mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 15:44:01 +08:00
5463e7c18e
This reports performance regression by Yuanhan Liu.
The basic idea was to reduce one-point mutex, but it turns out this causes
another contention like context swithes.
https://lkml.org/lkml/2015/4/21/11
Until finishing the analysis on this issue, I'd like to revert this for a while.
This reverts commit 78373b7319
.
1865 lines
44 KiB
C
1865 lines
44 KiB
C
/*
|
|
* fs/f2fs/data.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *extent_tree_slab;
|
|
static struct kmem_cache *extent_node_slab;
|
|
|
|
static void f2fs_read_end_io(struct bio *bio, int err)
|
|
{
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
bio_for_each_segment_all(bvec, bio, i) {
|
|
struct page *page = bvec->bv_page;
|
|
|
|
if (!err) {
|
|
SetPageUptodate(page);
|
|
} else {
|
|
ClearPageUptodate(page);
|
|
SetPageError(page);
|
|
}
|
|
unlock_page(page);
|
|
}
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void f2fs_write_end_io(struct bio *bio, int err)
|
|
{
|
|
struct f2fs_sb_info *sbi = bio->bi_private;
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
bio_for_each_segment_all(bvec, bio, i) {
|
|
struct page *page = bvec->bv_page;
|
|
|
|
if (unlikely(err)) {
|
|
set_page_dirty(page);
|
|
set_bit(AS_EIO, &page->mapping->flags);
|
|
f2fs_stop_checkpoint(sbi);
|
|
}
|
|
end_page_writeback(page);
|
|
dec_page_count(sbi, F2FS_WRITEBACK);
|
|
}
|
|
|
|
if (!get_pages(sbi, F2FS_WRITEBACK) &&
|
|
!list_empty(&sbi->cp_wait.task_list))
|
|
wake_up(&sbi->cp_wait);
|
|
|
|
bio_put(bio);
|
|
}
|
|
|
|
/*
|
|
* Low-level block read/write IO operations.
|
|
*/
|
|
static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
|
|
int npages, bool is_read)
|
|
{
|
|
struct bio *bio;
|
|
|
|
/* No failure on bio allocation */
|
|
bio = bio_alloc(GFP_NOIO, npages);
|
|
|
|
bio->bi_bdev = sbi->sb->s_bdev;
|
|
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
|
|
bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
|
|
bio->bi_private = sbi;
|
|
|
|
return bio;
|
|
}
|
|
|
|
static void __submit_merged_bio(struct f2fs_bio_info *io)
|
|
{
|
|
struct f2fs_io_info *fio = &io->fio;
|
|
|
|
if (!io->bio)
|
|
return;
|
|
|
|
if (is_read_io(fio->rw))
|
|
trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
|
|
else
|
|
trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
|
|
|
|
submit_bio(fio->rw, io->bio);
|
|
io->bio = NULL;
|
|
}
|
|
|
|
void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
|
|
enum page_type type, int rw)
|
|
{
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(type);
|
|
struct f2fs_bio_info *io;
|
|
|
|
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
|
|
|
|
down_write(&io->io_rwsem);
|
|
|
|
/* change META to META_FLUSH in the checkpoint procedure */
|
|
if (type >= META_FLUSH) {
|
|
io->fio.type = META_FLUSH;
|
|
if (test_opt(sbi, NOBARRIER))
|
|
io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
|
|
else
|
|
io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
|
|
}
|
|
__submit_merged_bio(io);
|
|
up_write(&io->io_rwsem);
|
|
}
|
|
|
|
/*
|
|
* Fill the locked page with data located in the block address.
|
|
* Return unlocked page.
|
|
*/
|
|
int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
|
|
struct f2fs_io_info *fio)
|
|
{
|
|
struct bio *bio;
|
|
|
|
trace_f2fs_submit_page_bio(page, fio);
|
|
f2fs_trace_ios(page, fio, 0);
|
|
|
|
/* Allocate a new bio */
|
|
bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
|
|
|
|
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
|
|
bio_put(bio);
|
|
f2fs_put_page(page, 1);
|
|
return -EFAULT;
|
|
}
|
|
|
|
submit_bio(fio->rw, bio);
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
|
|
struct f2fs_io_info *fio)
|
|
{
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
|
|
struct f2fs_bio_info *io;
|
|
bool is_read = is_read_io(fio->rw);
|
|
|
|
io = is_read ? &sbi->read_io : &sbi->write_io[btype];
|
|
|
|
verify_block_addr(sbi, fio->blk_addr);
|
|
|
|
down_write(&io->io_rwsem);
|
|
|
|
if (!is_read)
|
|
inc_page_count(sbi, F2FS_WRITEBACK);
|
|
|
|
if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
|
|
io->fio.rw != fio->rw))
|
|
__submit_merged_bio(io);
|
|
alloc_new:
|
|
if (io->bio == NULL) {
|
|
int bio_blocks = MAX_BIO_BLOCKS(sbi);
|
|
|
|
io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
|
|
io->fio = *fio;
|
|
}
|
|
|
|
if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
|
|
PAGE_CACHE_SIZE) {
|
|
__submit_merged_bio(io);
|
|
goto alloc_new;
|
|
}
|
|
|
|
io->last_block_in_bio = fio->blk_addr;
|
|
f2fs_trace_ios(page, fio, 0);
|
|
|
|
up_write(&io->io_rwsem);
|
|
trace_f2fs_submit_page_mbio(page, fio);
|
|
}
|
|
|
|
/*
|
|
* Lock ordering for the change of data block address:
|
|
* ->data_page
|
|
* ->node_page
|
|
* update block addresses in the node page
|
|
*/
|
|
void set_data_blkaddr(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_node *rn;
|
|
__le32 *addr_array;
|
|
struct page *node_page = dn->node_page;
|
|
unsigned int ofs_in_node = dn->ofs_in_node;
|
|
|
|
f2fs_wait_on_page_writeback(node_page, NODE);
|
|
|
|
rn = F2FS_NODE(node_page);
|
|
|
|
/* Get physical address of data block */
|
