2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/drivers/dma/dmatest.c
Andy Shevchenko d86b2f298e dmatest: append verify result to results
Comparison between buffers is stored to the dedicated structure.

Note that the verify result is now accessible only via file 'results' in the
debugfs.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-04-15 09:51:18 +05:30

1321 lines
33 KiB
C

/*
* DMA Engine test module
*
* Copyright (C) 2007 Atmel Corporation
* Copyright (C) 2013 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/freezer.h>
#include <linux/init.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
static unsigned int test_buf_size = 16384;
module_param(test_buf_size, uint, S_IRUGO);
MODULE_PARM_DESC(test_buf_size, "Size of the memcpy test buffer");
static char test_channel[20];
module_param_string(channel, test_channel, sizeof(test_channel), S_IRUGO);
MODULE_PARM_DESC(channel, "Bus ID of the channel to test (default: any)");
static char test_device[20];
module_param_string(device, test_device, sizeof(test_device), S_IRUGO);
MODULE_PARM_DESC(device, "Bus ID of the DMA Engine to test (default: any)");
static unsigned int threads_per_chan = 1;
module_param(threads_per_chan, uint, S_IRUGO);
MODULE_PARM_DESC(threads_per_chan,
"Number of threads to start per channel (default: 1)");
static unsigned int max_channels;
module_param(max_channels, uint, S_IRUGO);
MODULE_PARM_DESC(max_channels,
"Maximum number of channels to use (default: all)");
static unsigned int iterations;
module_param(iterations, uint, S_IRUGO);
MODULE_PARM_DESC(iterations,
"Iterations before stopping test (default: infinite)");
static unsigned int xor_sources = 3;
module_param(xor_sources, uint, S_IRUGO);
MODULE_PARM_DESC(xor_sources,
"Number of xor source buffers (default: 3)");
static unsigned int pq_sources = 3;
module_param(pq_sources, uint, S_IRUGO);
MODULE_PARM_DESC(pq_sources,
"Number of p+q source buffers (default: 3)");
static int timeout = 3000;
module_param(timeout, uint, S_IRUGO);
MODULE_PARM_DESC(timeout, "Transfer Timeout in msec (default: 3000), "
"Pass -1 for infinite timeout");
/* Maximum amount of mismatched bytes in buffer to print */
#define MAX_ERROR_COUNT 32
/*
* Initialization patterns. All bytes in the source buffer has bit 7
* set, all bytes in the destination buffer has bit 7 cleared.
*
* Bit 6 is set for all bytes which are to be copied by the DMA
* engine. Bit 5 is set for all bytes which are to be overwritten by
* the DMA engine.
*
* The remaining bits are the inverse of a counter which increments by
* one for each byte address.
*/
#define PATTERN_SRC 0x80
#define PATTERN_DST 0x00
#define PATTERN_COPY 0x40
#define PATTERN_OVERWRITE 0x20
#define PATTERN_COUNT_MASK 0x1f
enum dmatest_error_type {
DMATEST_ET_OK,
DMATEST_ET_MAP_SRC,
DMATEST_ET_MAP_DST,
DMATEST_ET_PREP,
DMATEST_ET_SUBMIT,
DMATEST_ET_TIMEOUT,
DMATEST_ET_DMA_ERROR,
DMATEST_ET_DMA_IN_PROGRESS,
DMATEST_ET_VERIFY,
DMATEST_ET_VERIFY_BUF,
};
struct dmatest_verify_buffer {
unsigned int index;
u8 expected;
u8 actual;
};
struct dmatest_verify_result {
unsigned int error_count;
struct dmatest_verify_buffer data[MAX_ERROR_COUNT];
u8 pattern;
bool is_srcbuf;
};
struct dmatest_thread_result {
struct list_head node;
unsigned int n;
unsigned int src_off;
unsigned int dst_off;
unsigned int len;
enum dmatest_error_type type;
union {
unsigned long data;
dma_cookie_t cookie;
enum dma_status status;
int error;
struct dmatest_verify_result *vr;
};
};
struct dmatest_result {
struct list_head node;
char *name;
struct list_head results;
};
struct dmatest_info;
struct dmatest_thread {
struct list_head node;
struct dmatest_info *info;
struct task_struct *task;
struct dma_chan *chan;
u8 **srcs;
u8 **dsts;
enum dma_transaction_type type;
bool done;
};
struct dmatest_chan {
struct list_head node;
struct dma_chan *chan;
struct list_head threads;
};
/**
* struct dmatest_params - test parameters.
