mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-16 01:04:08 +08:00
e33e17ee10
When we clear the dirty bits in btrfs_delete_unused_bgs for extents in the empty block group, it results in btrfs_finish_extent_commit being unable to discard the freed extents. The block group removal patch added an alternate path to forget extents other than btrfs_finish_extent_commit. As a result, any extents that would be freed when the block group is removed aren't discarded. In my test run, with a large copy of mixed sized files followed by removal, it left nearly 2/3 of extents undiscarded. To clean up the block groups, we add the removed block group onto a list that will be discarded after transaction commit. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Tested-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
3661 lines
91 KiB
C
3661 lines
91 KiB
C
/*
|
|
* Copyright (C) 2008 Red Hat. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/ratelimit.h>
|
|
#include "ctree.h"
|
|
#include "free-space-cache.h"
|
|
#include "transaction.h"
|
|
#include "disk-io.h"
|
|
#include "extent_io.h"
|
|
#include "inode-map.h"
|
|
#include "volumes.h"
|
|
|
|
#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
|
|
#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
|
|
|
|
struct btrfs_trim_range {
|
|
u64 start;
|
|
u64 bytes;
|
|
struct list_head list;
|
|
};
|
|
|
|
static int link_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info);
|
|
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info);
|
|
|
|
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 offset)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_key location;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_free_space_header *header;
|
|
struct extent_buffer *leaf;
|
|
struct inode *inode = NULL;
|
|
int ret;
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = offset;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
if (ret > 0) {
|
|
btrfs_release_path(path);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
header = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_free_space_header);
|
|
btrfs_free_space_key(leaf, header, &disk_key);
|
|
btrfs_disk_key_to_cpu(&location, &disk_key);
|
|
btrfs_release_path(path);
|
|
|
|
inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOENT);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
if (is_bad_inode(inode)) {
|
|
iput(inode);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
|
|
mapping_set_gfp_mask(inode->i_mapping,
|
|
mapping_gfp_mask(inode->i_mapping) &
|
|
~(__GFP_FS | __GFP_HIGHMEM));
|
|
|
|
return inode;
|
|
}
|
|
|
|
struct inode *lookup_free_space_inode(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache
|
|
*block_group, struct btrfs_path *path)
|
|
{
|
|
struct inode *inode = NULL;
|
|
u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->inode)
|
|
inode = igrab(block_group->inode);
|
|
spin_unlock(&block_group->lock);
|
|
if (inode)
|
|
return inode;
|
|
|
|
inode = __lookup_free_space_inode(root, path,
|
|
block_group->key.objectid);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (!((BTRFS_I(inode)->flags & flags) == flags)) {
|
|
btrfs_info(root->fs_info,
|
|
"Old style space inode found, converting.");
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
|
|
BTRFS_INODE_NODATACOW;
|
|
block_group->disk_cache_state = BTRFS_DC_CLEAR;
|
|
}
|
|
|
|
if (!block_group->iref) {
|
|
block_group->inode = igrab(inode);
|
|
block_group->iref = 1;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
return inode;
|
|
}
|
|
|
|
static int __create_free_space_inode(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
u64 ino, u64 offset)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_free_space_header *header;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct extent_buffer *leaf;
|
|
u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
|
|
int ret;
|
|
|
|
ret = btrfs_insert_empty_inode(trans, root, path, ino);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* We inline crc's for the free disk space cache */
|
|
if (ino != BTRFS_FREE_INO_OBJECTID)
|
|
flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
|
|
|
|
leaf = path->nodes[0];
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
btrfs_item_key(leaf, &disk_key, path->slots[0]);
|
|
memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
|
|
sizeof(*inode_item));
|
|
btrfs_set_inode_generation(leaf, inode_item, trans->transid);
|
|
btrfs_set_inode_size(leaf, inode_item, 0);
|
|
btrfs_set_inode_nbytes(leaf, inode_item, 0);
|
|
btrfs_set_inode_uid(leaf, inode_item, 0);
|
|
btrfs_set_inode_gid(leaf, inode_item, 0);
|
|
btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
|
|
btrfs_set_inode_flags(leaf, inode_item, flags);
|
|
btrfs_set_inode_nlink(leaf, inode_item, 1);
|
|
btrfs_set_inode_transid(leaf, inode_item, trans->transid);
|
|
btrfs_set_inode_block_group(leaf, inode_item, offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = offset;
|
|
key.type = 0;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(struct btrfs_free_space_header));
|
|
if (ret < 0) {
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
header = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_free_space_header);
|
|
memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
|
|
btrfs_set_free_space_key(leaf, header, &disk_key);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int create_free_space_inode(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_path *path)
|
|
{
|
|
int ret;
|
|
u64 ino;
|
|
|
|
ret = btrfs_find_free_objectid(root, &ino);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return __create_free_space_inode(root, trans, path, ino,
|
|
block_group->key.objectid);
|
|
}
|
|
|
|
int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *rsv)
|
|
{
|
|
u64 needed_bytes;
|
|
int ret;
|
|
|
|
/* 1 for slack space, 1 for updating the inode */
|
|
needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
|
|
btrfs_calc_trans_metadata_size(root, 1);
|
|
|
|
spin_lock(&rsv->lock);
|
|
if (rsv->reserved < needed_bytes)
|
|
ret = -ENOSPC;
|
|
else
|
|
ret = 0;
|
|
spin_unlock(&rsv->lock);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_truncate_free_space_cache(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct inode *inode)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_path *path = btrfs_alloc_path();
|
|
bool locked = false;
|
|
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (block_group) {
|
|
locked = true;
|
|
mutex_lock(&trans->transaction->cache_write_mutex);
|
|
if (!list_empty(&block_group->io_list)) {
|
|
list_del_init(&block_group->io_list);
|
|
|
|
btrfs_wait_cache_io(root, trans, block_group,
|
|
&block_group->io_ctl, path,
|
|
block_group->key.objectid);
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
|
|
/*
|
|
* now that we've truncated the cache away, its no longer
|
|
* setup or written
|
|
*/
|
|
spin_lock(&block_group->lock);
|
|
block_group->disk_cache_state = BTRFS_DC_CLEAR;
|
|
spin_unlock(&block_group->lock);
|
|
}
|
|
btrfs_free_path(path);
|
|
|
|
btrfs_i_size_write(inode, 0);
|
|
truncate_pagecache(inode, 0);
|
|
|
|
/*
|
|
* We don't need an orphan item because truncating the free space cache
|
|
* will never be split across transactions.
|
|
* We don't need to check for -EAGAIN because we're a free space
|
|
* cache inode
|
|
*/
|
|
ret = btrfs_truncate_inode_items(trans, root, inode,
|
|
0, BTRFS_EXTENT_DATA_KEY);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
|
|
fail:
|
|
if (locked)
|
|
mutex_unlock(&trans->transaction->cache_write_mutex);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int readahead_cache(struct inode *inode)
|
|
{
|
|
struct file_ra_state *ra;
|
|
unsigned long last_index;
|
|
|
|
ra = kzalloc(sizeof(*ra), GFP_NOFS);
|
|
if (!ra)
|
|
return -ENOMEM;
|
|
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
|
|
|
|
kfree(ra);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
|
|
struct btrfs_root *root, int write)
|
|
{
|
|
int num_pages;
|
|
int check_crcs = 0;
|
|
|
|
num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
|
|
|
|
if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
|
|
check_crcs = 1;
|
|
|
|
/* Make sure we can fit our crcs into the first page */
|
|
if (write && check_crcs &&
|
|
(num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
|
|
return -ENOSPC;
|
|
|
|
memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
|
|
|
|
io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
|
|
if (!io_ctl->pages)
|
|
return -ENOMEM;
|
|
|
|
io_ctl->num_pages = num_pages;
|
|
io_ctl->root = root;
|
|
io_ctl->check_crcs = check_crcs;
|
|
io_ctl->inode = inode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
|
|
{
|
|
kfree(io_ctl->pages);
|
|
io_ctl->pages = NULL;
|
|
}
|
|
|
|
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
|
|
{
|
|
if (io_ctl->cur) {
|
|
io_ctl->cur = NULL;
|
|
io_ctl->orig = NULL;
|
|
}
|
|
}
|
|
|
|
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
|
|
{
|
|
ASSERT(io_ctl->index < io_ctl->num_pages);
|
|
io_ctl->page = io_ctl->pages[io_ctl->index++];
|
|
io_ctl->cur = page_address(io_ctl->page);
|
|
io_ctl->orig = io_ctl->cur;
|
|
io_ctl->size = PAGE_CACHE_SIZE;
|
|
if (clear)
|
|
memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
|
|
}
|
|
|
|
