2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00
linux-next/arch/powerpc/include/asm/eeh.h
Gavin Shan 8a5ad35686 powerpc/eeh: Cleanup EEH subsystem variables
There're 2 EEH subsystem variables: eeh_subsystem_enabled and
eeh_probe_mode. We needn't maintain 2 variables and we can just
have one variable and introduce different flags. The patch also
introduces additional flag EEH_FORCE_DISABLE, which will be used
to disable EEH subsystem via boot parameter ("eeh=off") in future.
Besides, the patch also introduces flag EEH_ENABLED, which is
changed to disable or enable EEH functionality on the fly through
debugfs entry in future.

With the patch applied, the creteria to check the enabled EEH
functionality is changed to:

!EEH_FORCE_DISABLED && EEH_ENABLED : Enabled
                       Other cases : Disabled

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-04-28 17:34:23 +10:00

426 lines
13 KiB
C

/*
* Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
* Copyright 2001-2012 IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _POWERPC_EEH_H
#define _POWERPC_EEH_H
#ifdef __KERNEL__
#include <linux/init.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/time.h>
struct pci_dev;
struct pci_bus;
struct device_node;
#ifdef CONFIG_EEH
/* EEH subsystem flags */
#define EEH_ENABLED 0x1 /* EEH enabled */
#define EEH_FORCE_DISABLED 0x2 /* EEH disabled */
#define EEH_PROBE_MODE_DEV 0x4 /* From PCI device */
#define EEH_PROBE_MODE_DEVTREE 0x8 /* From device tree */
/*
* The struct is used to trace PE related EEH functionality.
* In theory, there will have one instance of the struct to
* be created against particular PE. In nature, PEs corelate
* to each other. the struct has to reflect that hierarchy in
* order to easily pick up those affected PEs when one particular
* PE has EEH errors.
*
* Also, one particular PE might be composed of PCI device, PCI
* bus and its subordinate components. The struct also need ship
* the information. Further more, one particular PE is only meaingful
* in the corresponding PHB. Therefore, the root PEs should be created
* against existing PHBs in on-to-one fashion.
*/
#define EEH_PE_INVALID (1 << 0) /* Invalid */
#define EEH_PE_PHB (1 << 1) /* PHB PE */
#define EEH_PE_DEVICE (1 << 2) /* Device PE */
#define EEH_PE_BUS (1 << 3) /* Bus PE */
#define EEH_PE_ISOLATED (1 << 0) /* Isolated PE */
#define EEH_PE_RECOVERING (1 << 1) /* Recovering PE */
#define EEH_PE_RESET (1 << 2) /* PE reset in progress */
#define EEH_PE_KEEP (1 << 8) /* Keep PE on hotplug */
struct eeh_pe {
int type; /* PE type: PHB/Bus/Device */
int state; /* PE EEH dependent mode */
int config_addr; /* Traditional PCI address */
int addr; /* PE configuration address */
struct pci_controller *phb; /* Associated PHB */
struct pci_bus *bus; /* Top PCI bus for bus PE */
int check_count; /* Times of ignored error */
int freeze_count; /* Times of froze up */
struct timeval tstamp; /* Time on first-time freeze */
int false_positives; /* Times of reported #ff's */
struct eeh_pe *parent; /* Parent PE */
struct list_head child_list; /* Link PE to the child list */
struct list_head edevs; /* Link list of EEH devices */
struct list_head child; /* Child PEs */
};
#define eeh_pe_for_each_dev(pe, edev, tmp) \
list_for_each_entry_safe(edev, tmp, &pe->edevs, list)
/*
* The struct is used to trace EEH state for the associated
* PCI device node or PCI device. In future, it might
* represent PE as well so that the EEH device to form
* another tree except the currently existing tree of PCI
* buses and PCI devices
*/
#define EEH_DEV_BRIDGE (1 << 0) /* PCI bridge */
#define EEH_DEV_ROOT_PORT (1 << 1) /* PCIe root port */
#define EEH_DEV_DS_PORT (1 << 2) /* Downstream port */
#define EEH_DEV_IRQ_DISABLED (1 << 3) /* Interrupt disabled */
#define EEH_DEV_DISCONNECTED (1 << 4) /* Removing from PE */
#define EEH_DEV_NO_HANDLER (1 << 8) /* No error handler */
#define EEH_DEV_SYSFS (1 << 9) /* Sysfs created */
struct eeh_dev {
int mode; /* EEH mode */
int class_code; /* Class code of the device */
int config_addr; /* Config address */
int pe_config_addr; /* PE config address */
u32 config_space[16]; /* Saved PCI config space */
int pcix_cap; /* Saved PCIx capability */
int pcie_cap; /* Saved PCIe capability */
int aer_cap; /* Saved AER capability */