* @buf_size: size of the memcpy test buffer
* @channel: bus ID of the channel to test
* @device: bus ID of the DMA Engine to test
* @threads_per_chan: number of threads to start per channel
* @max_channels: maximum number of channels to use
* @iterations: iterations before stopping test
* @xor_sources: number of xor source buffers
* @pq_sources: number of p+q source buffers
* @timeout: transfer timeout in msec, -1 for infinite timeout
*/
struct dmatest_params {
unsigned int buf_size;
char channel[20];
char device[20];
unsigned int threads_per_chan;
unsigned int max_channels;
unsigned int iterations;
unsigned int xor_sources;
unsigned int pq_sources;
int timeout;
};
/**
* struct dmatest_info - test information.
* @params: test parameters
* @lock: access protection to the fields of this structure
*/
struct dmatest_info {
/* Test parameters */
struct dmatest_params params;
/* Internal state */
struct list_head channels;
unsigned int nr_channels;
struct mutex lock;
/* debugfs related stuff */
struct dentry *root;
struct dmatest_params dbgfs_params;
/* Test results */
struct list_head results;
struct mutex results_lock;
};
static struct dmatest_info test_info;
static bool dmatest_match_channel(struct dmatest_params *params,
struct dma_chan *chan)
{
if (params->channel[0] == '\0')
return true;
return strcmp(dma_chan_name(chan), params->channel) == 0;
}
static bool dmatest_match_device(struct dmatest_params *params,
struct dma_device *device)
{
if (params->device[0] == '\0')
return true;
return strcmp(dev_name(device->dev), params->device) == 0;
}
static unsigned long dmatest_random(void)
{
unsigned long buf;
get_random_bytes(&buf, sizeof(buf));
return buf;
}
static void dmatest_init_srcs(u8 **bufs, unsigned int start, unsigned int len,
unsigned int buf_size)
{
unsigned int i;
u8 *buf;
for (; (buf = *bufs); bufs++) {
for (i = 0; i < start; i++)
buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK);
for ( ; i < start + len; i++)
buf[i] = PATTERN_SRC | PATTERN_COPY
| (~i & PATTERN_COUNT_MASK);
for ( ; i < buf_size; i++)
buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK);
buf++;
}
}
static void dmatest_init_dsts(u8 **bufs, unsigned int start, unsigned int len,
unsigned int buf_size)
{
unsigned int i;
u8 *buf;
for (; (buf = *bufs); bufs++) {
for (i = 0; i < start; i++)
buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK);
for ( ; i < start + len; i++)
buf[i] = PATTERN_DST | PATTERN_OVERWRITE
| (~i & PATTERN_COUNT_MASK);
for ( ; i < buf_size; i++)
buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK);
}
}
static unsigned int dmatest_verify(struct dmatest_verify_result *vr, u8 **bufs,
unsigned int start, unsigned int end, unsigned int counter,
u8 pattern, bool is_srcbuf)
{
unsigned int i;
unsigned int error_count = 0;
u8 actual;
u8 expected;
u8 *buf;
unsigned int counter_orig = counter;
struct dmatest_verify_buffer *vb;
for (; (buf = *bufs); bufs++) {
counter = counter_orig;
for (i = start; i < end; i++) {
actual = buf[i];
expected = pattern | (~counter & PATTERN_COUNT_MASK);
if (actual != expected) {
if (error_count < MAX_ERROR_COUNT && vr) {
vb = &vr->data[error_count];
vb->index = i;
vb->expected = expected;
vb->actual = actual;
}
error_count++;
}
counter++;
}
}
if (error_count > MAX_ERROR_COUNT)
pr_warning("%s: %u errors suppressed\n",
current->comm, error_count - MAX_ERROR_COUNT);
return error_count;
}
/* poor man's completion - we want to use wait_event_freezable() on it */
struct dmatest_done {
bool done;
wait_queue_head_t *wait;
};
static void dmatest_callback(void *arg)
{
struct dmatest_done *done = arg;
done->done = true;
wake_up_all(done->wait);
}
static inline void unmap_src(struct device *dev, dma_addr_t *addr, size_t len,
unsigned int count)
{
while (count--)
dma_unmap_single(dev, addr[count], len, DMA_TO_DEVICE);
}
static inline void unmap_dst(struct device *dev, dma_addr_t *addr, size_t len,
unsigned int count)
{
while (count--)
dma_unmap_single(dev, addr[count], len, DMA_BIDIRECTIONAL);
}
static unsigned int min_odd(unsigned int x, unsigned int y)
{
unsigned int val = min(x, y);
return val % 2 ? val : val - 1;
}
static char *verify_result_get_one(struct dmatest_verify_result *vr,