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
|
|
{
|
|
int i;
|
|
|
|
io_ctl_unmap_page(io_ctl);
|
|
|
|
for (i = 0; i < io_ctl->num_pages; i++) {
|
|
if (io_ctl->pages[i]) {
|
|
ClearPageChecked(io_ctl->pages[i]);
|
|
unlock_page(io_ctl->pages[i]);
|
|
page_cache_release(io_ctl->pages[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
|
|
int uptodate)
|
|
{
|
|
struct page *page;
|
|
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
|
|
int i;
|
|
|
|
for (i = 0; i < io_ctl->num_pages; i++) {
|
|
page = find_or_create_page(inode->i_mapping, i, mask);
|
|
if (!page) {
|
|
io_ctl_drop_pages(io_ctl);
|
|
return -ENOMEM;
|
|
}
|
|
io_ctl->pages[i] = page;
|
|
if (uptodate && !PageUptodate(page)) {
|
|
btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
btrfs_err(BTRFS_I(inode)->root->fs_info,
|
|
"error reading free space cache");
|
|
io_ctl_drop_pages(io_ctl);
|
|
return -EIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < io_ctl->num_pages; i++) {
|
|
clear_page_dirty_for_io(io_ctl->pages[i]);
|
|
set_page_extent_mapped(io_ctl->pages[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
|
|
{
|
|
__le64 *val;
|
|
|
|
io_ctl_map_page(io_ctl, 1);
|
|
|
|
/*
|
|
* Skip the csum areas. If we don't check crcs then we just have a
|
|
* 64bit chunk at the front of the first page.
|
|
*/
|
|
if (io_ctl->check_crcs) {
|
|
io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
|
|
io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
|
|
} else {
|
|
io_ctl->cur += sizeof(u64);
|
|
io_ctl->size -= sizeof(u64) * 2;
|
|
}
|
|
|
|
val = io_ctl->cur;
|
|
*val = cpu_to_le64(generation);
|
|
io_ctl->cur += sizeof(u64);
|
|
}
|
|
|
|
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
|
|
{
|
|
__le64 *gen;
|
|
|
|
/*
|
|
* Skip the crc area. If we don't check crcs then we just have a 64bit
|
|
* chunk at the front of the first page.
|
|
*/
|
|
if (io_ctl->check_crcs) {
|
|
io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
|
|
io_ctl->size -= sizeof(u64) +
|
|
(sizeof(u32) * io_ctl->num_pages);
|
|
} else {
|
|
io_ctl->cur += sizeof(u64);
|
|
io_ctl->size -= sizeof(u64) * 2;
|
|
}
|
|
|
|
gen = io_ctl->cur;
|
|
if (le64_to_cpu(*gen) != generation) {
|
|
printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
|
|
"(%Lu) does not match inode (%Lu)\n", *gen,
|
|
generation);
|
|
io_ctl_unmap_page(io_ctl);
|
|
return -EIO;
|
|
}
|
|
io_ctl->cur += sizeof(u64);
|
|
return 0;
|
|
}
|
|
|
|
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
|
|
{
|
|
u32 *tmp;
|
|
u32 crc = ~(u32)0;
|
|
unsigned offset = 0;
|
|
|
|
if (!io_ctl->check_crcs) {
|
|
io_ctl_unmap_page(io_ctl);
|
|
return;
|
|
}
|
|
|
|
if (index == 0)
|
|
offset = sizeof(u32) * io_ctl->num_pages;
|
|
|
|
crc = btrfs_csum_data(io_ctl->orig + offset, crc,
|
|
PAGE_CACHE_SIZE - offset);
|
|
btrfs_csum_final(crc, (char *)&crc);
|
|
io_ctl_unmap_page(io_ctl);
|
|
tmp = page_address(io_ctl->pages[0]);
|
|
tmp += index;
|
|
*tmp = crc;
|
|
}
|
|
|
|
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
|
|
{
|
|
u32 *tmp, val;
|
|
u32 crc = ~(u32)0;
|
|
unsigned offset = 0;
|
|
|
|
if (!io_ctl->check_crcs) {
|
|
io_ctl_map_page(io_ctl, 0);
|
|
return 0;
|
|
}
|
|
|
|
if (index == 0)
|
|
offset = sizeof(u32) * io_ctl->num_pages;
|
|
|
|
tmp = page_address(io_ctl->pages[0]);
|
|
tmp += index;
|
|
val = *tmp;
|
|
|
|
io_ctl_map_page(io_ctl, 0);
|
|
crc = btrfs_csum_data(io_ctl->orig + offset, crc,
|
|
PAGE_CACHE_SIZE - offset);
|
|
btrfs_csum_final(crc, (char *)&crc);
|
|
if (val != crc) {
|
|
printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
|
|
"space cache\n");
|
|
io_ctl_unmap_page(io_ctl);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
|
|
void *bitmap)
|
|
{
|
|
struct btrfs_free_space_entry *entry;
|
|
|
|
if (!io_ctl->cur)
|
|
return -ENOSPC;
|
|
|
|
entry = io_ctl->cur;
|
|
entry->offset = cpu_to_le64(offset);
|
|
entry->bytes = cpu_to_le64(bytes);
|
|
entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
|
|
BTRFS_FREE_SPACE_EXTENT;
|
|
io_ctl->cur += sizeof(struct btrfs_free_space_entry);
|
|
io_ctl->size -= sizeof(struct btrfs_free_space_entry);
|
|
|
|
if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
|
|
return 0;
|
|
|
|
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
|
|
|
|
/* No more pages to map */
|
|
if (io_ctl->index >= io_ctl->num_pages)
|
|
return 0;
|
|
|
|
/* map the next page */
|
|
io_ctl_map_page(io_ctl, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
|
|
{
|
|
if (!io_ctl->cur)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* If we aren't at the start of the current page, unmap this one and
|
|
* map the next one if there is any left.
