2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/drivers/dma/moxart-dma.c
Jonas Jensen 5f9e685a0d dmaengine: Add MOXA ART DMA engine driver
The MOXA ART SoC has a DMA controller capable of offloading expensive
memory operations, such as large copies. This patch adds support for
the controller including four channels. Two of these are used to
handle MMC copy on the UC-7112-LX hardware. The remaining two can be
used in a future audio driver or client application.

Signed-off-by: Jonas Jensen <jonas.jensen@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2014-01-20 12:32:46 +05:30

700 lines
16 KiB
C

/*
* MOXA ART SoCs DMA Engine support.
*
* Copyright (C) 2013 Jonas Jensen
*
* Jonas Jensen <jonas.jensen@gmail.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_dma.h>
#include <linux/bitops.h>
#include <asm/cacheflush.h>
#include "dmaengine.h"
#include "virt-dma.h"
#define APB_DMA_MAX_CHANNEL 4
#define REG_OFF_ADDRESS_SOURCE 0
#define REG_OFF_ADDRESS_DEST 4
#define REG_OFF_CYCLES 8
#define REG_OFF_CTRL 12
#define REG_OFF_CHAN_SIZE 16
#define APB_DMA_ENABLE BIT(0)
#define APB_DMA_FIN_INT_STS BIT(1)
#define APB_DMA_FIN_INT_EN BIT(2)
#define APB_DMA_BURST_MODE BIT(3)
#define APB_DMA_ERR_INT_STS BIT(4)
#define APB_DMA_ERR_INT_EN BIT(5)
/*
* Unset: APB
* Set: AHB
*/
#define APB_DMA_SOURCE_SELECT 0x40
#define APB_DMA_DEST_SELECT 0x80
#define APB_DMA_SOURCE 0x100
#define APB_DMA_DEST 0x1000
#define APB_DMA_SOURCE_MASK 0x700
#define APB_DMA_DEST_MASK 0x7000
/*
* 000: No increment
* 001: +1 (Burst=0), +4 (Burst=1)
* 010: +2 (Burst=0), +8 (Burst=1)
* 011: +4 (Burst=0), +16 (Burst=1)
* 101: -1 (Burst=0), -4 (Burst=1)
* 110: -2 (Burst=0), -8 (Burst=1)
* 111: -4 (Burst=0), -16 (Burst=1)
*/
#define APB_DMA_SOURCE_INC_0 0
#define APB_DMA_SOURCE_INC_1_4 0x100
#define APB_DMA_SOURCE_INC_2_8 0x200
#define APB_DMA_SOURCE_INC_4_16 0x300
#define APB_DMA_SOURCE_DEC_1_4 0x500
#define APB_DMA_SOURCE_DEC_2_8 0x600
#define APB_DMA_SOURCE_DEC_4_16 0x700
#define APB_DMA_DEST_INC_0 0
#define APB_DMA_DEST_INC_1_4 0x1000
#define APB_DMA_DEST_INC_2_8 0x2000
#define APB_DMA_DEST_INC_4_16 0x3000
#define APB_DMA_DEST_DEC_1_4 0x5000
#define APB_DMA_DEST_DEC_2_8 0x6000
#define APB_DMA_DEST_DEC_4_16 0x7000
/*
* Request signal select source/destination address for DMA hardware handshake.
*
* The request line number is a property of the DMA controller itself,
* e.g. MMC must always request channels where dma_slave_config->slave_id is 5.