struct eeh_pe *pe; /* Associated PE */
struct list_head list; /* Form link list in the PE */
struct pci_controller *phb; /* Associated PHB */
struct device_node *dn; /* Associated device node */
struct pci_dev *pdev; /* Associated PCI device */
struct pci_bus *bus; /* PCI bus for partial hotplug */
};
static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev)
{
return edev ? edev->dn : NULL;
}
static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
{
return edev ? edev->pdev : NULL;
}
/* Return values from eeh_ops::next_error */
enum {
EEH_NEXT_ERR_NONE = 0,
EEH_NEXT_ERR_INF,
EEH_NEXT_ERR_FROZEN_PE,
EEH_NEXT_ERR_FENCED_PHB,
EEH_NEXT_ERR_DEAD_PHB,
EEH_NEXT_ERR_DEAD_IOC
};
/*
* The struct is used to trace the registered EEH operation
* callback functions. Actually, those operation callback
* functions are heavily platform dependent. That means the
* platform should register its own EEH operation callback
* functions before any EEH further operations.
*/
#define EEH_OPT_DISABLE 0 /* EEH disable */
#define EEH_OPT_ENABLE 1 /* EEH enable */
#define EEH_OPT_THAW_MMIO 2 /* MMIO enable */
#define EEH_OPT_THAW_DMA 3 /* DMA enable */
#define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */
#define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */
#define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */
#define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */
#define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */
#define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */
#define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */
#define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */
#define EEH_RESET_HOT 1 /* Hot reset */
#define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */
#define EEH_LOG_TEMP 1 /* EEH temporary error log */
#define EEH_LOG_PERM 2 /* EEH permanent error log */
struct eeh_ops {
char *name;
int (*init)(void);
int (*post_init)(void);
void* (*of_probe)(struct device_node *dn, void *flag);
int (*dev_probe)(struct pci_dev *dev, void *flag);
int (*set_option)(struct eeh_pe *pe, int option);
int (*get_pe_addr)(struct eeh_pe *pe);
int (*get_state)(struct eeh_pe *pe, int *state);
int (*reset)(struct eeh_pe *pe, int option);
int (*wait_state)(struct eeh_pe *pe, int max_wait);
int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
int (*configure_bridge)(struct eeh_pe *pe);
int (*read_config)(struct device_node *dn, int where, int size, u32 *val);
int (*write_config)(struct device_node *dn, int where, int size, u32 val);
int (*next_error)(struct eeh_pe **pe);
int (*restore_config)(struct device_node *dn);
};
extern int eeh_subsystem_flags;
extern struct eeh_ops *eeh_ops;
extern raw_spinlock_t confirm_error_lock;
static inline bool eeh_enabled(void)
{
if ((eeh_subsystem_flags & EEH_FORCE_DISABLED) ||
!(eeh_subsystem_flags & EEH_ENABLED))
return false;
return true;
}
static inline void eeh_set_enable(bool mode)
{
if (mode)
eeh_subsystem_flags |= EEH_ENABLED;
else
eeh_subsystem_flags &= ~EEH_ENABLED;
}
static inline void eeh_probe_mode_set(int flag)
{
eeh_subsystem_flags |= flag;
}
static inline int eeh_probe_mode_devtree(void)
{
return (eeh_subsystem_flags & EEH_PROBE_MODE_DEVTREE);
}
static inline int eeh_probe_mode_dev(void)
{
return (eeh_subsystem_flags & EEH_PROBE_MODE_DEV);
}
static inline void eeh_serialize_lock(unsigned long *flags)
{
raw_spin_lock_irqsave(&confirm_error_lock, *flags);
}
static inline void eeh_serialize_unlock(unsigned long flags)
{
raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
}
/*
* Max number of EEH freezes allowed before we consider the device
* to be permanently disabled.
*/
#define EEH_MAX_ALLOWED_FREEZES 5
typedef void *(*eeh_traverse_func)(void *data, void *flag);
int eeh_phb_pe_create(struct pci_controller *phb);
struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
struct eeh_pe *eeh_pe_get(struct eeh_dev *edev);
int eeh_add_to_parent_pe(struct eeh_dev *edev);
int eeh_rmv_from_parent_pe(struct eeh_dev *edev);
void eeh_pe_update_time_stamp(struct eeh_pe *pe);
void *eeh_pe_traverse(struct eeh_pe *root,
eeh_traverse_func fn, void *flag);
void *eeh_pe_dev_traverse(struct eeh_pe *root,
eeh_traverse_func fn, void *flag);
void eeh_pe_restore_bars(struct eeh_pe *pe);
struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
