2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/drivers/edac/edac_mc_sysfs.c
Eiichi Tsukata d8655e7630 EDAC: Fix global-out-of-bounds write when setting edac_mc_poll_msec
Commit 9da21b1509 ("EDAC: Poll timeout cannot be zero, p2") assumes
edac_mc_poll_msec to be unsigned long, but the type of the variable still
remained as int. Setting edac_mc_poll_msec can trigger out-of-bounds
write.

Reproducer:

  # echo 1001 > /sys/module/edac_core/parameters/edac_mc_poll_msec

KASAN report:

  BUG: KASAN: global-out-of-bounds in edac_set_poll_msec+0x140/0x150
  Write of size 8 at addr ffffffffb91b2d00 by task bash/1996

  CPU: 1 PID: 1996 Comm: bash Not tainted 5.2.0-rc6+ #23
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014
  Call Trace:
   dump_stack+0xca/0x13e
   print_address_description.cold+0x5/0x246
   __kasan_report.cold+0x75/0x9a
   ? edac_set_poll_msec+0x140/0x150
   kasan_report+0xe/0x20
   edac_set_poll_msec+0x140/0x150
   ? dimmdev_location_show+0x30/0x30
   ? vfs_lock_file+0xe0/0xe0
   ? _raw_spin_lock+0x87/0xe0
   param_attr_store+0x1b5/0x310
   ? param_array_set+0x4f0/0x4f0
   module_attr_store+0x58/0x80
   ? module_attr_show+0x80/0x80
   sysfs_kf_write+0x13d/0x1a0
   kernfs_fop_write+0x2bc/0x460
   ? sysfs_kf_bin_read+0x270/0x270
   ? kernfs_notify+0x1f0/0x1f0
   __vfs_write+0x81/0x100
   vfs_write+0x1e1/0x560
   ksys_write+0x126/0x250
   ? __ia32_sys_read+0xb0/0xb0
   ? do_syscall_64+0x1f/0x390
   do_syscall_64+0xc1/0x390
   entry_SYSCALL_64_after_hwframe+0x49/0xbe
  RIP: 0033:0x7fa7caa5e970
  Code: 73 01 c3 48 8b 0d 28 d5 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 99 2d 2c 00 00 75 10 b8 01 00 00 00 04
  RSP: 002b:00007fff6acfdfe8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
  RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fa7caa5e970
  RDX: 0000000000000005 RSI: 0000000000e95c08 RDI: 0000000000000001
  RBP: 0000000000e95c08 R08: 00007fa7cad1e760 R09: 00007fa7cb36a700
  R10: 0000000000000073 R11: 0000000000000246 R12: 0000000000000005
  R13: 0000000000000001 R14: 00007fa7cad1d600 R15: 0000000000000005

  The buggy address belongs to the variable:
   edac_mc_poll_msec+0x0/0x40

  Memory state around the buggy address:
   ffffffffb91b2c00: 00 00 00 00 fa fa fa fa 00 00 00 00 fa fa fa fa
   ffffffffb91b2c80: 00 00 00 00 fa fa fa fa 00 00 00 00 fa fa fa fa
  >ffffffffb91b2d00: 04 fa fa fa fa fa fa fa 04 fa fa fa fa fa fa fa
                     ^
   ffffffffb91b2d80: 04 fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
   ffffffffb91b2e00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Fix it by changing the type of edac_mc_poll_msec to unsigned int.
The reason why this patch adopts unsigned int rather than unsigned long
is msecs_to_jiffies() assumes arg to be unsigned int. We can avoid
integer conversion bugs and unsigned int will be large enough for
edac_mc_poll_msec.