|
addr_array = blkaddr_in_node(rn);
|
|
addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
|
|
set_page_dirty(node_page);
|
|
}
|
|
|
|
int reserve_new_block(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
|
|
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
|
|
return -ENOSPC;
|
|
|
|
trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
|
|
|
|
dn->data_blkaddr = NEW_ADDR;
|
|
set_data_blkaddr(dn);
|
|
mark_inode_dirty(dn->inode);
|
|
sync_inode_page(dn);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
bool need_put = dn->inode_page ? false : true;
|
|
int err;
|
|
|
|
err = get_dnode_of_data(dn, index, ALLOC_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
if (dn->data_blkaddr == NULL_ADDR)
|
|
err = reserve_new_block(dn);
|
|
if (err || need_put)
|
|
f2fs_put_dnode(dn);
|
|
return err;
|
|
}
|
|
|
|
static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
|
|
struct extent_info *ei, struct buffer_head *bh_result)
|
|
{
|
|
unsigned int blkbits = sb->s_blocksize_bits;
|
|
size_t max_size = bh_result->b_size;
|
|
size_t mapped_size;
|
|
|
|
clear_buffer_new(bh_result);
|
|
map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
|
|
mapped_size = (ei->fofs + ei->len - pgofs) << blkbits;
|
|
bh_result->b_size = min(max_size, mapped_size);
|
|
}
|
|
|
|
static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
|
|
struct extent_info *ei)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
pgoff_t start_fofs, end_fofs;
|
|
block_t start_blkaddr;
|
|
|
|
read_lock(&fi->ext_lock);
|
|
if (fi->ext.len == 0) {
|
|
read_unlock(&fi->ext_lock);
|
|
return false;
|
|
}
|
|
|
|
stat_inc_total_hit(inode->i_sb);
|
|
|
|
start_fofs = fi->ext.fofs;
|
|
end_fofs = fi->ext.fofs + fi->ext.len - 1;
|
|
start_blkaddr = fi->ext.blk;
|
|
|
|
if (pgofs >= start_fofs && pgofs <= end_fofs) {
|
|
*ei = fi->ext;
|
|
stat_inc_read_hit(inode->i_sb);
|
|
read_unlock(&fi->ext_lock);
|
|
return true;
|
|
}
|
|
read_unlock(&fi->ext_lock);
|
|
return false;
|
|
}
|
|
|
|
static bool update_extent_info(struct inode *inode, pgoff_t fofs,
|
|
block_t blkaddr)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
pgoff_t start_fofs, end_fofs;
|
|
block_t start_blkaddr, end_blkaddr;
|
|
int need_update = true;
|
|
|
|
write_lock(&fi->ext_lock);
|
|
|
|
start_fofs = fi->ext.fofs;
|
|
end_fofs = fi->ext.fofs + fi->ext.len - 1;
|
|
start_blkaddr = fi->ext.blk;
|
|
end_blkaddr = fi->ext.blk + fi->ext.len - 1;
|
|
|
|
/* Drop and initialize the matched extent */
|
|
if (fi->ext.len == 1 && fofs == start_fofs)
|
|
fi->ext.len = 0;
|
|
|
|
/* Initial extent */
|
|
if (fi->ext.len == 0) {
|
|
if (blkaddr != NULL_ADDR) {
|
|
fi->ext.fofs = fofs;
|
|
fi->ext.blk = blkaddr;
|
|
fi->ext.len = 1;
|
|
}
|
|
goto end_update;
|
|
}
|
|
|
|
/* Front merge */
|
|
if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
|
|
fi->ext.fofs--;
|
|
fi->ext.blk--;
|
|
fi->ext.len++;
|
|
goto end_update;
|
|
}
|
|
|
|
/* Back merge */
|
|
if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
|
|
fi->ext.len++;
|
|
goto end_update;
|
|
}
|
|
|
|
/* Split the existing extent */
|
|
if (fi->ext.len > 1 &&
|
|
fofs >= start_fofs && fofs <= end_fofs) {
|
|
if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
|
|
fi->ext.len = fofs - start_fofs;
|
|
} else {
|
|
fi->ext.fofs = fofs + 1;
|
|
fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
|
|
fi->ext.len -= fofs - start_fofs + 1;
|
|
}
|
|
} else {
|
|
need_update = false;
|
|
}
|
|
|
|
/* Finally, if the extent is very fragmented, let's drop the cache. */
|
|
if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
|
|
fi->ext.len = 0;
|
|
set_inode_flag(fi, FI_NO_EXTENT);
|
|
need_update = true;
|
|
}
|
|
end_update:
|
|
write_unlock(&fi->ext_lock);
|
|
return need_update;
|
|
}
|
|
|
|
static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
|
|
struct extent_tree *et, struct extent_info *ei,
|
|
struct rb_node *parent, struct rb_node **p)
|
|
{
|
|
struct extent_node *en;
|
|
|
|
en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
|
|
if (!en)
|
|
return NULL;
|
|
|
|
en->ei = *ei;
|
|
INIT_LIST_HEAD(&en->list);
|
|
|
|
rb_link_node(&en->rb_node, parent, p);
|
|
rb_insert_color(&en->rb_node, &et->root);
|
|
et->count++;
|
|
atomic_inc(&sbi->total_ext_node);
|
|
return en;
|
|
}
|
|
|
|
static void __detach_extent_node(struct f2fs_sb_info *sbi,
|
|
struct extent_tree *et, struct extent_node *en)
|
|
{
|
|
rb_erase(&en->rb_node, &et->root);
|
|
et->count--;
|
|
atomic_dec(&sbi->total_ext_node);
|
|
|
|
if (et->cached_en == en)
|
|
et->cached_en = NULL;
|
|
}
|
|
|
|
static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
|
|
nid_t ino)
|
|
{
|
|
struct extent_tree *et;
|
|
|
|
down_read(&sbi->extent_tree_lock);
|
|
et = radix_tree_lookup(&sbi->extent_tree_root, ino);
|
|
if (!et) {
|
|
up_read(&sbi->extent_tree_lock);
|
|
return NULL;
|
|
}
|
|
atomic_inc(&et->refcount);
|
|
up_read(&sbi->extent_tree_lock);
|
|
|
|
return et;
|
|
}
|
|
|
|
static struct extent_tree *__grab_extent_tree(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct extent_tree *et;
|
|
nid_t ino = inode->i_ino;
|
|
|
|
down_write(&sbi->extent_tree_lock);
|
|
