2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 02:34:05 +08:00
linux-next/drivers/iommu/arm-smmu-qcom.c
Sibi Sankar d100ff3843 iommu/arm-smmu-qcom: Request direct mapping for modem device
The modem remote processor has two access paths to DDR. One path is
directly connected to DDR and another path goes through an SMMU. The
SMMU path is configured to be a direct mapping because it's used by
various peripherals in the modem subsystem. Typically this direct
mapping is configured statically at EL2 by QHEE (Qualcomm's Hypervisor
Execution Environment) before the kernel is entered.

In certain firmware configuration, especially when the kernel is already
in full control of the SMMU, defer programming the modem SIDs to the
kernel. Let's add compatibles here so that we can have the kernel
program the SIDs for the modem in these cases.

Signed-off-by: Sibi Sankar <sibis@codeaurora.org>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200511175532.25874-1-sibis@codeaurora.org
Signed-off-by: Will Deacon <will@kernel.org>
2020-05-18 15:35:06 +01:00

83 lines
1.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2019, The Linux Foundation. All rights reserved.
*/
#include <linux/of_device.h>
#include <linux/qcom_scm.h>
#include "arm-smmu.h"
struct qcom_smmu {
struct arm_smmu_device smmu;
};
static const struct of_device_id qcom_smmu_client_of_match[] = {
{ .compatible = "qcom,adreno" },
{ .compatible = "qcom,mdp4" },
{ .compatible = "qcom,mdss" },
{ .compatible = "qcom,sc7180-mdss" },
{ .compatible = "qcom,sc7180-mss-pil" },
{ .compatible = "qcom,sdm845-mdss" },
{ .compatible = "qcom,sdm845-mss-pil" },
{ }
};
static int qcom_smmu_def_domain_type(struct device *dev)
{
const struct of_device_id *match =
of_match_device(qcom_smmu_client_of_match, dev);
return match ? IOMMU_DOMAIN_IDENTITY : 0;
}
static int qcom_sdm845_smmu500_reset(struct arm_smmu_device *smmu)
{
int ret;
/*
* To address performance degradation in non-real time clients,
* such as USB and UFS, turn off wait-for-safe on sdm845 based boards,
* such as MTP and db845, whose firmwares implement secure monitor
* call handlers to turn on/off the wait-for-safe logic.
*/
ret = qcom_scm_qsmmu500_wait_safe_toggle(0);
if (ret)
dev_warn(smmu->dev, "Failed to turn off SAFE logic\n");
return ret;
}
static int qcom_smmu500_reset(struct arm_smmu_device *smmu)
{
const struct device_node *np = smmu->dev->of_node;
arm_mmu500_reset(smmu);
if (of_device_is_compatible(np, "qcom,sdm845-smmu-500"))
return qcom_sdm845_smmu500_reset(smmu);
return 0;
}
static const struct arm_smmu_impl qcom_smmu_impl = {
.def_domain_type = qcom_smmu_def_domain_type,
.reset = qcom_smmu500_reset,
};
struct arm_smmu_device *qcom_smmu_impl_init(struct arm_smmu_device *smmu)
{
struct qcom_smmu *qsmmu;
qsmmu = devm_kzalloc(smmu->dev, sizeof(*qsmmu), GFP_KERNEL);
if (!qsmmu)
return ERR_PTR(-ENOMEM);
qsmmu->smmu = *smmu;
qsmmu->smmu.impl = &qcom_smmu_impl;
devm_kfree(smmu->dev, smmu);
return &qsmmu->smmu;
}