Reviewed-by: James Morse <james.morse@arm.com>
Fixes: 9da21b1509 ("EDAC: Poll timeout cannot be zero, p2")
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2019-06-27 10:24:47 -07:00

1075 lines
27 KiB
C

/*
* edac_mc kernel module
* (C) 2005-2007 Linux Networx (http://lnxi.com)
*
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
*
* (c) 2012-2013 - Mauro Carvalho Chehab
* The entire API were re-written, and ported to use struct device
*
*/
#include <linux/ctype.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/bug.h>
#include <linux/pm_runtime.h>
#include <linux/uaccess.h>
#include "edac_mc.h"
#include "edac_module.h"
/* MC EDAC Controls, setable by module parameter, and sysfs */
static int edac_mc_log_ue = 1;
static int edac_mc_log_ce = 1;
static int edac_mc_panic_on_ue;
static unsigned int edac_mc_poll_msec = 1000;
/* Getter functions for above */
int edac_mc_get_log_ue(void)
{
return edac_mc_log_ue;
}
int edac_mc_get_log_ce(void)
{
return edac_mc_log_ce;
}
int edac_mc_get_panic_on_ue(void)
{
return edac_mc_panic_on_ue;
}
/* this is temporary */
unsigned int edac_mc_get_poll_msec(void)
{
return edac_mc_poll_msec;
}
static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
{
unsigned int i;
int ret;
if (!val)
return -EINVAL;
ret = kstrtouint(val, 0, &i);
if (ret)
return ret;
if (i < 1000)
return -EINVAL;
*((unsigned int *)kp->arg) = i;
/* notify edac_mc engine to reset the poll period */
edac_mc_reset_delay_period(i);
return 0;
}
/* Parameter declarations for above */
module_param(edac_mc_panic_on_ue, int, 0644);
MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
module_param(edac_mc_log_ue, int, 0644);
MODULE_PARM_DESC(edac_mc_log_ue,
"Log uncorrectable error to console: 0=off 1=on");
module_param(edac_mc_log_ce, int, 0644);
MODULE_PARM_DESC(edac_mc_log_ce,
"Log correctable error to console: 0=off 1=on");
module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
&edac_mc_poll_msec, 0644);
MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
static struct device *mci_pdev;
/*
* various constants for Memory Controllers
*/
static const char * const dev_types[] = {
[DEV_UNKNOWN] = "Unknown",
[DEV_X1] = "x1",
[DEV_X2] = "x2",
[DEV_X4] = "x4",
[DEV_X8] = "x8",
[DEV_X16] = "x16",
[DEV_X32] = "x32",
[DEV_X64] = "x64"
};
static const char * const edac_caps[] = {
[EDAC_UNKNOWN] = "Unknown",
[EDAC_NONE] = "None",
[EDAC_RESERVED] = "Reserved",
[EDAC_PARITY] = "PARITY",
[EDAC_EC] = "EC",
[EDAC_SECDED] = "SECDED",
[EDAC_S2ECD2ED] = "S2ECD2ED",
[EDAC_S4ECD4ED] = "S4ECD4ED",
[EDAC_S8ECD8ED] = "S8ECD8ED",
[EDAC_S16ECD16ED] = "S16ECD16ED"
};
#ifdef CONFIG_EDAC_LEGACY_SYSFS
/*
* EDAC sysfs CSROW data structures and methods
*/
#define to_csrow(k) container_of(k, struct csrow_info, dev)
/*
* We need it to avoid namespace conflicts between the legacy API
* and the per-dimm/per-rank one
*/
#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
struct dev_ch_attribute {
struct device_attribute attr;
int channel;
};
#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
static struct dev_ch_attribute dev_attr_legacy_##_name = \
{ __ATTR(_name, _mode, _show, _store), (_var) }
#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
/* Set of more default csrow<id> attribute show/store functions */
static ssize_t csrow_ue_count_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct csrow_info *csrow = to_csrow(dev);
return sprintf(data, "%u\n", csrow->ue_count);
}
static ssize_t csrow_ce_count_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct csrow_info *csrow = to_csrow(dev);
return sprintf(data, "%u\n", csrow->ce_count);
}
static ssize_t csrow_size_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct csrow_info *csrow = to_csrow(dev);
int i;
u32 nr_pages = 0;
for (i = 0; i < csrow->nr_channels; i++)
nr_pages += csrow->channels[i]->dimm->nr_pages;
return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
}
static ssize_t csrow_mem_type_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct csrow_info *csrow = to_csrow(dev);
return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
}