et = radix_tree_lookup(&sbi->extent_tree_root, ino);
|
|
if (!et) {
|
|
et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
|
|
f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
|
|
memset(et, 0, sizeof(struct extent_tree));
|
|
et->ino = ino;
|
|
et->root = RB_ROOT;
|
|
et->cached_en = NULL;
|
|
rwlock_init(&et->lock);
|
|
atomic_set(&et->refcount, 0);
|
|
et->count = 0;
|
|
sbi->total_ext_tree++;
|
|
}
|
|
atomic_inc(&et->refcount);
|
|
up_write(&sbi->extent_tree_lock);
|
|
|
|
return et;
|
|
}
|
|
|
|
static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
|
|
unsigned int fofs)
|
|
{
|
|
struct rb_node *node = et->root.rb_node;
|
|
struct extent_node *en;
|
|
|
|
if (et->cached_en) {
|
|
struct extent_info *cei = &et->cached_en->ei;
|
|
|
|
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
|
|
return et->cached_en;
|
|
}
|
|
|
|
while (node) {
|
|
en = rb_entry(node, struct extent_node, rb_node);
|
|
|
|
if (fofs < en->ei.fofs) {
|
|
node = node->rb_left;
|
|
} else if (fofs >= en->ei.fofs + en->ei.len) {
|
|
node = node->rb_right;
|
|
} else {
|
|
et->cached_en = en;
|
|
return en;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
|
|
struct extent_tree *et, struct extent_node *en)
|
|
{
|
|
struct extent_node *prev;
|
|
struct rb_node *node;
|
|
|
|
node = rb_prev(&en->rb_node);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
prev = rb_entry(node, struct extent_node, rb_node);
|
|
if (__is_back_mergeable(&en->ei, &prev->ei)) {
|
|
en->ei.fofs = prev->ei.fofs;
|
|
en->ei.blk = prev->ei.blk;
|
|
en->ei.len += prev->ei.len;
|
|
__detach_extent_node(sbi, et, prev);
|
|
return prev;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
|
|
struct extent_tree *et, struct extent_node *en)
|
|
{
|
|
struct extent_node *next;
|
|
struct rb_node *node;
|
|
|
|
node = rb_next(&en->rb_node);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
next = rb_entry(node, struct extent_node, rb_node);
|
|
if (__is_front_mergeable(&en->ei, &next->ei)) {
|
|
en->ei.len += next->ei.len;
|
|
__detach_extent_node(sbi, et, next);
|
|
return next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
|
|
struct extent_tree *et, struct extent_info *ei,
|
|
struct extent_node **den)
|
|
{
|
|
struct rb_node **p = &et->root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct extent_node *en;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
en = rb_entry(parent, struct extent_node, rb_node);
|
|
|
|
if (ei->fofs < en->ei.fofs) {
|
|
if (__is_front_mergeable(ei, &en->ei)) {
|
|
f2fs_bug_on(sbi, !den);
|
|
en->ei.fofs = ei->fofs;
|
|
en->ei.blk = ei->blk;
|
|
en->ei.len += ei->len;
|
|
*den = __try_back_merge(sbi, et, en);
|
|
return en;
|
|
}
|
|
p = &(*p)->rb_left;
|
|
} else if (ei->fofs >= en->ei.fofs + en->ei.len) {
|
|
if (__is_back_mergeable(ei, &en->ei)) {
|
|
f2fs_bug_on(sbi, !den);
|
|
en->ei.len += ei->len;
|
|
*den = __try_front_merge(sbi, et, en);
|
|
return en;
|
|
}
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
f2fs_bug_on(sbi, 1);
|
|
}
|
|
}
|
|
|
|
return __attach_extent_node(sbi, et, ei, parent, p);
|
|
}
|
|
|
|
static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
|
|
struct extent_tree *et, bool free_all)
|
|
{
|
|
struct rb_node *node, *next;
|
|
struct extent_node *en;
|
|
unsigned int count = et->count;
|
|
|
|
node = rb_first(&et->root);
|
|
while (node) {
|
|
next = rb_next(node);
|
|
en = rb_entry(node, struct extent_node, rb_node);
|
|
|
|
if (free_all) {
|
|
spin_lock(&sbi->extent_lock);
|
|
if (!list_empty(&en->list))
|
|
list_del_init(&en->list);
|
|
spin_unlock(&sbi->extent_lock);
|
|
}
|
|
|
|
if (free_all || list_empty(&en->list)) {
|
|
__detach_extent_node(sbi, et, en);
|
|
kmem_cache_free(extent_node_slab, en);
|
|
}
|
|
node = next;
|
|
}
|
|
|
|
return count - et->count;
|
|
}
|
|
|
|
static void f2fs_init_extent_tree(struct inode *inode,
|
|
struct f2fs_extent *i_ext)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct extent_tree *et;
|
|
struct extent_node *en;
|
|
struct extent_info ei;
|
|
|
|
if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
|
|
return;
|
|
|
|
et = __grab_extent_tree(inode);
|
|
|
|
write_lock(&et->lock);
|
|
if (et->count)
|
|
goto out;
|
|
|
|
set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
|
|
le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
|
|
|
|
en = __insert_extent_tree(sbi, et, &ei, NULL);
|
|
if (en) {
|
|
et->cached_en = en;
|
|
|
|
spin_lock(&sbi->extent_lock);
|
|
list_add_tail(&en->list, &sbi->extent_list);
|
|
spin_unlock(&sbi->extent_lock);
|
|
}
|
|
out:
|
|
write_unlock(&et->lock);
|
|
atomic_dec(&et->refcount);
|
|
}
|
|
|
|
static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
|
|
struct extent_info *ei)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct extent_tree *et;
|
|
struct extent_node *en;
|
|
|
|
trace_f2fs_lookup_extent_tree_start(inode, pgofs);
|
|
|
|
et = __find_extent_tree(sbi, inode->i_ino);
|
|
if (!et)
|
|
return false;
|
|
|
|
read_lock(&et->lock);
|
|
en = __lookup_extent_tree(et, pgofs);
|
|
if (en) {
|
|
*ei = en->ei;
|
|
spin_lock(&sbi->extent_lock);
|
|
if (!list_empty(&en->list))
|
|
list_move_tail(&en->list, &sbi->extent_list);
|
|
spin_unlock(&sbi->extent_lock);