|
|
*/
|
|
if (io_ctl->cur != io_ctl->orig) {
|
|
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
|
|
if (io_ctl->index >= io_ctl->num_pages)
|
|
return -ENOSPC;
|
|
io_ctl_map_page(io_ctl, 0);
|
|
}
|
|
|
|
memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
|
|
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
|
|
if (io_ctl->index < io_ctl->num_pages)
|
|
io_ctl_map_page(io_ctl, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
|
|
{
|
|
/*
|
|
* If we're not on the boundary we know we've modified the page and we
|
|
* need to crc the page.
|
|
*/
|
|
if (io_ctl->cur != io_ctl->orig)
|
|
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
|
|
else
|
|
io_ctl_unmap_page(io_ctl);
|
|
|
|
while (io_ctl->index < io_ctl->num_pages) {
|
|
io_ctl_map_page(io_ctl, 1);
|
|
io_ctl_set_crc(io_ctl, io_ctl->index - 1);
|
|
}
|
|
}
|
|
|
|
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
|
|
struct btrfs_free_space *entry, u8 *type)
|
|
{
|
|
struct btrfs_free_space_entry *e;
|
|
int ret;
|
|
|
|
if (!io_ctl->cur) {
|
|
ret = io_ctl_check_crc(io_ctl, io_ctl->index);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
e = io_ctl->cur;
|
|
entry->offset = le64_to_cpu(e->offset);
|
|
entry->bytes = le64_to_cpu(e->bytes);
|
|
*type = e->type;
|
|
io_ctl->cur += sizeof(struct btrfs_free_space_entry);
|
|
io_ctl->size -= sizeof(struct btrfs_free_space_entry);
|
|
|
|
if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
|
|
return 0;
|
|
|
|
io_ctl_unmap_page(io_ctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
|
|
struct btrfs_free_space *entry)
|
|
{
|
|
int ret;
|
|
|
|
ret = io_ctl_check_crc(io_ctl, io_ctl->index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
|
|
io_ctl_unmap_page(io_ctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Since we attach pinned extents after the fact we can have contiguous sections
|
|
* of free space that are split up in entries. This poses a problem with the
|
|
* tree logging stuff since it could have allocated across what appears to be 2
|
|
* entries since we would have merged the entries when adding the pinned extents
|
|
* back to the free space cache. So run through the space cache that we just
|
|
* loaded and merge contiguous entries. This will make the log replay stuff not
|
|
* blow up and it will make for nicer allocator behavior.