static ssize_t csrow_dev_type_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct csrow_info *csrow = to_csrow(dev);
return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
}
static ssize_t csrow_edac_mode_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct csrow_info *csrow = to_csrow(dev);
return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
}
/* show/store functions for DIMM Label attributes */
static ssize_t channel_dimm_label_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct csrow_info *csrow = to_csrow(dev);
unsigned chan = to_channel(mattr);
struct rank_info *rank = csrow->channels[chan];
/* if field has not been initialized, there is nothing to send */
if (!rank->dimm->label[0])
return 0;
return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
rank->dimm->label);
}
static ssize_t channel_dimm_label_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct csrow_info *csrow = to_csrow(dev);
unsigned chan = to_channel(mattr);
struct rank_info *rank = csrow->channels[chan];
size_t copy_count = count;
if (count == 0)
return -EINVAL;
if (data[count - 1] == '\0' || data[count - 1] == '\n')
copy_count -= 1;
if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
return -EINVAL;
strncpy(rank->dimm->label, data, copy_count);
rank->dimm->label[copy_count] = '\0';
return count;
}
/* show function for dynamic chX_ce_count attribute */
static ssize_t channel_ce_count_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct csrow_info *csrow = to_csrow(dev);
unsigned chan = to_channel(mattr);
struct rank_info *rank = csrow->channels[chan];
return sprintf(data, "%u\n", rank->ce_count);
}
/* cwrow<id>/attribute files */
DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
/* default attributes of the CSROW<id> object */
static struct attribute *csrow_attrs[] = {
&dev_attr_legacy_dev_type.attr,
&dev_attr_legacy_mem_type.attr,
&dev_attr_legacy_edac_mode.attr,
&dev_attr_legacy_size_mb.attr,
&dev_attr_legacy_ue_count.attr,
&dev_attr_legacy_ce_count.attr,
NULL,
};
static const struct attribute_group csrow_attr_grp = {
.attrs = csrow_attrs,
};
static const struct attribute_group *csrow_attr_groups[] = {
&csrow_attr_grp,
NULL
};
static void csrow_attr_release(struct device *dev)
{
struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
kfree(csrow);
}
static const struct device_type csrow_attr_type = {
.groups = csrow_attr_groups,
.release = csrow_attr_release,
};
/*
* possible dynamic channel DIMM Label attribute files
*
*/
DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
channel_dimm_label_show, channel_dimm_label_store, 0);
DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
channel_dimm_label_show, channel_dimm_label_store, 1);
DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
channel_dimm_label_show, channel_dimm_label_store, 2);
DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
channel_dimm_label_show, channel_dimm_label_store, 3);
DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
channel_dimm_label_show, channel_dimm_label_store, 4);
DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
channel_dimm_label_show, channel_dimm_label_store, 5);
DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
channel_dimm_label_show, channel_dimm_label_store, 6);
DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
channel_dimm_label_show, channel_dimm_label_store, 7);
/* Total possible dynamic DIMM Label attribute file table */
static struct attribute *dynamic_csrow_dimm_attr[] = {
&dev_attr_legacy_ch0_dimm_label.attr.attr,
&dev_attr_legacy_ch1_dimm_label.attr.attr,
&dev_attr_legacy_ch2_dimm_label.attr.attr,
&dev_attr_legacy_ch3_dimm_label.attr.attr,
&dev_attr_legacy_ch4_dimm_label.attr.attr,
&dev_attr_legacy_ch5_dimm_label.attr.attr,
&dev_attr_legacy_ch6_dimm_label.attr.attr,
&dev_attr_legacy_ch7_dimm_label.attr.attr,
NULL
};
/* possible dynamic channel ce_count attribute files */
DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
channel_ce_count_show, NULL, 0);
DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
channel_ce_count_show, NULL, 1);
DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
channel_ce_count_show, NULL, 2);
DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
channel_ce_count_show, NULL, 3);
DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
channel_ce_count_show, NULL, 4);
DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
channel_ce_count_show, NULL, 5);
DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
channel_ce_count_show, NULL, 6);
DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
channel_ce_count_show, NULL, 7);
/* Total possible dynamic ce_count attribute file table */
static struct attribute *dynamic_csrow_ce_count_attr[] = {
&dev_attr_legacy_ch0_ce_count.attr.attr,
&dev_attr_legacy_ch1_ce_count.attr.attr,
&dev_attr_legacy_ch2_ce_count.attr.attr,
&dev_attr_legacy_ch3_ce_count.attr.attr,
&dev_attr_legacy_ch4_ce_count.attr.attr,
&dev_attr_legacy_ch5_ce_count.attr.attr,
&dev_attr_legacy_ch6_ce_count.attr.attr,
&dev_attr_legacy_ch7_ce_count.attr.attr,
NULL
};
static umode_t csrow_dev_is_visible(struct kobject *kobj,
struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
if (idx >= csrow->nr_channels)
return 0;
if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
WARN_ONCE(1, "idx: %d\n", idx);
return 0;
}
/* Only expose populated DIMMs */
if (!csrow->channels[idx]->dimm->nr_pages)
return 0;
return attr->mode;
}
static const struct attribute_group csrow_dev_dimm_group = {
.attrs = dynamic_csrow_dimm_attr,
.is_visible = csrow_dev_is_visible,
};
static const struct attribute_group csrow_dev_ce_count_group = {
.attrs = dynamic_csrow_ce_count_attr,
.is_visible = csrow_dev_is_visible,
};
static const struct attribute_group *csrow_dev_groups[] = {
&csrow_dev_dimm_group,
&csrow_dev_ce_count_group,
NULL
};
static inline int nr_pages_per_csrow(struct csrow_info *csrow)
{
int chan, nr_pages = 0;
for (chan = 0; chan < csrow->nr_channels; chan++)
nr_pages += csrow->channels[chan]->dimm->nr_pages;
return nr_pages;
}
/* Create a CSROW object under specifed edac_mc_device */
static int edac_create_csrow_object(struct mem_ctl_info *mci,
struct csrow_info *csrow, int index)
{
int err;
csrow->dev.type = &csrow_attr_type;
csrow->dev.groups = csrow_dev_groups;
device_initialize(&csrow->dev);
csrow->dev.parent = &mci->dev;
csrow->mci = mci;
dev_set_name(&csrow->dev, "csrow%d", index);
dev_set_drvdata(&csrow->dev, csrow);
edac_dbg(0, "creating (virtual) csrow node %s\n",
dev_name(&csrow->dev));
err = device_add(&csrow->dev);
if (err)
put_device(&csrow->dev);
return err;
}
/* Create a CSROW object under specifed edac_mc_device */
static int edac_create_csrow_objects(struct mem_ctl_info *mci)
{
int err, i;
struct csrow_info *csrow;
for (i = 0; i < mci->nr_csrows; i++) {
csrow = mci->csrows[i];
if (!nr_pages_per_csrow(csrow))
continue;
err = edac_create_csrow_object(mci, mci->csrows[i], i);
if (err < 0) {
edac_dbg(1,
"failure: create csrow objects for csrow %d\n",
i);
goto error;
}
}
return 0;
error:
for (--i; i >= 0; i--) {
csrow = mci->csrows[i];
if (!nr_pages_per_csrow(csrow))
continue;
device_del(&mci->csrows[i]->dev);
}
return err;
}
static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
{
int i;
struct csrow_info *csrow;
for (i = mci->nr_csrows - 1; i >= 0; i--) {
csrow = mci->csrows[i];
if (!nr_pages_per_csrow(csrow))
continue;
device_unregister(&mci->csrows[i]->dev);
}
}
#endif
/*
* Per-dimm (or per-rank) devices
*/
#define to_dimm(k) container_of(k, struct dimm_info, dev)
/* show/store functions for DIMM Label attributes */
static ssize_t dimmdev_location_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct dimm_info *dimm = to_dimm(dev);
return edac_dimm_info_location(dimm, data, PAGE_SIZE);
}
static ssize_t dimmdev_label_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct dimm_info *dimm = to_dimm(dev);
/* if field has not been initialized, there is nothing to send */
if (!dimm->label[0])
return 0;
return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
}
static ssize_t dimmdev_label_store(struct device *dev,
struct device_attribute *mattr,
const char *data,
size_t count)
{