|
|
stat_inc_read_hit(sbi->sb);
|
|
}
|
|
stat_inc_total_hit(sbi->sb);
|
|
read_unlock(&et->lock);
|
|
|
|
trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
|
|
|
|
atomic_dec(&et->refcount);
|
|
return en ? true : false;
|
|
}
|
|
|
|
static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
|
|
block_t blkaddr)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct extent_tree *et;
|
|
struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
|
|
struct extent_node *den = NULL;
|
|
struct extent_info ei, dei;
|
|
unsigned int endofs;
|
|
|
|
trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
|
|
|
|
et = __grab_extent_tree(inode);
|
|
|
|
write_lock(&et->lock);
|
|
|
|
/* 1. lookup and remove existing extent info in cache */
|
|
en = __lookup_extent_tree(et, fofs);
|
|
if (!en)
|
|
goto update_extent;
|
|
|
|
dei = en->ei;
|
|
__detach_extent_node(sbi, et, en);
|
|
|
|
/* 2. if extent can be split more, split and insert the left part */
|
|
if (dei.len > 1) {
|
|
/* insert left part of split extent into cache */
|
|
if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
|
|
set_extent_info(&ei, dei.fofs, dei.blk,
|
|
fofs - dei.fofs);
|
|
en1 = __insert_extent_tree(sbi, et, &ei, NULL);
|
|
}
|
|
|
|
/* insert right part of split extent into cache */
|
|
endofs = dei.fofs + dei.len - 1;
|
|
if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
|
|
set_extent_info(&ei, fofs + 1,
|
|
fofs - dei.fofs + dei.blk, endofs - fofs);
|
|
en2 = __insert_extent_tree(sbi, et, &ei, NULL);
|
|
}
|
|
}
|
|
|
|
update_extent:
|
|
/* 3. update extent in extent cache */
|
|
if (blkaddr) {
|
|
set_extent_info(&ei, fofs, blkaddr, 1);
|
|
en3 = __insert_extent_tree(sbi, et, &ei, &den);
|
|
}
|
|
|
|
/* 4. update in global extent list */
|
|
spin_lock(&sbi->extent_lock);
|
|
if (en && !list_empty(&en->list))
|
|
list_del(&en->list);
|
|
/*
|
|
* en1 and en2 split from en, they will become more and more smaller
|
|
* fragments after splitting several times. So if the length is smaller
|
|
* than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
|
|
*/
|
|
if (en1)
|
|
list_add_tail(&en1->list, &sbi->extent_list);
|
|
if (en2)
|
|
list_add_tail(&en2->list, &sbi->extent_list);
|
|
if (en3) {
|
|
if (list_empty(&en3->list))
|
|
list_add_tail(&en3->list, &sbi->extent_list);
|
|
else
|
|
list_move_tail(&en3->list, &sbi->extent_list);
|
|
}
|
|
if (den && !list_empty(&den->list))
|
|
list_del(&den->list);
|
|
spin_unlock(&sbi->extent_lock);
|
|
|
|
/* 5. release extent node */
|
|
if (en)
|
|
kmem_cache_free(extent_node_slab, en);
|
|
if (den)
|
|
kmem_cache_free(extent_node_slab, den);
|
|
|
|
write_unlock(&et->lock);
|
|
atomic_dec(&et->refcount);
|
|
}
|
|
|
|
void f2fs_preserve_extent_tree(struct inode *inode)
|
|
{
|
|
struct extent_tree *et;
|
|
struct extent_info *ext = &F2FS_I(inode)->ext;
|
|
bool sync = false;
|
|
|
|
if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
|
|
return;
|
|
|
|
et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
|
|
if (!et) {
|
|
if (ext->len) {
|
|
ext->len = 0;
|
|
update_inode_page(inode);
|
|
}
|
|
return;
|
|
}
|
|
|
|
read_lock(&et->lock);
|
|
if (et->count) {
|
|
struct extent_node *en;
|
|
|
|
if (et->cached_en) {
|
|
en = et->cached_en;
|
|
} else {
|
|
struct rb_node *node = rb_first(&et->root);
|
|
|
|
if (!node)
|
|
node = rb_last(&et->root);
|
|
en = rb_entry(node, struct extent_node, rb_node);
|
|
}
|
|
|
|
if (__is_extent_same(ext, &en->ei))
|
|
goto out;
|
|
|
|
*ext = en->ei;
|
|
sync = true;
|
|
} else if (ext->len) {
|
|
ext->len = 0;
|
|
sync = true;
|
|
}
|
|
out:
|
|
read_unlock(&et->lock);
|
|
atomic_dec(&et->refcount);
|
|
|
|
if (sync)
|
|
update_inode_page(inode);
|
|
}
|
|
|
|
void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
|
|
{
|
|
struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
|
|
struct extent_node *en, *tmp;
|
|
unsigned long ino = F2FS_ROOT_INO(sbi);
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
unsigned int found;
|
|
unsigned int node_cnt = 0, tree_cnt = 0;
|
|
|
|
if (!test_opt(sbi, EXTENT_CACHE))
|
|
return;
|
|
|
|
if (available_free_memory(sbi, EXTENT_CACHE))
|
|
return;
|
|
|
|
spin_lock(&sbi->extent_lock);
|
|
list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
|
|
if (!nr_shrink--)
|
|
break;
|
|
list_del_init(&en->list);
|
|
}
|
|
spin_unlock(&sbi->extent_lock);
|
|
|
|
down_read(&sbi->extent_tree_lock);
|
|
while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
|
|
(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
|
|
unsigned i;
|
|
|
|
ino = treevec[found - 1]->ino + 1;
|
|
for (i = 0; i < found; i++) {
|
|
struct extent_tree *et = treevec[i];
|
|
|
|
atomic_inc(&et->refcount);
|
|
write_lock(&et->lock);
|
|
node_cnt += __free_extent_tree(sbi, et, false);
|
|
write_unlock(&et->lock);
|
|
atomic_dec(&et->refcount);
|
|
}
|
|
}
|
|
up_read(&sbi->extent_tree_lock);
|
|
|
|
down_write(&sbi->extent_tree_lock);
|
|
radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
|
|
F2FS_ROOT_INO(sbi)) {
|
|
struct extent_tree *et = (struct extent_tree *)*slot;
|
|
|
|
if (!atomic_read(&et->refcount) && !et->count) {
|
|
radix_tree_delete(&sbi->extent_tree_root, et->ino);