unsigned int i)
{
struct dmatest_verify_buffer *vb = &vr->data[i];
u8 diff = vb->actual ^ vr->pattern;
static char buf[512];
char *msg;
if (vr->is_srcbuf)
msg = "srcbuf overwritten!";
else if ((vr->pattern & PATTERN_COPY)
&& (diff & (PATTERN_COPY | PATTERN_OVERWRITE)))
msg = "dstbuf not copied!";
else if (diff & PATTERN_SRC)
msg = "dstbuf was copied!";
else
msg = "dstbuf mismatch!";
snprintf(buf, sizeof(buf) - 1, "%s [0x%x] Expected %02x, got %02x", msg,
vb->index, vb->expected, vb->actual);
return buf;
}
static char *thread_result_get(const char *name,
struct dmatest_thread_result *tr)
{
static const char * const messages[] = {
[DMATEST_ET_OK] = "No errors",
[DMATEST_ET_MAP_SRC] = "src mapping error",
[DMATEST_ET_MAP_DST] = "dst mapping error",
[DMATEST_ET_PREP] = "prep error",
[DMATEST_ET_SUBMIT] = "submit error",
[DMATEST_ET_TIMEOUT] = "test timed out",
[DMATEST_ET_DMA_ERROR] =
"got completion callback (DMA_ERROR)",
[DMATEST_ET_DMA_IN_PROGRESS] =
"got completion callback (DMA_IN_PROGRESS)",
[DMATEST_ET_VERIFY] = "errors",
[DMATEST_ET_VERIFY_BUF] = "verify errors",
};
static char buf[512];
snprintf(buf, sizeof(buf) - 1,
"%s: #%u: %s with src_off=0x%x ""dst_off=0x%x len=0x%x (%lu)",
name, tr->n, messages[tr->type], tr->src_off, tr->dst_off,
tr->len, tr->data);
return buf;
}
static int thread_result_add(struct dmatest_info *info,
struct dmatest_result *r, enum dmatest_error_type type,
unsigned int n, unsigned int src_off, unsigned int dst_off,
unsigned int len, unsigned long data)
{
struct dmatest_thread_result *tr;
tr = kzalloc(sizeof(*tr), GFP_KERNEL);
if (!tr)
return -ENOMEM;
tr->type = type;
tr->n = n;
tr->src_off = src_off;
tr->dst_off = dst_off;
tr->len = len;
tr->data = data;
mutex_lock(&info->results_lock);
list_add_tail(&tr->node, &r->results);
mutex_unlock(&info->results_lock);
pr_warn("%s\n", thread_result_get(r->name, tr));
return 0;
}
static unsigned int verify_result_add(struct dmatest_info *info,
struct dmatest_result *r, unsigned int n,
unsigned int src_off, unsigned int dst_off, unsigned int len,
u8 **bufs, int whence, unsigned int counter, u8 pattern,
bool is_srcbuf)
{
struct dmatest_verify_result *vr;
unsigned int error_count;
unsigned int buf_off = is_srcbuf ? src_off : dst_off;
unsigned int start, end;
if (whence < 0) {
start = 0;
end = buf_off;
} else if (whence > 0) {
start = buf_off + len;
end = info->params.buf_size;
} else {
start = buf_off;
end = buf_off + len;
}
vr = kmalloc(sizeof(*vr), GFP_KERNEL);
if (!vr) {
pr_warn("dmatest: No memory to store verify result\n");
return dmatest_verify(NULL, bufs, start, end, counter, pattern,
is_srcbuf);
}
vr->pattern = pattern;
vr->is_srcbuf = is_srcbuf;
error_count = dmatest_verify(vr, bufs, start, end, counter, pattern,
is_srcbuf);
if (error_count) {
vr->error_count = error_count;
thread_result_add(info, r, DMATEST_ET_VERIFY_BUF, n, src_off,
dst_off, len, (unsigned long)vr);
return error_count;
}
kfree(vr);
return 0;
}
static void result_free(struct dmatest_info *info, const char *name)
{
struct dmatest_result *r, *_r;
mutex_lock(&info->results_lock);
list_for_each_entry_safe(r, _r, &info->results, node) {
struct dmatest_thread_result *tr, *_tr;
if (name && strcmp(r->name, name))
continue;
list_for_each_entry_safe(tr, _tr, &r->results, node) {
if (tr->type == DMATEST_ET_VERIFY_BUF)
kfree(tr->vr);
list_del(&tr->node);
kfree(tr);
}
kfree(r->name);
list_del(&r->node);
kfree(r);
}
mutex_unlock(&info->results_lock);
}
static struct dmatest_result *result_init(struct dmatest_info *info,
const char *name)
{
struct dmatest_result *r;
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (r) {
r->name = kstrdup(name, GFP_KERNEL);
INIT_LIST_HEAD(&r->results);
mutex_lock(&info->results_lock);
list_add_tail(&r->node, &info->results);
mutex_unlock(&info->results_lock);
}
return r;
}
/*
* This function repeatedly tests DMA transfers of various lengths and
* offsets for a given operation type until it is told to exit by
* kthread_stop(). There may be multiple threads running this function
* in parallel for a single channel, and there may be multiple channels
* being tested in parallel.