void *eeh_dev_init(struct device_node *dn, void *data);
void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
int eeh_init(void);
int __init eeh_ops_register(struct eeh_ops *ops);
int __exit eeh_ops_unregister(const char *name);
unsigned long eeh_check_failure(const volatile void __iomem *token,
unsigned long val);
int eeh_dev_check_failure(struct eeh_dev *edev);
void eeh_addr_cache_build(void);
void eeh_add_device_early(struct device_node *);
void eeh_add_device_tree_early(struct device_node *);
void eeh_add_device_late(struct pci_dev *);
void eeh_add_device_tree_late(struct pci_bus *);
void eeh_add_sysfs_files(struct pci_bus *);
void eeh_remove_device(struct pci_dev *);
/**
* EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
*
* If this macro yields TRUE, the caller relays to eeh_check_failure()
* which does further tests out of line.
*/
#define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_enabled())
/*
* Reads from a device which has been isolated by EEH will return
* all 1s. This macro gives an all-1s value of the given size (in
* bytes: 1, 2, or 4) for comparing with the result of a read.
*/
#define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8))
#else /* !CONFIG_EEH */
static inline bool eeh_enabled(void)
{
return false;
}
static inline void eeh_set_enable(bool mode) { }
static inline int eeh_init(void)
{
return 0;
}
static inline void *eeh_dev_init(struct device_node *dn, void *data)
{
return NULL;
}
static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
return val;
}
#define eeh_dev_check_failure(x) (0)
static inline void eeh_addr_cache_build(void) { }
static inline void eeh_add_device_early(struct device_node *dn) { }
static inline void eeh_add_device_tree_early(struct device_node *dn) { }
static inline void eeh_add_device_late(struct pci_dev *dev) { }
static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
static inline void eeh_remove_device(struct pci_dev *dev) { }
#define EEH_POSSIBLE_ERROR(val, type) (0)
#define EEH_IO_ERROR_VALUE(size) (-1UL)
#endif /* CONFIG_EEH */
#ifdef CONFIG_PPC64
/*
* MMIO read/write operations with EEH support.
*/
static inline u8 eeh_readb(const volatile void __iomem *addr)
{
u8 val = in_8(addr);
if (EEH_POSSIBLE_ERROR(val, u8))
return eeh_check_failure(addr, val);
return val;
}
static inline u16 eeh_readw(const volatile void __iomem *addr)
{
u16 val = in_le16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure(addr, val);
return val;
}
static inline u32 eeh_readl(const volatile void __iomem *addr)
{
u32 val = in_le32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure(addr, val);
return val;
}
static inline u64 eeh_readq(const volatile void __iomem *addr)
{
u64 val = in_le64(addr);
if (EEH_POSSIBLE_ERROR(val, u64))
return eeh_check_failure(addr, val);
return val;
}
static inline u16 eeh_readw_be(const volatile void __iomem *addr)
{
u16 val = in_be16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure(addr, val);
return val;
}
static inline u32 eeh_readl_be(const volatile void __iomem *addr)
{
u32 val = in_be32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure(addr, val);
return val;
}
static inline u64 eeh_readq_be(const volatile void __iomem *addr)
{
u64 val = in_be64(addr);
if (EEH_POSSIBLE_ERROR(val, u64))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_memcpy_fromio(void *dest, const
volatile void __iomem *src,
unsigned long n)
{
_memcpy_fromio(dest, src, n);
/* Look for ffff's here at dest[n]. Assume that at least 4 bytes
* were copied. Check all four bytes.
*/
if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
eeh_check_failure(src, *((u32 *)(dest + n - 4)));
}
/* in-string eeh macros */
static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
int ns)
{
_insb(addr, buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
eeh_check_failure(addr, *(u8*)buf);
}
static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
int ns)
{
_insw(addr, buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
eeh_check_failure(addr, *(u16*)buf);
}
static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
int nl)
{
_insl(addr, buf, nl);
if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
eeh_check_failure(addr, *(u32*)buf);
}
#endif /* CONFIG_PPC64 */
#endif /* __KERNEL__ */
#endif /* _POWERPC_EEH_H */