|
|
kmem_cache_free(extent_tree_slab, et);
|
|
sbi->total_ext_tree--;
|
|
tree_cnt++;
|
|
}
|
|
}
|
|
up_write(&sbi->extent_tree_lock);
|
|
|
|
trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
|
|
}
|
|
|
|
void f2fs_destroy_extent_tree(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct extent_tree *et;
|
|
unsigned int node_cnt = 0;
|
|
|
|
if (!test_opt(sbi, EXTENT_CACHE))
|
|
return;
|
|
|
|
et = __find_extent_tree(sbi, inode->i_ino);
|
|
if (!et)
|
|
goto out;
|
|
|
|
/* free all extent info belong to this extent tree */
|
|
write_lock(&et->lock);
|
|
node_cnt = __free_extent_tree(sbi, et, true);
|
|
write_unlock(&et->lock);
|
|
|
|
atomic_dec(&et->refcount);
|
|
|
|
/* try to find and delete extent tree entry in radix tree */
|
|
down_write(&sbi->extent_tree_lock);
|
|
et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
|
|
if (!et) {
|
|
up_write(&sbi->extent_tree_lock);
|
|
goto out;
|
|
}
|
|
f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
|
|
radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
|
|
kmem_cache_free(extent_tree_slab, et);
|
|
sbi->total_ext_tree--;
|
|
up_write(&sbi->extent_tree_lock);
|
|
out:
|
|
trace_f2fs_destroy_extent_tree(inode, node_cnt);
|
|
return;
|
|
}
|
|
|
|
void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
|
|
{
|
|
if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
|
|
f2fs_init_extent_tree(inode, i_ext);
|
|
|
|
write_lock(&F2FS_I(inode)->ext_lock);
|
|
get_extent_info(&F2FS_I(inode)->ext, *i_ext);
|
|
write_unlock(&F2FS_I(inode)->ext_lock);
|
|
}
|
|
|
|
static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
|
|
struct extent_info *ei)
|
|
{
|
|
if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
|
|
return false;
|
|
|
|
if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
|
|
return f2fs_lookup_extent_tree(inode, pgofs, ei);
|
|
|
|
return lookup_extent_info(inode, pgofs, ei);
|
|
}
|
|
|
|
void f2fs_update_extent_cache(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
|
|
pgoff_t fofs;
|
|
|
|
f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
|
|
|
|
if (is_inode_flag_set(fi, FI_NO_EXTENT))
|
|
return;
|
|
|
|
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
|
|
dn->ofs_in_node;
|
|
|
|
if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
|
|
return f2fs_update_extent_tree(dn->inode, fofs,
|
|
dn->data_blkaddr);
|
|
|
|
if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
|
|
sync_inode_page(dn);
|
|
}
|
|
|
|
struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct dnode_of_data dn;
|
|
struct page *page;
|
|
struct extent_info ei;
|
|
int err;
|
|
struct f2fs_io_info fio = {
|
|
.type = DATA,
|
|
.rw = sync ? READ_SYNC : READA,
|
|
};
|
|
|
|
/*
|
|
* If sync is false, it needs to check its block allocation.
|
|
* This is need and triggered by two flows:
|
|
* gc and truncate_partial_data_page.
|
|
*/
|
|
if (!sync)
|
|
goto search;
|
|
|
|
page = find_get_page(mapping, index);
|
|
if (page && PageUptodate(page))
|
|
return page;
|
|
f2fs_put_page(page, 0);
|
|
search:
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
goto got_it;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (dn.data_blkaddr == NULL_ADDR)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
/* By fallocate(), there is no cached page, but with NEW_ADDR */
|
|
if (unlikely(dn.data_blkaddr == NEW_ADDR))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
got_it:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (PageUptodate(page)) {
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
fio.blk_addr = dn.data_blkaddr;
|
|
err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
if (sync) {
|
|
wait_on_page_locked(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 0);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* If it tries to access a hole, return an error.
|
|
* Because, the callers, functions in dir.c and GC, should be able to know
|
|
* whether this page exists or not.
|
|
*/
|
|
struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct dnode_of_data dn;
|
|
struct page *page;
|
|
struct extent_info ei;
|
|
int err;
|
|
struct f2fs_io_info fio = {
|
|
.type = DATA,
|
|
.rw = READ_SYNC,
|
|
};
|
|
repeat:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
goto got_it;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
got_it:
|
|
if (PageUptodate(page))
|
|
return page;
|
|
|
|
/*
|
|
* A new dentry page is allocated but not able to be written, since its
|
|
* new inode page couldn't be allocated due to -ENOSPC.
|
|
* In such the case, its blkaddr can be remained as NEW_ADDR.
|
|
* see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
|
|
*/
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
SetPageUptodate(page);
|
|
return page;
|
|
}
|
|
|
|
fio.blk_addr = dn.data_blkaddr;
|
|
err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
lock_page(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Caller ensures that this data page is never allocated.
|
|
* A new zero-filled data page is allocated in the page cache.
|
|
*
|
|
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
|
|
* f2fs_unlock_op().
|
|
* Note that, ipage is set only by make_empty_dir.