*
* 0: No request / Grant signal
* 1-15: Request / Grant signal
*/
#define APB_DMA_SOURCE_REQ_NO 0x1000000
#define APB_DMA_SOURCE_REQ_NO_MASK 0xf000000
#define APB_DMA_DEST_REQ_NO 0x10000
#define APB_DMA_DEST_REQ_NO_MASK 0xf0000
#define APB_DMA_DATA_WIDTH 0x100000
#define APB_DMA_DATA_WIDTH_MASK 0x300000
/*
* Data width of transfer:
*
* 00: Word
* 01: Half
* 10: Byte
*/
#define APB_DMA_DATA_WIDTH_4 0
#define APB_DMA_DATA_WIDTH_2 0x100000
#define APB_DMA_DATA_WIDTH_1 0x200000
#define APB_DMA_CYCLES_MASK 0x00ffffff
#define MOXART_DMA_DATA_TYPE_S8 0x00
#define MOXART_DMA_DATA_TYPE_S16 0x01
#define MOXART_DMA_DATA_TYPE_S32 0x02
struct moxart_sg {
dma_addr_t addr;
uint32_t len;
};
struct moxart_desc {
enum dma_transfer_direction dma_dir;
dma_addr_t dev_addr;
unsigned int sglen;
unsigned int dma_cycles;
struct virt_dma_desc vd;
uint8_t es;
struct moxart_sg sg[0];
};
struct moxart_chan {
struct virt_dma_chan vc;
void __iomem *base;
struct moxart_desc *desc;
struct dma_slave_config cfg;
bool allocated;
bool error;
int ch_num;
unsigned int line_reqno;
unsigned int sgidx;
};
struct moxart_dmadev {
struct dma_device dma_slave;
struct moxart_chan slave_chans[APB_DMA_MAX_CHANNEL];
};
struct moxart_filter_data {
struct moxart_dmadev *mdc;
struct of_phandle_args *dma_spec;
};
static const unsigned int es_bytes[] = {
[MOXART_DMA_DATA_TYPE_S8] = 1,
[MOXART_DMA_DATA_TYPE_S16] = 2,
[MOXART_DMA_DATA_TYPE_S32] = 4,
};
static struct device *chan2dev(struct dma_chan *chan)
{
return &chan->dev->device;
}
static inline struct moxart_chan *to_moxart_dma_chan(struct dma_chan *c)
{
return container_of(c, struct moxart_chan, vc.chan);
}
static inline struct moxart_desc *to_moxart_dma_desc(
struct dma_async_tx_descriptor *t)
{
return container_of(t, struct moxart_desc, vd.tx);
}
static void moxart_dma_desc_free(struct virt_dma_desc *vd)
{
kfree(container_of(vd, struct moxart_desc, vd));
}
static int moxart_terminate_all(struct dma_chan *chan)
{
struct moxart_chan *ch = to_moxart_dma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
u32 ctrl;
dev_dbg(chan2dev(chan), "%s: ch=%p\n", __func__, ch);
spin_lock_irqsave(&ch->vc.lock, flags);
if (ch->desc)
ch->desc = NULL;
ctrl = readl(ch->base + REG_OFF_CTRL);
ctrl &= ~(APB_DMA_ENABLE | APB_DMA_FIN_INT_EN | APB_DMA_ERR_INT_EN);
writel(ctrl, ch->base + REG_OFF_CTRL);
vchan_get_all_descriptors(&ch->vc, &head);
spin_unlock_irqrestore(&ch->vc.lock, flags);
vchan_dma_desc_free_list(&ch->vc, &head);
return 0;
}
static int moxart_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct moxart_chan *ch = to_moxart_dma_chan(chan);
u32 ctrl;
ch->cfg = *cfg;
ctrl = readl(ch->base + REG_OFF_CTRL);
ctrl |= APB_DMA_BURST_MODE;
ctrl &= ~(APB_DMA_DEST_MASK | APB_DMA_SOURCE_MASK);
ctrl &= ~(APB_DMA_DEST_REQ_NO_MASK | APB_DMA_SOURCE_REQ_NO_MASK);
switch (ch->cfg.src_addr_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
ctrl |= APB_DMA_DATA_WIDTH_1;
if (ch->cfg.direction != DMA_MEM_TO_DEV)
ctrl |= APB_DMA_DEST_INC_1_4;
else
ctrl |= APB_DMA_SOURCE_INC_1_4;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
ctrl |= APB_DMA_DATA_WIDTH_2;
if (ch->cfg.direction != DMA_MEM_TO_DEV)
ctrl |= APB_DMA_DEST_INC_2_8;
else
ctrl |= APB_DMA_SOURCE_INC_2_8;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
ctrl &= ~APB_DMA_DATA_WIDTH;
if (ch->cfg.direction != DMA_MEM_TO_DEV)
ctrl |= APB_DMA_DEST_INC_4_16;
else
ctrl |= APB_DMA_SOURCE_INC_4_16;