|
|
*/
|
|
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
struct btrfs_free_space *e, *prev = NULL;
|
|
struct rb_node *n;
|
|
|
|
again:
|
|
spin_lock(&ctl->tree_lock);
|
|
for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
|
|
e = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (!prev)
|
|
goto next;
|
|
if (e->bitmap || prev->bitmap)
|
|
goto next;
|
|
if (prev->offset + prev->bytes == e->offset) {
|
|
unlink_free_space(ctl, prev);
|
|
unlink_free_space(ctl, e);
|
|
prev->bytes += e->bytes;
|
|
kmem_cache_free(btrfs_free_space_cachep, e);
|
|
link_free_space(ctl, prev);
|
|
prev = NULL;
|
|
spin_unlock(&ctl->tree_lock);
|
|
goto again;
|
|
}
|
|
next:
|
|
prev = e;
|
|
}
|
|
spin_unlock(&ctl->tree_lock);
|
|
}
|
|
|
|
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
|
|
struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_path *path, u64 offset)
|
|
{
|
|
struct btrfs_free_space_header *header;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_io_ctl io_ctl;
|
|
struct btrfs_key key;
|
|
struct btrfs_free_space *e, *n;
|
|
LIST_HEAD(bitmaps);
|
|
u64 num_entries;
|
|
u64 num_bitmaps;
|
|
u64 generation;
|
|
u8 type;
|
|
int ret = 0;
|
|
|
|
/* Nothing in the space cache, goodbye */
|
|
if (!i_size_read(inode))
|
|
return 0;
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = offset;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
return 0;
|
|
else if (ret > 0) {
|
|
btrfs_release_path(path);
|
|
return 0;
|
|
}
|
|
|
|
ret = -1;
|
|
|
|
leaf = path->nodes[0];
|
|
header = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_free_space_header);
|
|
num_entries = btrfs_free_space_entries(leaf, header);
|
|
num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
|
|
generation = btrfs_free_space_generation(leaf, header);
|
|
btrfs_release_path(path);
|
|
|
|
if (!BTRFS_I(inode)->generation) {
|
|
btrfs_info(root->fs_info,
|
|
"The free space cache file (%llu) is invalid. skip it\n",
|
|
offset);
|
|
return 0;
|
|
}
|
|
|
|
if (BTRFS_I(inode)->generation != generation) {
|
|
btrfs_err(root->fs_info,
|
|
"free space inode generation (%llu) "
|
|
"did not match free space cache generation (%llu)",
|
|
BTRFS_I(inode)->generation, generation);
|
|
return 0;
|
|
}
|
|
|
|
if (!num_entries)
|
|
return 0;
|
|
|
|
ret = io_ctl_init(&io_ctl, inode, root, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = readahead_cache(inode);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = io_ctl_check_crc(&io_ctl, 0);
|
|
if (ret)
|
|
goto free_cache;
|
|
|
|
ret = io_ctl_check_generation(&io_ctl, generation);
|
|
if (ret)
|
|
goto free_cache;
|
|
|
|
while (num_entries) {
|
|
e = kmem_cache_zalloc(btrfs_free_space_cachep,
|
|
GFP_NOFS);
|
|
if (!e)
|
|
goto free_cache;
|
|
|
|
ret = io_ctl_read_entry(&io_ctl, e, &type);
|
|
if (ret) {
|
|
kmem_cache_free(btrfs_free_space_cachep, e);
|
|
goto free_cache;
|
|
}
|
|
|
|
if (!e->bytes) {
|
|
kmem_cache_free(btrfs_free_space_cachep, e);
|
|
goto free_cache;
|
|
}
|
|
|
|
if (type == BTRFS_FREE_SPACE_EXTENT) {
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = link_free_space(ctl, e);
|
|
spin_unlock(&ctl->tree_lock);
|
|
if (ret) {
|
|
btrfs_err(root->fs_info,
|
|
"Duplicate entries in free space cache, dumping");
|
|
kmem_cache_free(btrfs_free_space_cachep, e);
|
|
goto free_cache;
|
|
}
|
|
} else {
|
|
ASSERT(num_bitmaps);
|
|
num_bitmaps--;
|
|
e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
|
|
if (!e->bitmap) {
|
|
kmem_cache_free(
|
|
btrfs_free_space_cachep, e);
|
|
goto free_cache;
|
|
}
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = link_free_space(ctl, e);
|
|
ctl->total_bitmaps++;
|
|
ctl->op->recalc_thresholds(ctl);
|
|
spin_unlock(&ctl->tree_lock);
|
|
if (ret) {
|
|
btrfs_err(root->fs_info,
|
|
"Duplicate entries in free space cache, dumping");
|
|
kmem_cache_free(btrfs_free_space_cachep, e);
|
|
goto free_cache;
|
|
}
|
|
list_add_tail(&e->list, &bitmaps);
|
|
}
|
|
|
|
num_entries--;
|
|
}
|
|
|
|
io_ctl_unmap_page(&io_ctl);
|
|
|
|
/*
|
|
* We add the bitmaps at the end of the entries in order that
|
|
* the bitmap entries are added to the cache.
