERSION;
|
|
|
|
if (!sync_it)
|
|
return 0;
|
|
|
|
/* Finally allowed to write? Takes lock. */
|
|
if (__mnt_want_write_file(file))
|
|
return 0;
|
|
|
|
ret = update_time(inode, &now, sync_it);
|
|
__mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(file_update_time);
|
|
|
|
/* Caller must hold the file's inode lock */
|
|
int file_modified(struct file *file)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* Clear the security bits if the process is not being run by root.
|
|
* This keeps people from modifying setuid and setgid binaries.
|
|
*/
|
|
err = file_remove_privs(file);
|
|
if (err)
|
|
return err;
|
|
|
|
if (unlikely(file->f_mode & FMODE_NOCMTIME))
|
|
return 0;
|
|
|
|
return file_update_time(file);
|
|
}
|
|
EXPORT_SYMBOL(file_modified);
|
|
|
|
int inode_needs_sync(struct inode *inode)
|
|
{
|
|
if (IS_SYNC(inode))
|
|
return 1;
|
|
if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(inode_needs_sync);
|
|
|
|
/*
|
|
* If we try to find an inode in the inode hash while it is being
|
|
* deleted, we have to wait until the filesystem completes its
|
|
* deletion before reporting that it isn't found. This function waits
|
|
* until the deletion _might_ have completed. Callers are responsible
|
|
* to recheck inode state.
|
|
*
|
|
* It doesn't matter if I_NEW is not set initially, a call to
|
|
* wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
|
|
* will DTRT.
|
|
*/
|
|
static void __wait_on_freeing_inode(struct inode *inode)
|
|
{
|
|
wait_queue_head_t *wq;
|
|
DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
|
|
wq = bit_waitqueue(&inode->i_state, __I_NEW);
|
|
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
spin_unlock(&inode->i_lock);
|
|
spin_unlock(&inode_hash_lock);
|
|
schedule();
|
|
finish_wait(wq, &wait.wq_entry);
|
|
spin_lock(&inode_hash_lock);
|
|
}
|
|
|
|
static __initdata unsigned long ihash_entries;
|
|
static int __init set_ihash_entries(char *str)
|
|
{
|
|
if (!str)
|
|
return 0;
|
|
ihash_entries = simple_strtoul(str, &str, 0);
|
|
return 1;
|
|
}
|
|
__setup("ihash_entries=", set_ihash_entries);
|
|
|
|
/*
|
|
* Initialize the waitqueues and inode hash table.
|
|
*/
|
|
void __init inode_init_early(void)
|
|
{
|
|
/* If hashes are distributed across NUMA nodes, defer
|
|
* hash allocation until vmalloc space is available.
|
|
*/
|
|
if (hashdist)
|
|
return;
|
|
|
|
inode_hashtable =
|
|
alloc_large_system_hash("Inode-cache",
|
|
sizeof(struct hlist_head),
|
|
ihash_entries,
|
|
14,
|
|
HASH_EARLY | HASH_ZERO,
|
|
&i_hash_shift,
|
|
&i_hash_mask,
|
|
0,
|
|
0);
|
|
}
|
|
|
|
void __init inode_init(void)
|
|
{
|
|
/* inode slab cache */
|
|
inode_cachep = kmem_cache_create("inode_cache",
|
|
sizeof(struct inode),
|
|
0,
|
|
(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
|
|
SLAB_MEM_SPREAD|SLAB_ACCOUNT),
|
|
init_once);
|
|
|
|
/* Hash may have been set up in inode_init_early */
|
|
if (!hashdist)
|
|
return;
|
|
|
|
inode_hashtable =
|
|
alloc_large_system_hash("Inode-cache",
|
|
sizeof(struct hlist_head),
|
|
ihash_entries,
|
|
14,
|
|
HASH_ZERO,
|
|
&i_hash_shift,
|
|
&i_hash_mask,
|
|
0,
|
|
0);
|
|
}
|
|
|
|
void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
|
|
{
|
|
inode->i_mode = mode;
|
|
if (S_ISCHR(mode)) {
|
|
inode->i_fop = &def_chr_fops;
|
|
inode->i_rdev = rdev;
|
|
} else if (S_ISBLK(mode)) {
|
|
inode->i_fop = &def_blk_fops;
|
|
inode->i_rdev = rdev;
|
|
} else if (S_ISFIFO(mode))