break;
default:
return -EINVAL;
}
if (ch->cfg.direction == DMA_MEM_TO_DEV) {
ctrl &= ~APB_DMA_DEST_SELECT;
ctrl |= APB_DMA_SOURCE_SELECT;
ctrl |= (ch->line_reqno << 16 &
APB_DMA_DEST_REQ_NO_MASK);
} else {
ctrl |= APB_DMA_DEST_SELECT;
ctrl &= ~APB_DMA_SOURCE_SELECT;
ctrl |= (ch->line_reqno << 24 &
APB_DMA_SOURCE_REQ_NO_MASK);
}
writel(ctrl, ch->base + REG_OFF_CTRL);
return 0;
}
static int moxart_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
int ret = 0;
switch (cmd) {
case DMA_PAUSE:
case DMA_RESUME:
return -EINVAL;
case DMA_TERMINATE_ALL:
moxart_terminate_all(chan);
break;
case DMA_SLAVE_CONFIG:
ret = moxart_slave_config(chan, (struct dma_slave_config *)arg);
break;
default:
ret = -ENOSYS;
}
return ret;
}
static struct dma_async_tx_descriptor *moxart_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction dir,
unsigned long tx_flags, void *context)
{
struct moxart_chan *ch = to_moxart_dma_chan(chan);
struct moxart_desc *d;
enum dma_slave_buswidth dev_width;
dma_addr_t dev_addr;
struct scatterlist *sgent;
unsigned int es;
unsigned int i;
if (!is_slave_direction(dir)) {
dev_err(chan2dev(chan), "%s: invalid DMA direction\n",
__func__);
return NULL;
}
if (dir == DMA_DEV_TO_MEM) {
dev_addr = ch->cfg.src_addr;
dev_width = ch->cfg.src_addr_width;
} else {
dev_addr = ch->cfg.dst_addr;
dev_width = ch->cfg.dst_addr_width;
}
switch (dev_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
es = MOXART_DMA_DATA_TYPE_S8;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
es = MOXART_DMA_DATA_TYPE_S16;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
es = MOXART_DMA_DATA_TYPE_S32;
break;
default:
dev_err(chan2dev(chan), "%s: unsupported data width (%u)\n",
__func__, dev_width);
return NULL;
}
d = kzalloc(sizeof(*d) + sg_len * sizeof(d->sg[0]), GFP_ATOMIC);
if (!d)
return NULL;
d->dma_dir = dir;
d->dev_addr = dev_addr;
d->es = es;
for_each_sg(sgl, sgent, sg_len, i) {
d->sg[i].addr = sg_dma_address(sgent);
d->sg[i].len = sg_dma_len(sgent);
}
d->sglen = sg_len;
ch->error = 0;
return vchan_tx_prep(&ch->vc, &d->vd, tx_flags);
}
static struct dma_chan *moxart_of_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct moxart_dmadev *mdc = ofdma->of_dma_data;
struct dma_chan *chan;
struct moxart_chan *ch;
chan = dma_get_any_slave_channel(&mdc->dma_slave);
if (!chan)
return NULL;
ch = to_moxart_dma_chan(chan);
ch->line_reqno = dma_spec->args[0];
return chan;
}
static int moxart_alloc_chan_resources(struct dma_chan *chan)
{
struct moxart_chan *ch = to_moxart_dma_chan(chan);
dev_dbg(chan2dev(chan), "%s: allocating channel #%u\n",
__func__, ch->ch_num);
ch->allocated = 1;
return 0;
}
static void moxart_free_chan_resources(struct dma_chan *chan)
{
struct moxart_chan *ch = to_moxart_dma_chan(chan);
vchan_free_chan_resources(&ch->vc);
dev_dbg(chan2dev(chan), "%s: freeing channel #%u\n",
__func__, ch->ch_num);
ch->allocated = 0;
}
static void moxart_dma_set_params(struct moxart_chan *ch, dma_addr_t src_addr,
dma_addr_t dst_addr)
{
writel(src_addr, ch->base + REG_OFF_ADDRESS_SOURCE);
writel(dst_addr, ch->base + REG_OFF_ADDRESS_DEST);
}
static void moxart_set_transfer_params(struct moxart_chan *ch, unsigned int len)
{
struct moxart_desc *d = ch->desc;
unsigned int sglen_div = es_bytes[d->es];
d->dma_cycles = len >> sglen_div;
/*
* There are 4 cycles on 64 bytes copied, i.e. one cycle copies 16
* bytes ( when width is APB_DMAB_DATA_WIDTH_4 ).