*
* Before each test, the source and destination buffer is initialized
* with a known pattern. This pattern is different depending on
* whether it's in an area which is supposed to be copied or
* overwritten, and different in the source and destination buffers.
* So if the DMA engine doesn't copy exactly what we tell it to copy,
* we'll notice.
*/
static int dmatest_func(void *data)
{
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_wait);
struct dmatest_thread *thread = data;
struct dmatest_done done = { .wait = &done_wait };
struct dmatest_info *info;
struct dmatest_params *params;
struct dma_chan *chan;
struct dma_device *dev;
const char *thread_name;
unsigned int src_off, dst_off, len;
unsigned int error_count;
unsigned int failed_tests = 0;
unsigned int total_tests = 0;
dma_cookie_t cookie;
enum dma_status status;
enum dma_ctrl_flags flags;
u8 *pq_coefs = NULL;
int ret;
int src_cnt;
int dst_cnt;
int i;
struct dmatest_result *result;
thread_name = current->comm;
set_freezable();
ret = -ENOMEM;
smp_rmb();
info = thread->info;
params = &info->params;
chan = thread->chan;
dev = chan->device;
if (thread->type == DMA_MEMCPY)
src_cnt = dst_cnt = 1;
else if (thread->type == DMA_XOR) {
/* force odd to ensure dst = src */
src_cnt = min_odd(params->xor_sources | 1, dev->max_xor);
dst_cnt = 1;
} else if (thread->type == DMA_PQ) {
/* force odd to ensure dst = src */
src_cnt = min_odd(params->pq_sources | 1, dma_maxpq(dev, 0));
dst_cnt = 2;
pq_coefs = kmalloc(params->pq_sources+1, GFP_KERNEL);
if (!pq_coefs)
goto err_thread_type;
for (i = 0; i < src_cnt; i++)
pq_coefs[i] = 1;
} else
goto err_thread_type;
result = result_init(info, thread_name);
if (!result)
goto err_srcs;
thread->srcs = kcalloc(src_cnt+1, sizeof(u8 *), GFP_KERNEL);
if (!thread->srcs)
goto err_srcs;
for (i = 0; i < src_cnt; i++) {
thread->srcs[i] = kmalloc(params->buf_size, GFP_KERNEL);
if (!thread->srcs[i])
goto err_srcbuf;
}
thread->srcs[i] = NULL;
thread->dsts = kcalloc(dst_cnt+1, sizeof(u8 *), GFP_KERNEL);
if (!thread->dsts)
goto err_dsts;
for (i = 0; i < dst_cnt; i++) {
thread->dsts[i] = kmalloc(params->buf_size, GFP_KERNEL);
if (!thread->dsts[i])
goto err_dstbuf;
}
thread->dsts[i] = NULL;
set_user_nice(current, 10);
/*
* src buffers are freed by the DMAEngine code with dma_unmap_single()
* dst buffers are freed by ourselves below
*/
flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT
| DMA_COMPL_SKIP_DEST_UNMAP | DMA_COMPL_SRC_UNMAP_SINGLE;
while (!kthread_should_stop()
&& !(params->iterations && total_tests >= params->iterations)) {
struct dma_async_tx_descriptor *tx = NULL;
dma_addr_t dma_srcs[src_cnt];
dma_addr_t dma_dsts[dst_cnt];
u8 align = 0;
total_tests++;
/* honor alignment restrictions */
if (thread->type == DMA_MEMCPY)
align = dev->copy_align;
else if (thread->type == DMA_XOR)
align = dev->xor_align;
else if (thread->type == DMA_PQ)
align = dev->pq_align;
if (1 << align > params->buf_size) {
pr_err("%u-byte buffer too small for %d-byte alignment\n",
params->buf_size, 1 << align);
break;
}
len = dmatest_random() % params->buf_size + 1;
len = (len >> align) << align;
if (!len)
len = 1 << align;
src_off = dmatest_random() % (params->buf_size - len + 1);
dst_off = dmatest_random() % (params->buf_size - len + 1);
src_off = (src_off >> align) << align;
dst_off = (dst_off >> align) << align;
dmatest_init_srcs(thread->srcs, src_off, len, params->buf_size);
dmatest_init_dsts(thread->dsts, dst_off, len, params->buf_size);
for (i = 0; i < src_cnt; i++) {
u8 *buf = thread->srcs[i] + src_off;
dma_srcs[i] = dma_map_single(dev->dev, buf, len,
DMA_TO_DEVICE);
ret = dma_mapping_error(dev->dev, dma_srcs[i]);
if (ret) {
unmap_src(dev->dev, dma_srcs, len, i);
thread_result_add(info, result,
DMATEST_ET_MAP_SRC,
total_tests, src_off, dst_off,
len, ret);
failed_tests++;
continue;
}
}
/* map with DMA_BIDIRECTIONAL to force writeback/invalidate */