struct dimm_info *dimm = to_dimm(dev);
size_t copy_count = count;
if (count == 0)
return -EINVAL;
if (data[count - 1] == '\0' || data[count - 1] == '\n')
copy_count -= 1;
if (copy_count == 0 || copy_count >= sizeof(dimm->label))
return -EINVAL;
strncpy(dimm->label, data, copy_count);
dimm->label[copy_count] = '\0';
return count;
}
static ssize_t dimmdev_size_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct dimm_info *dimm = to_dimm(dev);
return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
}
static ssize_t dimmdev_mem_type_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct dimm_info *dimm = to_dimm(dev);
return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
}
static ssize_t dimmdev_dev_type_show(struct device *dev,
struct device_attribute *mattr, char *data)
{
struct dimm_info *dimm = to_dimm(dev);
return sprintf(data, "%s\n", dev_types[dimm->dtype]);
}
static ssize_t dimmdev_edac_mode_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct dimm_info *dimm = to_dimm(dev);
return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
}
static ssize_t dimmdev_ce_count_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct dimm_info *dimm = to_dimm(dev);
u32 count;
int off;
off = EDAC_DIMM_OFF(dimm->mci->layers,
dimm->mci->n_layers,
dimm->location[0],
dimm->location[1],
dimm->location[2]);
count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
return sprintf(data, "%u\n", count);
}
static ssize_t dimmdev_ue_count_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct dimm_info *dimm = to_dimm(dev);
u32 count;
int off;
off = EDAC_DIMM_OFF(dimm->mci->layers,
dimm->mci->n_layers,
dimm->location[0],
dimm->location[1],
dimm->location[2]);
count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
return sprintf(data, "%u\n", count);
}
/* dimm/rank attribute files */
static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
dimmdev_label_show, dimmdev_label_store);
static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
/* attributes of the dimm<id>/rank<id> object */
static struct attribute *dimm_attrs[] = {
&dev_attr_dimm_label.attr,
&dev_attr_dimm_location.attr,
&dev_attr_size.attr,
&dev_attr_dimm_mem_type.attr,
&dev_attr_dimm_dev_type.attr,
&dev_attr_dimm_edac_mode.attr,
&dev_attr_dimm_ce_count.attr,
&dev_attr_dimm_ue_count.attr,
NULL,
};
static const struct attribute_group dimm_attr_grp = {
.attrs = dimm_attrs,
};
static const struct attribute_group *dimm_attr_groups[] = {
&dimm_attr_grp,
NULL
};
static void dimm_attr_release(struct device *dev)
{
struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
kfree(dimm);
}
static const struct device_type dimm_attr_type = {
.groups = dimm_attr_groups,
.release = dimm_attr_release,
};
/* Create a DIMM object under specifed memory controller device */
static int edac_create_dimm_object(struct mem_ctl_info *mci,
struct dimm_info *dimm,
int index)
{
int err;
dimm->mci = mci;
dimm->dev.type = &dimm_attr_type;
device_initialize(&dimm->dev);
dimm->dev.parent = &mci->dev;
if (mci->csbased)
dev_set_name(&dimm->dev, "rank%d", index);
else
dev_set_name(&dimm->dev, "dimm%d", index);
dev_set_drvdata(&dimm->dev, dimm);
pm_runtime_forbid(&mci->dev);
err = device_add(&dimm->dev);
if (err)
put_device(&dimm->dev);
edac_dbg(0, "created rank/dimm device %s\n", dev_name(&dimm->dev));
return err;
}
/*
* Memory controller device
*/
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
static ssize_t mci_reset_counters_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
int cnt, row, chan, i;
mci->ue_mc = 0;
mci->ce_mc = 0;
mci->ue_noinfo_count = 0;
mci->ce_noinfo_count = 0;
for (row = 0; row < mci->nr_csrows; row++) {
struct csrow_info *ri = mci->csrows[row];
ri->ue_count = 0;
ri->ce_count = 0;
for (chan = 0; chan < ri->nr_channels; chan++)
ri->channels[chan]->ce_count = 0;
}
cnt = 1;
for (i = 0; i < mci->n_layers; i++) {
cnt *= mci->layers[i].size;
memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
}
mci->start_time = jiffies;
return count;
}
/* Memory scrubbing interface:
*
* A MC driver can limit the scrubbing bandwidth based on the CPU type.