*/
writel(d->dma_cycles, ch->base + REG_OFF_CYCLES);
dev_dbg(chan2dev(&ch->vc.chan), "%s: set %u DMA cycles (len=%u)\n",
__func__, d->dma_cycles, len);
}
static void moxart_start_dma(struct moxart_chan *ch)
{
u32 ctrl;
ctrl = readl(ch->base + REG_OFF_CTRL);
ctrl |= (APB_DMA_ENABLE | APB_DMA_FIN_INT_EN | APB_DMA_ERR_INT_EN);
writel(ctrl, ch->base + REG_OFF_CTRL);
}
static void moxart_dma_start_sg(struct moxart_chan *ch, unsigned int idx)
{
struct moxart_desc *d = ch->desc;
struct moxart_sg *sg = ch->desc->sg + idx;
if (ch->desc->dma_dir == DMA_MEM_TO_DEV)
moxart_dma_set_params(ch, sg->addr, d->dev_addr);
else if (ch->desc->dma_dir == DMA_DEV_TO_MEM)
moxart_dma_set_params(ch, d->dev_addr, sg->addr);
moxart_set_transfer_params(ch, sg->len);
moxart_start_dma(ch);
}
static void moxart_dma_start_desc(struct dma_chan *chan)
{
struct moxart_chan *ch = to_moxart_dma_chan(chan);
struct virt_dma_desc *vd;
vd = vchan_next_desc(&ch->vc);
if (!vd) {
ch->desc = NULL;
return;
}
list_del(&vd->node);
ch->desc = to_moxart_dma_desc(&vd->tx);
ch->sgidx = 0;
moxart_dma_start_sg(ch, 0);
}
static void moxart_issue_pending(struct dma_chan *chan)
{
struct moxart_chan *ch = to_moxart_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&ch->vc.lock, flags);
if (vchan_issue_pending(&ch->vc) && !ch->desc)
moxart_dma_start_desc(chan);
spin_unlock_irqrestore(&ch->vc.lock, flags);
}
static size_t moxart_dma_desc_size(struct moxart_desc *d,
unsigned int completed_sgs)
{
unsigned int i;
size_t size;
for (size = i = completed_sgs; i < d->sglen; i++)
size += d->sg[i].len;
return size;
}
static size_t moxart_dma_desc_size_in_flight(struct moxart_chan *ch)
{
size_t size;
unsigned int completed_cycles, cycles;
size = moxart_dma_desc_size(ch->desc, ch->sgidx);
cycles = readl(ch->base + REG_OFF_CYCLES);
completed_cycles = (ch->desc->dma_cycles - cycles);
size -= completed_cycles << es_bytes[ch->desc->es];
dev_dbg(chan2dev(&ch->vc.chan), "%s: size=%zu\n", __func__, size);
return size;
}
static enum dma_status moxart_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct moxart_chan *ch = to_moxart_dma_chan(chan);
struct virt_dma_desc *vd;
struct moxart_desc *d;
enum dma_status ret;
unsigned long flags;
/*
* dma_cookie_status() assigns initial residue value.
*/
ret = dma_cookie_status(chan, cookie, txstate);
spin_lock_irqsave(&ch->vc.lock, flags);
vd = vchan_find_desc(&ch->vc, cookie);
if (vd) {
d = to_moxart_dma_desc(&vd->tx);
txstate->residue = moxart_dma_desc_size(d, 0);
} else if (ch->desc && ch->desc->vd.tx.cookie == cookie) {
txstate->residue = moxart_dma_desc_size_in_flight(ch);
}
spin_unlock_irqrestore(&ch->vc.lock, flags);
if (ch->error)
return DMA_ERROR;
return ret;
}
static void moxart_dma_init(struct dma_device *dma, struct device *dev)
{
dma->device_prep_slave_sg = moxart_prep_slave_sg;
dma->device_alloc_chan_resources = moxart_alloc_chan_resources;
dma->device_free_chan_resources = moxart_free_chan_resources;
dma->device_issue_pending = moxart_issue_pending;
dma->device_tx_status = moxart_tx_status;
dma->device_control = moxart_control;
dma->dev = dev;
INIT_LIST_HEAD(&dma->channels);
}
static irqreturn_t moxart_dma_interrupt(int irq, void *devid)
{
struct moxart_dmadev *mc = devid;
struct moxart_chan *ch = &mc->slave_chans[0];
unsigned int i;
unsigned long flags;