|
|
inode->i_fop = &pipefifo_fops;
|
|
else if (S_ISSOCK(mode))
|
|
; /* leave it no_open_fops */
|
|
else
|
|
printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
|
|
" inode %s:%lu\n", mode, inode->i_sb->s_id,
|
|
inode->i_ino);
|
|
}
|
|
EXPORT_SYMBOL(init_special_inode);
|
|
|
|
/**
|
|
* inode_init_owner - Init uid,gid,mode for new inode according to posix standards
|
|
* @inode: New inode
|
|
* @dir: Directory inode
|
|
* @mode: mode of the new inode
|
|
*/
|
|
void inode_init_owner(struct inode *inode, const struct inode *dir,
|
|
umode_t mode)
|
|
{
|
|
inode->i_uid = current_fsuid();
|
|
if (dir && dir->i_mode & S_ISGID) {
|
|
inode->i_gid = dir->i_gid;
|
|
|
|
/* Directories are special, and always inherit S_ISGID */
|
|
if (S_ISDIR(mode))
|
|
mode |= S_ISGID;
|
|
else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
|
|
!in_group_p(inode->i_gid) &&
|
|
!capable_wrt_inode_uidgid(dir, CAP_FSETID))
|
|
mode &= ~S_ISGID;
|
|
} else
|
|
inode->i_gid = current_fsgid();
|
|
inode->i_mode = mode;
|
|
}
|
|
EXPORT_SYMBOL(inode_init_owner);
|
|
|
|
/**
|
|
* inode_owner_or_capable - check current task permissions to inode
|
|
* @inode: inode being checked
|
|
*
|
|
* Return true if current either has CAP_FOWNER in a namespace with the
|
|
* inode owner uid mapped, or owns the file.
|
|
*/
|
|
bool inode_owner_or_capable(const struct inode *inode)
|
|
{
|
|
struct user_namespace *ns;
|
|
|
|
if (uid_eq(current_fsuid(), inode->i_uid))
|
|
return true;
|
|
|
|
ns = current_user_ns();
|
|
if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
|
|
return true;
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(inode_owner_or_capable);
|
|
|
|
/*
|
|
* Direct i/o helper functions
|
|
*/
|
|
static void __inode_dio_wait(struct inode *inode)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
|
|
DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
|
|
|
|
do {
|
|
prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
if (atomic_read(&inode->i_dio_count))
|
|
schedule();
|
|
} while (atomic_read(&inode->i_dio_count));
|
|
finish_wait(wq, &q.wq_entry);
|
|
}
|
|
|
|
/**
|
|
* inode_dio_wait - wait for outstanding DIO requests to finish
|
|
* @inode: inode to wait for
|
|
*
|
|
* Waits for all pending direct I/O requests to finish so that we can
|
|
* proceed with a truncate or equivalent operation.
|
|
*
|
|
* Must be called under a lock that serializes taking new references
|
|
* to i_dio_count, usually by inode->i_mutex.
|
|
*/
|
|
void inode_dio_wait(struct inode *inode)
|
|
{
|
|
if (atomic_read(&inode->i_dio_count))
|
|
__inode_dio_wait(inode);
|
|
}
|
|
EXPORT_SYMBOL(inode_dio_wait);
|
|
|
|
/*
|
|
* inode_set_flags - atomically set some inode flags
|
|
*
|
|
* Note: the caller should be holding i_mutex, or else be sure that
|
|
* they have exclusive access to the inode structure (i.e., while the
|
|
* inode is being instantiated). The reason for the cmpxchg() loop
|
|
* --- which wouldn't be necessary if all code paths which modify
|
|
* i_flags actually followed this rule, is that there is at least one
|
|
* code path which doesn't today so we use cmpxchg() out of an abundance
|
|
* of caution.
|
|
*
|
|
* In the long run, i_mutex is overkill, and we should probably look
|
|
* at using the i_lock spinlock to protect i_flags, and then make sure
|
|
* it is so documented in include/linux/fs.h and that all code follows
|
|
* the locking convention!!