for (i = 0; i < dst_cnt; i++) {
dma_dsts[i] = dma_map_single(dev->dev, thread->dsts[i],
params->buf_size,
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(dev->dev, dma_dsts[i]);
if (ret) {
unmap_src(dev->dev, dma_srcs, len, src_cnt);
unmap_dst(dev->dev, dma_dsts, params->buf_size,
i);
thread_result_add(info, result,
DMATEST_ET_MAP_DST,
total_tests, src_off, dst_off,
len, ret);
failed_tests++;
continue;
}
}
if (thread->type == DMA_MEMCPY)
tx = dev->device_prep_dma_memcpy(chan,
dma_dsts[0] + dst_off,
dma_srcs[0], len,
flags);
else if (thread->type == DMA_XOR)
tx = dev->device_prep_dma_xor(chan,
dma_dsts[0] + dst_off,
dma_srcs, src_cnt,
len, flags);
else if (thread->type == DMA_PQ) {
dma_addr_t dma_pq[dst_cnt];
for (i = 0; i < dst_cnt; i++)
dma_pq[i] = dma_dsts[i] + dst_off;
tx = dev->device_prep_dma_pq(chan, dma_pq, dma_srcs,
src_cnt, pq_coefs,
len, flags);
}
if (!tx) {
unmap_src(dev->dev, dma_srcs, len, src_cnt);
unmap_dst(dev->dev, dma_dsts, params->buf_size,
dst_cnt);
thread_result_add(info, result, DMATEST_ET_PREP,
total_tests, src_off, dst_off,
len, 0);
msleep(100);
failed_tests++;
continue;
}
done.done = false;
tx->callback = dmatest_callback;
tx->callback_param = &done;
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) {
thread_result_add(info, result, DMATEST_ET_SUBMIT,
total_tests, src_off, dst_off,
len, cookie);
msleep(100);
failed_tests++;
continue;
}
dma_async_issue_pending(chan);
wait_event_freezable_timeout(done_wait,
done.done || kthread_should_stop(),
msecs_to_jiffies(params->timeout));
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
if (!done.done) {
/*
* We're leaving the timed out dma operation with
* dangling pointer to done_wait. To make this
* correct, we'll need to allocate wait_done for
* each test iteration and perform "who's gonna
* free it this time?" dancing. For now, just
* leave it dangling.
*/
thread_result_add(info, result, DMATEST_ET_TIMEOUT,
total_tests, src_off, dst_off,
len, 0);
failed_tests++;
continue;
} else if (status != DMA_SUCCESS) {
enum dmatest_error_type type = (status == DMA_ERROR) ?
DMATEST_ET_DMA_ERROR : DMATEST_ET_DMA_IN_PROGRESS;
thread_result_add(info, result, type,
total_tests, src_off, dst_off,
len, status);
failed_tests++;
continue;
}
/* Unmap by myself (see DMA_COMPL_SKIP_DEST_UNMAP above) */
unmap_dst(dev->dev, dma_dsts, params->buf_size, dst_cnt);
error_count = 0;
pr_debug("%s: verifying source buffer...\n", thread_name);
error_count += verify_result_add(info, result, total_tests,
src_off, dst_off, len, thread->srcs, -1,
0, PATTERN_SRC, true);
error_count += verify_result_add(info, result, total_tests,
src_off, dst_off, len, thread->srcs, 0,
src_off, PATTERN_SRC | PATTERN_COPY, true);
error_count += verify_result_add(info, result, total_tests,
src_off, dst_off, len, thread->srcs, 1,
src_off + len, PATTERN_SRC, true);
pr_debug("%s: verifying dest buffer...\n", thread_name);
error_count += verify_result_add(info, result, total_tests,
src_off, dst_off, len, thread->dsts, -1,
0, PATTERN_DST, false);
error_count += verify_result_add(info, result, total_tests,
src_off, dst_off, len, thread->dsts, 0,
src_off, PATTERN_SRC | PATTERN_COPY, false);
error_count += verify_result_add(info, result, total_tests,
src_off, dst_off, len, thread->dsts, 1,
dst_off + len, PATTERN_DST, false);
if (error_count) {
thread_result_add(info, result, DMATEST_ET_VERIFY,
total_tests, src_off, dst_off,
len, error_count);
failed_tests++;
} else {
thread_result_add(info, result, DMATEST_ET_OK,
total_tests, src_off, dst_off,
len, 0);
}
}
ret = 0;
for (i = 0; thread->dsts[i]; i++)
kfree(thread->dsts[i]);
err_dstbuf:
kfree(thread->dsts);
err_dsts:
for (i = 0; thread->srcs[i]; i++)
kfree(thread->srcs[i]);
err_srcbuf:
kfree(thread->srcs);
err_srcs:
kfree(pq_coefs);
err_thread_type:
pr_notice("%s: terminating after %u tests, %u failures (status %d)\n",