|
|
*/
|
|
struct page *get_new_data_page(struct inode *inode,
|
|
struct page *ipage, pgoff_t index, bool new_i_size)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, index);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
repeat:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto put_err;
|
|
}
|
|
|
|
if (PageUptodate(page))
|
|
return page;
|
|
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
SetPageUptodate(page);
|
|
} else {
|
|
struct f2fs_io_info fio = {
|
|
.type = DATA,
|
|
.rw = READ_SYNC,
|
|
.blk_addr = dn.data_blkaddr,
|
|
};
|
|
err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
|
|
if (err)
|
|
goto put_err;
|
|
|
|
lock_page(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
err = -EIO;
|
|
goto put_err;
|
|
}
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
if (new_i_size &&
|
|
i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
|
|
i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
|
|
/* Only the directory inode sets new_i_size */
|
|
set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
|
|
}
|
|
return page;
|
|
|
|
put_err:
|
|
f2fs_put_dnode(&dn);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static int __allocate_data_block(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
|
|
struct f2fs_summary sum;
|
|
struct node_info ni;
|
|
int seg = CURSEG_WARM_DATA;
|
|
pgoff_t fofs;
|
|
|
|
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
|
|
dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
|
|
if (dn->data_blkaddr == NEW_ADDR)
|
|
goto alloc;
|
|
|
|
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
|
|
return -ENOSPC;
|
|
|
|
alloc:
|
|
get_node_info(sbi, dn->nid, &ni);
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
|
|
|
|
if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
|
|
seg = CURSEG_DIRECT_IO;
|
|
|
|
allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
|
|
&sum, seg);
|
|
|
|
/* direct IO doesn't use extent cache to maximize the performance */
|
|
set_data_blkaddr(dn);
|
|
|
|
/* update i_size */
|
|
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
|
|
dn->ofs_in_node;
|
|
if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
|
|
i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __allocate_data_blocks(struct inode *inode, loff_t offset,
|
|
size_t count)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
u64 start = F2FS_BYTES_TO_BLK(offset);
|
|
u64 len = F2FS_BYTES_TO_BLK(count);
|
|
bool allocated;
|
|
u64 end_offset;
|
|
|
|
while (len) {
|
|
f2fs_balance_fs(sbi);
|
|
f2fs_lock_op(sbi);
|
|
|
|
/* When reading holes, we need its node page */
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
if (get_dnode_of_data(&dn, start, ALLOC_NODE))
|
|
goto out;
|
|
|
|
allocated = false;
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
|
|
|
|
while (dn.ofs_in_node < end_offset && len) {
|
|
block_t blkaddr;
|
|
|
|
blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
|
|
if (__allocate_data_block(&dn))
|
|
goto sync_out;
|
|
allocated = true;
|
|
}
|
|
len--;
|
|
start++;
|
|
dn.ofs_in_node++;
|
|
}
|
|
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
return;
|
|
|
|
sync_out:
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
f2fs_unlock_op(sbi);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
|
|
* If original data blocks are allocated, then give them to blockdev.
|
|
* Otherwise,
|
|
* a. preallocate requested block addresses
|
|
* b. do not use extent cache for better performance
|
|
* c. give the block addresses to blockdev
|
|
*/
|
|
static int __get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create, bool fiemap)
|
|
{
|
|
unsigned int blkbits = inode->i_sb->s_blocksize_bits;
|
|
unsigned maxblocks = bh_result->b_size >> blkbits;
|
|
struct dnode_of_data dn;
|
|
int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
|
|
pgoff_t pgofs, end_offset;
|
|
int err = 0, ofs = 1;
|
|
struct extent_info ei;
|
|
bool allocated = false;
|
|
|
|
/* Get the page offset from the block offset(iblock) */
|
|
pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
|
|
|
|
if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
|
|
f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
|
|
goto out;
|
|
}
|
|
|
|
if (create)
|
|
f2fs_lock_op(F2FS_I_SB(inode));
|
|
|
|
/* When reading holes, we need its node page */
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, pgofs, mode);
|
|
if (err) {
|
|
if (err == -ENOENT)
|
|
err = 0;
|
|
goto unlock_out;
|
|
}
|
|
if (dn.data_blkaddr == NEW_ADDR && !fiemap)
|
|
goto put_out;
|
|
|
|
if (dn.data_blkaddr != NULL_ADDR) {
|
|
clear_buffer_new(bh_result);
|
|
map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
|
|
} else if (create) {
|
|
err = __allocate_data_block(&dn);
|
|
if (err)
|
|
goto put_out;
|
|
allocated = true;
|
|
set_buffer_new(bh_result);
|
|
map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
|
|
} else {
|
|
goto put_out;
|
|
}
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
|
|
bh_result->b_size = (((size_t)1) << blkbits);
|
|
dn.ofs_in_node++;
|
|
pgofs++;
|
|
|
|
get_next:
|
|
if (dn.ofs_in_node >= end_offset) {
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
allocated = false;
|
|
f2fs_put_dnode(&dn);
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, pgofs, mode);
|
|
if (err) {
|
|
if (err == -ENOENT)
|
|
err = 0;
|
|
goto unlock_out;
|
|
}
|
|
if (dn.data_blkaddr == NEW_ADDR && !fiemap)
|
|
goto put_out;
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
|
|
}
|
|
|
|
if (maxblocks > (bh_result->b_size >> blkbits)) {
|
|
block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
if (blkaddr == NULL_ADDR && create) {
|
|
err = __allocate_data_block(&dn);
|
|
if (err)
|
|
goto sync_out;
|
|
allocated = true;
|
|
set_buffer_new(bh_result);
|
|
blkaddr = dn.data_blkaddr;
|
|
}
|
|
/* Give more consecutive addresses for the readahead */
|
|
if (blkaddr == (bh_result->b_blocknr + ofs)) {
|
|
ofs++;
|
|
dn.ofs_in_node++;
|
|
pgofs++;
|
|
bh_result->b_size += (((size_t)1) << blkbits);
|
|
goto get_next;
|
|
}
|
|
}
|
|
sync_out:
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
put_out:
|
|
f2fs_put_dnode(&dn);
|
|
unlock_out:
|
|
if (create)
|
|
f2fs_unlock_op(F2FS_I_SB(inode));
|
|
out:
|
|
trace_f2fs_get_data_block(inode, iblock, bh_result, err);
|
|
return err;
|
|
}
|
|
|
|
static int get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create, false);
|
|
}
|
|
|
|
static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create, true);
|
|
}
|
|
|
|
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
u64 start, u64 len)
|
|
{
|
|
return generic_block_fiemap(inode, fieinfo,
|
|
start, len, get_data_block_fiemap);
|
|
}
|
|
|
|
static int f2fs_read_data_page(struct file *file, struct page *page)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
int ret = -EAGAIN;
|
|
|
|
trace_f2fs_readpage(page, DATA);
|
|
|
|
/* If the file has inline data, try to read it directly */
|
|
if (f2fs_has_inline_data(inode))
|
|
ret = f2fs_read_inline_data(inode, page);
|
|
if (ret == -EAGAIN)
|
|
ret = mpage_readpage(page, get_data_block);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_read_data_pages(struct file *file,
|
|
struct address_space *mapping,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
|
|
/* If the file has inline data, skip readpages */
|
|
if (f2fs_has_inline_data(inode))
|
|
return 0;
|
|
|
|
return mpage_readpages(mapping, pages, nr_pages, get_data_block);
|
|
}
|
|
|
|
int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct dnode_of_data dn;
|
|
int err = 0;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
fio->blk_addr = dn.data_blkaddr;
|
|
|
|
/* This page is already truncated */
|
|
if (fio->blk_addr == NULL_ADDR) {
|
|
ClearPageUptodate(page);
|
|
goto out_writepage;
|
|
}
|
|
|
|
set_page_writeback(page);
|
|
|
|
/*
|
|
* If current allocation needs SSR,
|
|
* it had better in-place writes for updated data.