* Therefore, ->set_sdram_scrub_rate should be made to return the actual
* bandwidth that is accepted or 0 when scrubbing is to be disabled.
*
* Negative value still means that an error has occurred while setting
* the scrub rate.
*/
static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
unsigned long bandwidth = 0;
int new_bw = 0;
if (kstrtoul(data, 10, &bandwidth) < 0)
return -EINVAL;
new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
if (new_bw < 0) {
edac_printk(KERN_WARNING, EDAC_MC,
"Error setting scrub rate to: %lu\n", bandwidth);
return -EINVAL;
}
return count;
}
/*
* ->get_sdram_scrub_rate() return value semantics same as above.
*/
static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
int bandwidth = 0;
bandwidth = mci->get_sdram_scrub_rate(mci);
if (bandwidth < 0) {
edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
return bandwidth;
}
return sprintf(data, "%d\n", bandwidth);
}
/* default attribute files for the MCI object */
static ssize_t mci_ue_count_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
return sprintf(data, "%d\n", mci->ue_mc);
}
static ssize_t mci_ce_count_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
return sprintf(data, "%d\n", mci->ce_mc);
}
static ssize_t mci_ce_noinfo_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
return sprintf(data, "%d\n", mci->ce_noinfo_count);
}
static ssize_t mci_ue_noinfo_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
return sprintf(data, "%d\n", mci->ue_noinfo_count);
}
static ssize_t mci_seconds_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
}
static ssize_t mci_ctl_name_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
return sprintf(data, "%s\n", mci->ctl_name);
}
static ssize_t mci_size_mb_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
int total_pages = 0, csrow_idx, j;
for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
struct csrow_info *csrow = mci->csrows[csrow_idx];
for (j = 0; j < csrow->nr_channels; j++) {
struct dimm_info *dimm = csrow->channels[j]->dimm;
total_pages += dimm->nr_pages;
}
}
return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
}
static ssize_t mci_max_location_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
int i;
char *p = data;
for (i = 0; i < mci->n_layers; i++) {
p += sprintf(p, "%s %d ",
edac_layer_name[mci->layers[i].type],
mci->layers[i].size - 1);
}
return p - data;
}
/* default Control file */
static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
/* default Attribute files */
static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
/* memory scrubber attribute file */
static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
mci_sdram_scrub_rate_store); /* umode set later in is_visible */
static struct attribute *mci_attrs[] = {
&dev_attr_reset_counters.attr,
&dev_attr_mc_name.attr,
&dev_attr_size_mb.attr,
&dev_attr_seconds_since_reset.attr,
&dev_attr_ue_noinfo_count.attr,
&dev_attr_ce_noinfo_count.attr,
&dev_attr_ue_count.attr,
&dev_attr_ce_count.attr,
&dev_attr_max_location.attr,
&dev_attr_sdram_scrub_rate.attr,
NULL
};
static umode_t mci_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct mem_ctl_info *mci = to_mci(dev);
umode_t mode = 0;
if (attr != &dev_attr_sdram_scrub_rate.attr)
return attr->mode;
if (mci->get_sdram_scrub_rate)
mode |= S_IRUGO;
if (mci->set_sdram_scrub_rate)
mode |= S_IWUSR;
return mode;
}
static const struct attribute_group mci_attr_grp = {
.attrs = mci_attrs,
.is_visible = mci_attr_is_visible,
};
static const struct attribute_group *mci_attr_groups[] = {