thread_name, total_tests, failed_tests, ret);
/* terminate all transfers on specified channels */
if (ret)
dmaengine_terminate_all(chan);
thread->done = true;
if (params->iterations > 0)
while (!kthread_should_stop()) {
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wait_dmatest_exit);
interruptible_sleep_on(&wait_dmatest_exit);
}
return ret;
}
static void dmatest_cleanup_channel(struct dmatest_chan *dtc)
{
struct dmatest_thread *thread;
struct dmatest_thread *_thread;
int ret;
list_for_each_entry_safe(thread, _thread, &dtc->threads, node) {
ret = kthread_stop(thread->task);
pr_debug("dmatest: thread %s exited with status %d\n",
thread->task->comm, ret);
list_del(&thread->node);
kfree(thread);
}
/* terminate all transfers on specified channels */
dmaengine_terminate_all(dtc->chan);
kfree(dtc);
}
static int dmatest_add_threads(struct dmatest_info *info,
struct dmatest_chan *dtc, enum dma_transaction_type type)
{
struct dmatest_params *params = &info->params;
struct dmatest_thread *thread;
struct dma_chan *chan = dtc->chan;
char *op;
unsigned int i;
if (type == DMA_MEMCPY)
op = "copy";
else if (type == DMA_XOR)
op = "xor";
else if (type == DMA_PQ)
op = "pq";
else
return -EINVAL;
for (i = 0; i < params->threads_per_chan; i++) {
thread = kzalloc(sizeof(struct dmatest_thread), GFP_KERNEL);
if (!thread) {
pr_warning("dmatest: No memory for %s-%s%u\n",
dma_chan_name(chan), op, i);
break;
}
thread->info = info;
thread->chan = dtc->chan;
thread->type = type;
smp_wmb();
thread->task = kthread_run(dmatest_func, thread, "%s-%s%u",
dma_chan_name(chan), op, i);
if (IS_ERR(thread->task)) {
pr_warning("dmatest: Failed to run thread %s-%s%u\n",
dma_chan_name(chan), op, i);
kfree(thread);
break;
}
/* srcbuf and dstbuf are allocated by the thread itself */
list_add_tail(&thread->node, &dtc->threads);
}
return i;
}
static int dmatest_add_channel(struct dmatest_info *info,
struct dma_chan *chan)
{
struct dmatest_chan *dtc;
struct dma_device *dma_dev = chan->device;
unsigned int thread_count = 0;
int cnt;
dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL);
if (!dtc) {
pr_warning("dmatest: No memory for %s\n", dma_chan_name(chan));
return -ENOMEM;
}
dtc->chan = chan;
INIT_LIST_HEAD(&dtc->threads);
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(info, dtc, DMA_MEMCPY);
thread_count += cnt > 0 ? cnt : 0;
}
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(info, dtc, DMA_XOR);
thread_count += cnt > 0 ? cnt : 0;
}
if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(info, dtc, DMA_PQ);
thread_count += cnt > 0 ? cnt : 0;
}
pr_info("dmatest: Started %u threads using %s\n",
thread_count, dma_chan_name(chan));
list_add_tail(&dtc->node, &info->channels);
info->nr_channels++;
return 0;
}
static bool filter(struct dma_chan *chan, void *param)
{
struct dmatest_params *params = param;
if (!dmatest_match_channel(params, chan) ||
!dmatest_match_device(params, chan->device))
return false;
else
return true;
}
static int __run_threaded_test(struct dmatest_info *info)
{
dma_cap_mask_t mask;
struct dma_chan *chan;
struct dmatest_params *params = &info->params;
int err = 0;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
for (;;) {
chan = dma_request_channel(mask, filter, params);
if (chan) {
err = dmatest_add_channel(info, chan);
if (err) {
dma_release_channel(chan);
break; /* add_channel failed, punt */
}
} else
break; /* no more channels available */
if (params->max_channels &&
info->nr_channels >= params->max_channels)
break; /* we have all we need */
}
return err;
}
#ifndef MODULE
static int run_threaded_test(struct dmatest_info *info)
{
int ret;
mutex_lock(&info->lock);
ret = __run_threaded_test(info);
mutex_unlock(&info->lock);
return ret;
}
#endif
static void __stop_threaded_test(struct dmatest_info *info)
{
struct dmatest_chan *dtc, *_dtc;
struct dma_chan *chan;