|
|
*/
|
|
if (unlikely(fio->blk_addr != NEW_ADDR &&
|
|
!is_cold_data(page) &&
|
|
need_inplace_update(inode))) {
|
|
rewrite_data_page(page, fio);
|
|
set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
|
|
trace_f2fs_do_write_data_page(page, IPU);
|
|
} else {
|
|
write_data_page(page, &dn, fio);
|
|
set_data_blkaddr(&dn);
|
|
f2fs_update_extent_cache(&dn);
|
|
trace_f2fs_do_write_data_page(page, OPU);
|
|
set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
|
|
if (page->index == 0)
|
|
set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
|
|
}
|
|
out_writepage:
|
|
f2fs_put_dnode(&dn);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_data_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
loff_t i_size = i_size_read(inode);
|
|
const pgoff_t end_index = ((unsigned long long) i_size)
|
|
>> PAGE_CACHE_SHIFT;
|
|
unsigned offset = 0;
|
|
bool need_balance_fs = false;
|
|
int err = 0;
|
|
struct f2fs_io_info fio = {
|
|
.type = DATA,
|
|
.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
|
|
};
|
|
|
|
trace_f2fs_writepage(page, DATA);
|
|
|
|
if (page->index < end_index)
|
|
goto write;
|
|
|
|
/*
|
|
* If the offset is out-of-range of file size,
|
|
* this page does not have to be written to disk.
|
|
*/
|
|
offset = i_size & (PAGE_CACHE_SIZE - 1);
|
|
if ((page->index >= end_index + 1) || !offset)
|
|
goto out;
|
|
|
|
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
|
|
write:
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
if (f2fs_is_drop_cache(inode))
|
|
goto out;
|
|
if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
|
|
available_free_memory(sbi, BASE_CHECK))
|
|
goto redirty_out;
|
|
|
|
/* Dentry blocks are controlled by checkpoint */
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto redirty_out;
|
|
err = do_write_data_page(page, &fio);
|
|
goto done;
|
|
}
|
|
|
|
/* we should bypass data pages to proceed the kworkder jobs */
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
SetPageError(page);
|
|
goto out;
|
|
}
|
|
|
|
if (!wbc->for_reclaim)
|
|
need_balance_fs = true;
|
|
else if (has_not_enough_free_secs(sbi, 0))
|
|
goto redirty_out;
|
|
|
|
err = -EAGAIN;
|
|
f2fs_lock_op(sbi);
|
|
if (f2fs_has_inline_data(inode))
|
|
err = f2fs_write_inline_data(inode, page);
|
|
if (err == -EAGAIN)
|
|
err = do_write_data_page(page, &fio);
|
|
f2fs_unlock_op(sbi);
|
|
done:
|
|
if (err && err != -ENOENT)
|
|
goto redirty_out;
|
|
|
|
clear_cold_data(page);
|
|
out:
|
|
inode_dec_dirty_pages(inode);
|
|
if (err)
|
|
ClearPageUptodate(page);
|
|
unlock_page(page);
|
|
if (need_balance_fs)
|
|
f2fs_balance_fs(sbi);
|
|
if (wbc->for_reclaim)
|
|
f2fs_submit_merged_bio(sbi, DATA, WRITE);
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
|
|
void *data)
|
|
{
|
|
struct address_space *mapping = data;
|
|
int ret = mapping->a_ops->writepage(page, wbc);
|
|
mapping_set_error(mapping, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_write_data_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
bool locked = false;
|
|
int ret;
|
|
long diff;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, DATA);
|
|
|
|
/* deal with chardevs and other special file */
|
|
if (!mapping->a_ops->writepage)
|
|
return 0;
|
|
|
|
if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
|
|
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
|
|
available_free_memory(sbi, DIRTY_DENTS))
|
|
goto skip_write;
|
|
|
|
/* during POR, we don't need to trigger writepage at all. */
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto skip_write;
|
|
|
|
diff = nr_pages_to_write(sbi, DATA, wbc);
|
|
|
|
if (!S_ISDIR(inode->i_mode)) {
|
|
mutex_lock(&sbi->writepages);
|
|
locked = true;
|
|
}
|
|
ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
|
|
if (locked)
|
|
mutex_unlock(&sbi->writepages);
|
|
|
|
f2fs_submit_merged_bio(sbi, DATA, WRITE);
|
|
|
|
remove_dirty_dir_inode(inode);
|
|
|
|
wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
|
|
return ret;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_dirty_pages(inode);
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_write_failed(struct address_space *mapping, loff_t to)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
if (to > inode->i_size) {
|
|
truncate_pagecache(inode, inode->i_size);
|
|
truncate_blocks(inode, inode->i_size, true);
|
|
}
|
|
}
|
|
|
|
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page, *ipage;
|
|
pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
|
|
struct dnode_of_data dn;
|
|
int err = 0;
|
|
|
|
trace_f2fs_write_begin(inode, pos, len, flags);
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
/*
|
|
* We should check this at this moment to avoid deadlock on inode page
|
|
* and #0 page. The locking rule for inline_data conversion should be:
|
|
* lock_page(page #0) -> lock_page(inode_page)
|
|
*/
|
|
if (index != 0) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
repeat:
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
*pagep = page;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
/* check inline_data */
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto unlock_fail;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, ipage, 0);
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
if (pos + len <= MAX_INLINE_DATA) {
|
|
read_inline_data(page, ipage);