&mci_attr_grp,
NULL
};
static void mci_attr_release(struct device *dev)
{
struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
kfree(mci);
}
static const struct device_type mci_attr_type = {
.groups = mci_attr_groups,
.release = mci_attr_release,
};
/*
* Create a new Memory Controller kobject instance,
* mc<id> under the 'mc' directory
*
* Return:
* 0 Success
* !0 Failure
*/
int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
const struct attribute_group **groups)
{
int i, err;
/* get the /sys/devices/system/edac subsys reference */
mci->dev.type = &mci_attr_type;
device_initialize(&mci->dev);
mci->dev.parent = mci_pdev;
mci->dev.groups = groups;
dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
dev_set_drvdata(&mci->dev, mci);
pm_runtime_forbid(&mci->dev);
edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
err = device_add(&mci->dev);
if (err < 0) {
edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
put_device(&mci->dev);
goto out;
}
/*
* Create the dimm/rank devices
*/
for (i = 0; i < mci->tot_dimms; i++) {
struct dimm_info *dimm = mci->dimms[i];
/* Only expose populated DIMMs */
if (!dimm->nr_pages)
continue;
#ifdef CONFIG_EDAC_DEBUG
edac_dbg(1, "creating dimm%d, located at ", i);
if (edac_debug_level >= 1) {
int lay;
for (lay = 0; lay < mci->n_layers; lay++)
printk(KERN_CONT "%s %d ",
edac_layer_name[mci->layers[lay].type],
dimm->location[lay]);
printk(KERN_CONT "\n");
}
#endif
err = edac_create_dimm_object(mci, dimm, i);
if (err) {
edac_dbg(1, "failure: create dimm %d obj\n", i);
goto fail_unregister_dimm;
}
}
#ifdef CONFIG_EDAC_LEGACY_SYSFS
err = edac_create_csrow_objects(mci);
if (err < 0)
goto fail_unregister_dimm;
#endif
edac_create_debugfs_nodes(mci);
return 0;
fail_unregister_dimm:
for (i--; i >= 0; i--) {
struct dimm_info *dimm = mci->dimms[i];
if (!dimm->nr_pages)
continue;
device_unregister(&dimm->dev);
}
device_unregister(&mci->dev);
out:
return err;
}
/*
* remove a Memory Controller instance
*/
void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
{
int i;
edac_dbg(0, "\n");
#ifdef CONFIG_EDAC_DEBUG
edac_debugfs_remove_recursive(mci->debugfs);
#endif
#ifdef CONFIG_EDAC_LEGACY_SYSFS
edac_delete_csrow_objects(mci);
#endif
for (i = 0; i < mci->tot_dimms; i++) {
struct dimm_info *dimm = mci->dimms[i];
if (dimm->nr_pages == 0)
continue;
edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
device_unregister(&dimm->dev);
}
}
void edac_unregister_sysfs(struct mem_ctl_info *mci)
{
edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
device_unregister(&mci->dev);
}
static void mc_attr_release(struct device *dev)
{
/*
* There's no container structure here, as this is just the mci
* parent device, used to create the /sys/devices/mc sysfs node.
* So, there are no attributes on it.
*/
edac_dbg(1, "Releasing device %s\n", dev_name(dev));
kfree(dev);
}
static const struct device_type mc_attr_type = {
.release = mc_attr_release,
};
/*
* Init/exit code for the module. Basically, creates/removes /sys/class/rc
*/
int __init edac_mc_sysfs_init(void)
{
int err;
mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
if (!mci_pdev) {
err = -ENOMEM;
goto out;
}
mci_pdev->bus = edac_get_sysfs_subsys();
mci_pdev->type = &mc_attr_type;
device_initialize(mci_pdev);
dev_set_name(mci_pdev, "mc");
err = device_add(mci_pdev);
if (err < 0)
goto out_put_device;
edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
return 0;
out_put_device:
put_device(mci_pdev);
out:
return err;
}
void edac_mc_sysfs_exit(void)
{
device_unregister(mci_pdev);
}