list_for_each_entry_safe(dtc, _dtc, &info->channels, node) {
list_del(&dtc->node);
chan = dtc->chan;
dmatest_cleanup_channel(dtc);
pr_debug("dmatest: dropped channel %s\n", dma_chan_name(chan));
dma_release_channel(chan);
}
info->nr_channels = 0;
}
static void stop_threaded_test(struct dmatest_info *info)
{
mutex_lock(&info->lock);
__stop_threaded_test(info);
mutex_unlock(&info->lock);
}
static int __restart_threaded_test(struct dmatest_info *info, bool run)
{
struct dmatest_params *params = &info->params;
int ret;
/* Stop any running test first */
__stop_threaded_test(info);
if (run == false)
return 0;
/* Clear results from previous run */
result_free(info, NULL);
/* Copy test parameters */
memcpy(params, &info->dbgfs_params, sizeof(*params));
/* Run test with new parameters */
ret = __run_threaded_test(info);
if (ret) {
__stop_threaded_test(info);
pr_err("dmatest: Can't run test\n");
}
return ret;
}
static ssize_t dtf_write_string(void *to, size_t available, loff_t *ppos,
const void __user *from, size_t count)
{
char tmp[20];
ssize_t len;
len = simple_write_to_buffer(tmp, sizeof(tmp) - 1, ppos, from, count);
if (len >= 0) {
tmp[len] = '\0';
strlcpy(to, strim(tmp), available);
}
return len;
}
static ssize_t dtf_read_channel(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct dmatest_info *info = file->private_data;
return simple_read_from_buffer(buf, count, ppos,
info->dbgfs_params.channel,
strlen(info->dbgfs_params.channel));
}
static ssize_t dtf_write_channel(struct file *file, const char __user *buf,
size_t size, loff_t *ppos)
{
struct dmatest_info *info = file->private_data;
return dtf_write_string(info->dbgfs_params.channel,
sizeof(info->dbgfs_params.channel),
ppos, buf, size);
}
static const struct file_operations dtf_channel_fops = {
.read = dtf_read_channel,
.write = dtf_write_channel,
.open = simple_open,
.llseek = default_llseek,
};
static ssize_t dtf_read_device(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct dmatest_info *info = file->private_data;
return simple_read_from_buffer(buf, count, ppos,
info->dbgfs_params.device,
strlen(info->dbgfs_params.device));
}
static ssize_t dtf_write_device(struct file *file, const char __user *buf,
size_t size, loff_t *ppos)
{
struct dmatest_info *info = file->private_data;
return dtf_write_string(info->dbgfs_params.device,
sizeof(info->dbgfs_params.device),
ppos, buf, size);
}
static const struct file_operations dtf_device_fops = {
.read = dtf_read_device,
.write = dtf_write_device,
.open = simple_open,
.llseek = default_llseek,
};
static ssize_t dtf_read_run(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct dmatest_info *info = file->private_data;
char buf[3];
struct dmatest_chan *dtc;
bool alive = false;
mutex_lock(&info->lock);
list_for_each_entry(dtc, &info->channels, node) {
struct dmatest_thread *thread;
list_for_each_entry(thread, &dtc->threads, node) {
if (!thread->done) {
alive = true;
break;
}
}
}
if (alive) {
buf[0] = 'Y';
} else {
__stop_threaded_test(info);
buf[0] = 'N';
}
mutex_unlock(&info->lock);
buf[1] = '\n';
buf[2] = 0x00;
return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
}
static ssize_t dtf_write_run(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct dmatest_info *info = file->private_data;
char buf[16];
bool bv;
int ret = 0;
if (copy_from_user(buf, user_buf, min(count, (sizeof(buf) - 1))))
return -EFAULT;
if (strtobool(buf, &bv) == 0) {
mutex_lock(&info->lock);
ret = __restart_threaded_test(info, bv);
mutex_unlock(&info->lock);
}
return ret ? ret : count;
}
static const struct file_operations dtf_run_fops = {
.read = dtf_read_run,
.write = dtf_write_run,
.open = simple_open,
.llseek = default_llseek,
};
static int dtf_results_show(struct seq_file *sf, void *data)
{
struct dmatest_info *info = sf->private;
struct dmatest_result *result;
struct dmatest_thread_result *tr;
unsigned int i;