|
|
*/
|
|
list_for_each_entry_safe(e, n, &bitmaps, list) {
|
|
list_del_init(&e->list);
|
|
ret = io_ctl_read_bitmap(&io_ctl, e);
|
|
if (ret)
|
|
goto free_cache;
|
|
}
|
|
|
|
io_ctl_drop_pages(&io_ctl);
|
|
merge_space_tree(ctl);
|
|
ret = 1;
|
|
out:
|
|
io_ctl_free(&io_ctl);
|
|
return ret;
|
|
free_cache:
|
|
io_ctl_drop_pages(&io_ctl);
|
|
__btrfs_remove_free_space_cache(ctl);
|
|
goto out;
|
|
}
|
|
|
|
int load_free_space_cache(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct inode *inode;
|
|
struct btrfs_path *path;
|
|
int ret = 0;
|
|
bool matched;
|
|
u64 used = btrfs_block_group_used(&block_group->item);
|
|
|
|
/*
|
|
* If this block group has been marked to be cleared for one reason or
|
|
* another then we can't trust the on disk cache, so just return.
|
|
*/
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
|
|
spin_unlock(&block_group->lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return 0;
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
|
|
inode = lookup_free_space_inode(root, block_group, path);
|
|
if (IS_ERR(inode)) {
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
/* We may have converted the inode and made the cache invalid. */
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
|
|
spin_unlock(&block_group->lock);
|
|
btrfs_free_path(path);
|
|
goto out;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
|
|
path, block_group->key.objectid);
|
|
btrfs_free_path(path);
|
|
if (ret <= 0)
|
|
goto out;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
matched = (ctl->free_space == (block_group->key.offset - used -
|
|
block_group->bytes_super));
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
if (!matched) {
|
|
__btrfs_remove_free_space_cache(ctl);
|
|
btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
|
|
block_group->key.objectid);
|
|
ret = -1;
|
|
}
|
|
out:
|
|
if (ret < 0) {
|
|
/* This cache is bogus, make sure it gets cleared */
|
|
spin_lock(&block_group->lock);
|
|
block_group->disk_cache_state = BTRFS_DC_CLEAR;
|
|
spin_unlock(&block_group->lock);
|
|
ret = 0;
|
|
|
|
btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
|
|
block_group->key.objectid);
|
|
}
|
|
|
|
iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
static noinline_for_stack
|
|
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
|
|
struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_block_group_cache *block_group,
|
|
int *entries, int *bitmaps,
|
|
struct list_head *bitmap_list)
|
|
{
|
|
int ret;
|
|
struct btrfs_free_cluster *cluster = NULL;
|
|
struct btrfs_free_cluster *cluster_locked = NULL;
|
|
struct rb_node *node = rb_first(&ctl->free_space_offset);
|
|
struct btrfs_trim_range *trim_entry;
|
|
|
|
/* Get the cluster for this block_group if it exists */
|
|
if (block_group && !list_empty(&block_group->cluster_list)) {
|
|
cluster = list_entry(block_group->cluster_list.next,
|
|
struct btrfs_free_cluster,
|
|
block_group_list);
|
|
}
|
|
|
|
if (!node && cluster) {
|
|
cluster_locked = cluster;
|
|
spin_lock(&cluster_locked->lock);
|
|
node = rb_first(&cluster->root);
|
|
cluster = NULL;
|
|
}
|
|
|
|
/* Write out the extent entries */
|
|
while (node) {
|
|
struct btrfs_free_space *e;
|
|
|
|
e = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
*entries += 1;
|
|
|
|
ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
|
|
e->bitmap);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
if (e->bitmap) {
|
|
list_add_tail(&e->list, bitmap_list);
|
|
*bitmaps += 1;
|
|
}
|
|
node = rb_next(node);
|
|
if (!node && cluster) {
|
|
node = rb_first(&cluster->root);
|
|
cluster_locked = cluster;
|
|
spin_lock(&cluster_locked->lock);
|
|
cluster = NULL;
|
|
}
|
|
}
|
|
if (cluster_locked) {
|
|
spin_unlock(&cluster_locked->lock);
|
|
cluster_locked = NULL;
|
|
}
|
|
|
|
/*
|
|
* Make sure we don't miss any range that was removed from our rbtree
|
|
* because trimming is running. Otherwise after a umount+mount (or crash
|
|
* after committing the transaction) we would leak free space and get
|
|
* an inconsistent free space cache report from fsck.