|
|
set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
|
|
sync_inode_page(&dn);
|
|
goto put_next;
|
|
}
|
|
err = f2fs_convert_inline_page(&dn, page);
|
|
if (err)
|
|
goto put_fail;
|
|
}
|
|
err = f2fs_reserve_block(&dn, index);
|
|
if (err)
|
|
goto put_fail;
|
|
put_next:
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
|
|
return 0;
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
|
|
if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
|
|
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
|
|
unsigned end = start + len;
|
|
|
|
/* Reading beyond i_size is simple: memset to zero */
|
|
zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
|
|
goto out;
|
|
}
|
|
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
} else {
|
|
struct f2fs_io_info fio = {
|
|
.type = DATA,
|
|
.rw = READ_SYNC,
|
|
.blk_addr = dn.data_blkaddr,
|
|
};
|
|
err = f2fs_submit_page_bio(sbi, page, &fio);
|
|
if (err)
|
|
goto fail;
|
|
|
|
lock_page(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
err = -EIO;
|
|
goto fail;
|
|
}
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
}
|
|
out:
|
|
SetPageUptodate(page);
|
|
clear_cold_data(page);
|
|
return 0;
|
|
|
|
put_fail:
|
|
f2fs_put_dnode(&dn);
|
|
unlock_fail:
|
|
f2fs_unlock_op(sbi);
|
|
f2fs_put_page(page, 1);
|
|
fail:
|
|
f2fs_write_failed(mapping, pos + len);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_end(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
trace_f2fs_write_end(inode, pos, len, copied);
|
|
|
|
set_page_dirty(page);
|
|
|
|
if (pos + copied > i_size_read(inode)) {
|
|
i_size_write(inode, pos + copied);
|
|
mark_inode_dirty(inode);
|
|
update_inode_page(inode);
|
|
}
|
|
|
|
f2fs_put_page(page, 1);
|
|
return copied;
|
|
}
|
|
|
|
static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
|
|
|
|
if (iov_iter_rw(iter) == READ)
|
|
return 0;
|
|
|
|
if (offset & blocksize_mask)
|
|
return -EINVAL;
|
|
|
|
if (iov_iter_alignment(iter) & blocksize_mask)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
size_t count = iov_iter_count(iter);
|
|
int err;
|
|
|
|
/* we don't need to use inline_data strictly */
|
|
if (f2fs_has_inline_data(inode)) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (check_direct_IO(inode, iter, offset))
|
|
return 0;
|
|
|
|
trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
|
|
|
|
if (iov_iter_rw(iter) == WRITE)
|
|
__allocate_data_blocks(inode, offset, count);
|
|
|
|
err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
|
|
if (err < 0 && iov_iter_rw(iter) == WRITE)
|
|
f2fs_write_failed(mapping, offset + count);
|
|
|
|
trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
|
|
|
|
return err;
|
|
}
|
|
|
|
void f2fs_invalidate_page(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
|
|
(offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
|
|
return;
|
|
|
|
if (PageDirty(page)) {
|
|
if (inode->i_ino == F2FS_META_INO(sbi))
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
else if (inode->i_ino == F2FS_NODE_INO(sbi))
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
else
|
|
inode_dec_dirty_pages(inode);
|
|
}
|
|
ClearPagePrivate(page);
|
|
}
|
|
|
|
int f2fs_release_page(struct page *page, gfp_t wait)
|
|
{
|
|
/* If this is dirty page, keep PagePrivate */
|
|
if (PageDirty(page))
|
|
return 0;
|
|
|
|
ClearPagePrivate(page);
|
|
return 1;
|
|
}
|
|
|
|
static int f2fs_set_data_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode = mapping->host;
|
|
|
|
trace_f2fs_set_page_dirty(page, DATA);
|
|
|
|
SetPageUptodate(page);
|
|
|
|
if (f2fs_is_atomic_file(inode)) {
|
|
register_inmem_page(inode, page);
|
|
return 1;
|
|
}
|
|
|
|
mark_inode_dirty(inode);
|
|
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
update_dirty_page(inode, page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
/* we don't need to use inline_data strictly */
|
|
if (f2fs_has_inline_data(inode)) {
|
|
int err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return generic_block_bmap(mapping, block, get_data_block);
|
|
}
|
|
|
|
void init_extent_cache_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
|
|
init_rwsem(&sbi->extent_tree_lock);
|
|
INIT_LIST_HEAD(&sbi->extent_list);
|
|
spin_lock_init(&sbi->extent_lock);
|
|
sbi->total_ext_tree = 0;
|
|
atomic_set(&sbi->total_ext_node, 0);
|
|
}
|
|
|
|
int __init create_extent_cache(void)
|
|
{
|
|
extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
|
|
sizeof(struct extent_tree));
|
|
if (!extent_tree_slab)
|
|
return -ENOMEM;
|
|
extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
|
|
sizeof(struct extent_node));
|
|
if (!extent_node_slab) {
|
|
kmem_cache_destroy(extent_tree_slab);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void destroy_extent_cache(void)
|
|
{
|
|
kmem_cache_destroy(extent_node_slab);
|
|
kmem_cache_destroy(extent_tree_slab);
|
|
}
|
|
|
|
const struct address_space_operations f2fs_dblock_aops = {
|
|
.readpage = f2fs_read_data_page,
|
|
.readpages = f2fs_read_data_pages,
|
|
.writepage = f2fs_write_data_page,
|
|
.writepages = f2fs_write_data_pages,
|
|
.write_begin = f2fs_write_begin,
|
|
.write_end = f2fs_write_end,
|
|
.set_page_dirty = f2fs_set_data_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
.direct_IO = f2fs_direct_IO,
|
|
.bmap = f2fs_bmap,
|
|
};
|