mutex_lock(&info->results_lock);
list_for_each_entry(result, &info->results, node) {
list_for_each_entry(tr, &result->results, node) {
seq_printf(sf, "%s\n",
thread_result_get(result->name, tr));
if (tr->type == DMATEST_ET_VERIFY_BUF) {
for (i = 0; i < tr->vr->error_count; i++) {
seq_printf(sf, "\t%s\n",
verify_result_get_one(tr->vr, i));
}
}
}
}
mutex_unlock(&info->results_lock);
return 0;
}
static int dtf_results_open(struct inode *inode, struct file *file)
{
return single_open(file, dtf_results_show, inode->i_private);
}
static const struct file_operations dtf_results_fops = {
.open = dtf_results_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int dmatest_register_dbgfs(struct dmatest_info *info)
{
struct dentry *d;
struct dmatest_params *params = &info->dbgfs_params;
int ret = -ENOMEM;
d = debugfs_create_dir("dmatest", NULL);
if (IS_ERR(d))
return PTR_ERR(d);
if (!d)
goto err_root;
info->root = d;
/* Copy initial values */
memcpy(params, &info->params, sizeof(*params));
/* Test parameters */
d = debugfs_create_u32("test_buf_size", S_IWUSR | S_IRUGO, info->root,
(u32 *)&params->buf_size);
if (IS_ERR_OR_NULL(d))
goto err_node;
d = debugfs_create_file("channel", S_IRUGO | S_IWUSR, info->root,
info, &dtf_channel_fops);
if (IS_ERR_OR_NULL(d))
goto err_node;
d = debugfs_create_file("device", S_IRUGO | S_IWUSR, info->root,
info, &dtf_device_fops);
if (IS_ERR_OR_NULL(d))
goto err_node;
d = debugfs_create_u32("threads_per_chan", S_IWUSR | S_IRUGO, info->root,
(u32 *)&params->threads_per_chan);
if (IS_ERR_OR_NULL(d))
goto err_node;
d = debugfs_create_u32("max_channels", S_IWUSR | S_IRUGO, info->root,
(u32 *)&params->max_channels);
if (IS_ERR_OR_NULL(d))
goto err_node;
d = debugfs_create_u32("iterations", S_IWUSR | S_IRUGO, info->root,
(u32 *)&params->iterations);
if (IS_ERR_OR_NULL(d))
goto err_node;
d = debugfs_create_u32("xor_sources", S_IWUSR | S_IRUGO, info->root,
(u32 *)&params->xor_sources);
if (IS_ERR_OR_NULL(d))
goto err_node;
d = debugfs_create_u32("pq_sources", S_IWUSR | S_IRUGO, info->root,
(u32 *)&params->pq_sources);
if (IS_ERR_OR_NULL(d))
goto err_node;
d = debugfs_create_u32("timeout", S_IWUSR | S_IRUGO, info->root,
(u32 *)&params->timeout);
if (IS_ERR_OR_NULL(d))
goto err_node;
/* Run or stop threaded test */
d = debugfs_create_file("run", S_IWUSR | S_IRUGO, info->root,
info, &dtf_run_fops);
if (IS_ERR_OR_NULL(d))
goto err_node;
/* Results of test in progress */
d = debugfs_create_file("results", S_IRUGO, info->root, info,
&dtf_results_fops);
if (IS_ERR_OR_NULL(d))
goto err_node;
return 0;
err_node:
debugfs_remove_recursive(info->root);
err_root:
pr_err("dmatest: Failed to initialize debugfs\n");
return ret;
}
static int __init dmatest_init(void)
{
struct dmatest_info *info = &test_info;
struct dmatest_params *params = &info->params;
int ret;
memset(info, 0, sizeof(*info));
mutex_init(&info->lock);
INIT_LIST_HEAD(&info->channels);
mutex_init(&info->results_lock);
INIT_LIST_HEAD(&info->results);
/* Set default parameters */
params->buf_size = test_buf_size;
strlcpy(params->channel, test_channel, sizeof(params->channel));
strlcpy(params->device, test_device, sizeof(params->device));
params->threads_per_chan = threads_per_chan;
params->max_channels = max_channels;
params->iterations = iterations;
params->xor_sources = xor_sources;
params->pq_sources = pq_sources;
params->timeout = timeout;
ret = dmatest_register_dbgfs(info);
if (ret)
return ret;
#ifdef MODULE
return 0;
#else
return run_threaded_test(info);
#endif
}
/* when compiled-in wait for drivers to load first */
late_initcall(dmatest_init);
static void __exit dmatest_exit(void)
{
struct dmatest_info *info = &test_info;
debugfs_remove_recursive(info->root);
stop_threaded_test(info);
result_free(info, NULL);
}
module_exit(dmatest_exit);
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
MODULE_LICENSE("GPL v2");