|
|
*/
|
|
list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
|
|
ret = io_ctl_add_entry(io_ctl, trim_entry->start,
|
|
trim_entry->bytes, NULL);
|
|
if (ret)
|
|
goto fail;
|
|
*entries += 1;
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
if (cluster_locked)
|
|
spin_unlock(&cluster_locked->lock);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static noinline_for_stack int
|
|
update_cache_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode,
|
|
struct btrfs_path *path, u64 offset,
|
|
int entries, int bitmaps)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_free_space_header *header;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = offset;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0) {
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
|
|
EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
|
|
GFP_NOFS);
|
|
goto fail;
|
|
}
|
|
leaf = path->nodes[0];
|
|
if (ret > 0) {
|
|
struct btrfs_key found_key;
|
|
ASSERT(path->slots[0]);
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
|
|
found_key.offset != offset) {
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
|
|
inode->i_size - 1,
|
|
EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
|
|
NULL, GFP_NOFS);
|
|
btrfs_release_path(path);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
BTRFS_I(inode)->generation = trans->transid;
|
|
header = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_free_space_header);
|
|
btrfs_set_free_space_entries(leaf, header, entries);
|
|
btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
|
|
btrfs_set_free_space_generation(leaf, header, trans->transid);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
static noinline_for_stack int
|
|
write_pinned_extent_entries(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_io_ctl *io_ctl,
|
|
int *entries)
|
|
{
|
|
u64 start, extent_start, extent_end, len;
|
|
struct extent_io_tree *unpin = NULL;
|
|
int ret;
|
|
|
|
if (!block_group)
|
|
return 0;
|
|
|
|
/*
|
|
* We want to add any pinned extents to our free space cache
|
|
* so we don't leak the space
|
|
*
|
|
* We shouldn't have switched the pinned extents yet so this is the
|
|
* right one
|
|
*/
|
|
unpin = root->fs_info->pinned_extents;
|
|
|
|
start = block_group->key.objectid;
|
|
|
|
while (start < block_group->key.objectid + block_group->key.offset) {
|
|
ret = find_first_extent_bit(unpin, start,
|
|
&extent_start, &extent_end,
|
|
EXTENT_DIRTY, NULL);
|
|
if (ret)
|
|
return 0;
|
|
|
|
/* This pinned extent is out of our range */
|
|
if (extent_start >= block_group->key.objectid +
|
|
block_group->key.offset)
|
|
return 0;
|
|
|
|
extent_start = max(extent_start, start);
|
|
extent_end = min(block_group->key.objectid +
|
|
block_group->key.offset, extent_end + 1);
|
|
len = extent_end - extent_start;
|
|
|
|
*entries += 1;
|
|
ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
|
|
if (ret)
|
|
return -ENOSPC;
|
|
|
|
start = extent_end;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline_for_stack int
|
|
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
|
|
{
|
|
struct list_head *pos, *n;
|
|
int ret;
|
|
|
|
/* Write out the bitmaps */
|
|
list_for_each_safe(pos, n, bitmap_list) {
|
|
struct btrfs_free_space *entry =
|
|
list_entry(pos, struct btrfs_free_space, list);
|
|
|
|
ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
|
|
if (ret)
|
|
return -ENOSPC;
|
|
list_del_init(&entry->list);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flush_dirty_cache(struct inode *inode)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
if (ret)
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
|
|
EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
|
|
GFP_NOFS);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void noinline_for_stack
|
|
cleanup_bitmap_list(struct list_head *bitmap_list)
|
|
{
|
|
struct list_head *pos, *n;
|
|
|
|
list_for_each_safe(pos, n, bitmap_list) {
|
|
struct btrfs_free_space *entry =
|
|
list_entry(pos, struct btrfs_free_space, list);
|
|
list_del_init(&entry->list);
|
|
}
|
|
}
|
|
|
|
static void noinline_for_stack
|
|
cleanup_write_cache_enospc(struct inode *inode,
|
|
struct btrfs_io_ctl *io_ctl,
|
|
struct extent_state **cached_state,
|
|
struct list_head *bitmap_list)
|
|
{
|
|
io_ctl_drop_pages(io_ctl);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
|
|
i_size_read(inode) - 1, cached_state,