|
|
*/
|
|
void inode_set_flags(struct inode *inode, unsigned int flags,
|
|
unsigned int mask)
|
|
{
|
|
WARN_ON_ONCE(flags & ~mask);
|
|
set_mask_bits(&inode->i_flags, mask, flags);
|
|
}
|
|
EXPORT_SYMBOL(inode_set_flags);
|
|
|
|
void inode_nohighmem(struct inode *inode)
|
|
{
|
|
mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
|
|
}
|
|
EXPORT_SYMBOL(inode_nohighmem);
|
|
|
|
/**
|
|
* timestamp_truncate - Truncate timespec to a granularity
|
|
* @t: Timespec
|
|
* @inode: inode being updated
|
|
*
|
|
* Truncate a timespec to the granularity supported by the fs
|
|
* containing the inode. Always rounds down. gran must
|
|
* not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
|
|
*/
|
|
struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
unsigned int gran = sb->s_time_gran;
|
|
|
|
t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
|
|
if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
|
|
t.tv_nsec = 0;
|
|
|
|
/* Avoid division in the common cases 1 ns and 1 s. */
|
|
if (gran == 1)
|
|
; /* nothing */
|
|
else if (gran == NSEC_PER_SEC)
|
|
t.tv_nsec = 0;
|
|
else if (gran > 1 && gran < NSEC_PER_SEC)
|
|
t.tv_nsec -= t.tv_nsec % gran;
|
|
else
|
|
WARN(1, "invalid file time granularity: %u", gran);
|
|
return t;
|
|
}
|
|
EXPORT_SYMBOL(timestamp_truncate);
|
|
|
|
/**
|
|
* current_time - Return FS time
|
|
* @inode: inode.
|
|
*
|
|
* Return the current time truncated to the time granularity supported by
|
|
* the fs.
|
|
*
|
|
* Note that inode and inode->sb cannot be NULL.
|
|
* Otherwise, the function warns and returns time without truncation.
|
|
*/
|
|
struct timespec64 current_time(struct inode *inode)
|
|
{
|
|
struct timespec64 now;
|
|
|
|
ktime_get_coarse_real_ts64(&now);
|
|
|
|
if (unlikely(!inode->i_sb)) {
|
|
WARN(1, "current_time() called with uninitialized super_block in the inode");
|
|
return now;
|
|
}
|
|
|
|
return timestamp_truncate(now, inode);
|
|
}
|
|
EXPORT_SYMBOL(current_time);
|
|
|
|
/*
|
|
* Generic function to check FS_IOC_SETFLAGS values and reject any invalid
|
|
* configurations.
|
|
*
|
|
* Note: the caller should be holding i_mutex, or else be sure that they have
|
|
* exclusive access to the inode structure.
|
|
*/
|
|
int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
|
|
unsigned int flags)
|
|
{
|
|
/*
|
|
* The IMMUTABLE and APPEND_ONLY flags can only be changed by
|
|
* the relevant capability.
|
|
*
|
|
* This test looks nicer. Thanks to Pauline Middelink
|
|
*/
|
|
if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
|
|
!capable(CAP_LINUX_IMMUTABLE))
|
|
return -EPERM;
|
|
|
|
return fscrypt_prepare_setflags(inode, oldflags, flags);
|
|
}
|
|
EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
|
|
|
|
/*
|
|
* Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
|
|
* configurations.
|
|
*
|
|
* Note: the caller should be holding i_mutex, or else be sure that they have
|
|
* exclusive access to the inode structure.
|
|
*/
|
|
int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
|
|
struct fsxattr *fa)
|
|
{
|
|
/*
|
|
* Can't modify an immutable/append-only file unless we have
|
|
* appropriate permission.
|
|
*/
|
|
if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
|
|
(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
|
|
!capable(CAP_LINUX_IMMUTABLE))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Project Quota ID state is only allowed to change from within the init
|
|
* namespace. Enforce that restriction only if we are trying to change
|
|
* the quota ID state. Everything else is allowed in user namespaces.
|
|
*/
|
|
if (current_user_ns() != &init_user_ns) {
|
|
if (old_fa->fsx_projid != fa->fsx_projid)
|
|
return -EINVAL;
|
|
if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
|
|
FS_XFLAG_PROJINHERIT)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check extent size hints. */
|
|
if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
|
|
!S_ISDIR(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
|
|
!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* It is only valid to set the DAX flag on regular files and
|
|
* directories on filesystems.
|
|
*/
|
|
if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
|
|
!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
|
|
return -EINVAL;
|
|
|
|
/* Extent size hints of zero turn off the flags. */
|
|
if (fa->fsx_extsize == 0)
|
|
fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
|
|
if (fa->fsx_cowextsize == 0)
|
|
fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
|