u32 ctrl;
dev_dbg(chan2dev(&ch->vc.chan), "%s\n", __func__);
for (i = 0; i < APB_DMA_MAX_CHANNEL; i++, ch++) {
if (!ch->allocated)
continue;
ctrl = readl(ch->base + REG_OFF_CTRL);
dev_dbg(chan2dev(&ch->vc.chan), "%s: ch=%p ch->base=%p ctrl=%x\n",
__func__, ch, ch->base, ctrl);
if (ctrl & APB_DMA_FIN_INT_STS) {
ctrl &= ~APB_DMA_FIN_INT_STS;
if (ch->desc) {
spin_lock_irqsave(&ch->vc.lock, flags);
if (++ch->sgidx < ch->desc->sglen) {
moxart_dma_start_sg(ch, ch->sgidx);
} else {
vchan_cookie_complete(&ch->desc->vd);
moxart_dma_start_desc(&ch->vc.chan);
}
spin_unlock_irqrestore(&ch->vc.lock, flags);
}
}
if (ctrl & APB_DMA_ERR_INT_STS) {
ctrl &= ~APB_DMA_ERR_INT_STS;
ch->error = 1;
}
writel(ctrl, ch->base + REG_OFF_CTRL);
}
return IRQ_HANDLED;
}
static int moxart_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct resource *res;
static void __iomem *dma_base_addr;
int ret, i;
unsigned int irq;
struct moxart_chan *ch;
struct moxart_dmadev *mdc;
mdc = devm_kzalloc(dev, sizeof(*mdc), GFP_KERNEL);
if (!mdc) {
dev_err(dev, "can't allocate DMA container\n");
return -ENOMEM;
}
irq = irq_of_parse_and_map(node, 0);
if (irq == NO_IRQ) {
dev_err(dev, "no IRQ resource\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dma_base_addr = devm_ioremap_resource(dev, res);
if (IS_ERR(dma_base_addr))
return PTR_ERR(dma_base_addr);
dma_cap_zero(mdc->dma_slave.cap_mask);
dma_cap_set(DMA_SLAVE, mdc->dma_slave.cap_mask);
dma_cap_set(DMA_PRIVATE, mdc->dma_slave.cap_mask);
moxart_dma_init(&mdc->dma_slave, dev);
ch = &mdc->slave_chans[0];
for (i = 0; i < APB_DMA_MAX_CHANNEL; i++, ch++) {
ch->ch_num = i;
ch->base = dma_base_addr + i * REG_OFF_CHAN_SIZE;
ch->allocated = 0;
ch->vc.desc_free = moxart_dma_desc_free;
vchan_init(&ch->vc, &mdc->dma_slave);
dev_dbg(dev, "%s: chs[%d]: ch->ch_num=%u ch->base=%p\n",
__func__, i, ch->ch_num, ch->base);
}
platform_set_drvdata(pdev, mdc);
ret = devm_request_irq(dev, irq, moxart_dma_interrupt, 0,
"moxart-dma-engine", mdc);
if (ret) {
dev_err(dev, "devm_request_irq failed\n");
return ret;
}
ret = dma_async_device_register(&mdc->dma_slave);
if (ret) {
dev_err(dev, "dma_async_device_register failed\n");
return ret;
}
ret = of_dma_controller_register(node, moxart_of_xlate, mdc);
if (ret) {
dev_err(dev, "of_dma_controller_register failed\n");
dma_async_device_unregister(&mdc->dma_slave);
return ret;
}
dev_dbg(dev, "%s: IRQ=%u\n", __func__, irq);
return 0;
}
static int moxart_remove(struct platform_device *pdev)
{
struct moxart_dmadev *m = platform_get_drvdata(pdev);
dma_async_device_unregister(&m->dma_slave);
if (pdev->dev.of_node)
of_dma_controller_free(pdev->dev.of_node);
return 0;
}
static const struct of_device_id moxart_dma_match[] = {
{ .compatible = "moxa,moxart-dma" },
{ }
};
static struct platform_driver moxart_driver = {
.probe = moxart_probe,
.remove = moxart_remove,
.driver = {
.name = "moxart-dma-engine",
.owner = THIS_MODULE,
.of_match_table = moxart_dma_match,
},
};
static int moxart_init(void)
{
return platform_driver_register(&moxart_driver);
}
subsys_initcall(moxart_init);
static void __exit moxart_exit(void)
{
platform_driver_unregister(&moxart_driver);
}
module_exit(moxart_exit);
MODULE_AUTHOR("Jonas Jensen <jonas.jensen@gmail.com>");
MODULE_DESCRIPTION("MOXART DMA engine driver");
MODULE_LICENSE("GPL v2");