|
|
GFP_NOFS);
|
|
}
|
|
|
|
int btrfs_wait_cache_io(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_io_ctl *io_ctl,
|
|
struct btrfs_path *path, u64 offset)
|
|
{
|
|
int ret;
|
|
struct inode *inode = io_ctl->inode;
|
|
|
|
if (!inode)
|
|
return 0;
|
|
|
|
if (block_group)
|
|
root = root->fs_info->tree_root;
|
|
|
|
/* Flush the dirty pages in the cache file. */
|
|
ret = flush_dirty_cache(inode);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Update the cache item to tell everyone this cache file is valid. */
|
|
ret = update_cache_item(trans, root, inode, path, offset,
|
|
io_ctl->entries, io_ctl->bitmaps);
|
|
out:
|
|
io_ctl_free(io_ctl);
|
|
if (ret) {
|
|
invalidate_inode_pages2(inode->i_mapping);
|
|
BTRFS_I(inode)->generation = 0;
|
|
if (block_group) {
|
|
#ifdef DEBUG
|
|
btrfs_err(root->fs_info,
|
|
"failed to write free space cache for block group %llu",
|
|
block_group->key.objectid);
|
|
#endif
|
|
}
|
|
}
|
|
btrfs_update_inode(trans, root, inode);
|
|
|
|
if (block_group) {
|
|
/* the dirty list is protected by the dirty_bgs_lock */
|
|
spin_lock(&trans->transaction->dirty_bgs_lock);
|
|
|
|
/* the disk_cache_state is protected by the block group lock */
|
|
spin_lock(&block_group->lock);
|
|
|
|
/*
|
|
* only mark this as written if we didn't get put back on
|
|
* the dirty list while waiting for IO. Otherwise our
|
|
* cache state won't be right, and we won't get written again
|
|
*/
|
|
if (!ret && list_empty(&block_group->dirty_list))
|
|
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
|
|
else if (ret)
|
|
block_group->disk_cache_state = BTRFS_DC_ERROR;
|
|
|
|
spin_unlock(&block_group->lock);
|
|
spin_unlock(&trans->transaction->dirty_bgs_lock);
|
|
io_ctl->inode = NULL;
|
|
iput(inode);
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/**
|
|
* __btrfs_write_out_cache - write out cached info to an inode
|
|
* @root - the root the inode belongs to
|
|
* @ctl - the free space cache we are going to write out
|
|
* @block_group - the block_group for this cache if it belongs to a block_group
|
|
* @trans - the trans handle
|
|
* @path - the path to use
|
|
* @offset - the offset for the key we'll insert
|
|
*
|
|
* This function writes out a free space cache struct to disk for quick recovery
|
|
* on mount. This will return 0 if it was successfull in writing the cache out,
|
|
* or an errno if it was not.
|
|
*/
|
|
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
|
|
struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_io_ctl *io_ctl,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path, u64 offset)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
LIST_HEAD(bitmap_list);
|
|
int entries = 0;
|
|
int bitmaps = 0;
|
|
int ret;
|
|
int must_iput = 0;
|
|
|
|
if (!i_size_read(inode))
|
|
return -EIO;
|
|
|
|
WARN_ON(io_ctl->pages);
|
|
ret = io_ctl_init(io_ctl, inode, root, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
|
|
down_write(&block_group->data_rwsem);
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->delalloc_bytes) {
|
|
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
|
|
spin_unlock(&block_group->lock);
|
|
up_write(&block_group->data_rwsem);
|
|
BTRFS_I(inode)->generation = 0;
|
|
ret = 0;
|
|
must_iput = 1;
|
|
goto out;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
}
|
|
|
|
/* Lock all pages first so we can lock the extent safely. */
|
|
ret = io_ctl_prepare_pages(io_ctl, inode, 0);
|
|
if (ret)
|
|
goto out;
|
|
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
|
|
0, &cached_state);
|
|
|
|
io_ctl_set_generation(io_ctl, trans->transid);
|
|
|
|
mutex_lock(&ctl->cache_writeout_mutex);
|
|
/* Write out the extent entries in the free space cache */
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = write_cache_extent_entries(io_ctl, ctl,
|
|
block_group, &entries, &bitmaps,
|
|
&bitmap_list);
|
|
if (ret)
|
|
goto out_nospc_locked;
|
|
|
|
/*
|
|
* Some spaces that are freed in the current transaction are pinned,
|
|
* they will be added into free space cache after the transaction is
|
|
* committed, we shouldn't lose them.
|
|
*
|
|
* If this changes while we are working we'll get added back to
|
|
* the dirty list and redo it. No locking needed
|
|
*/
|
|
ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
|
|
if (ret)
|
|
goto out_nospc_locked;
|
|
|
|
/*
|
|
* At last, we write out all the bitmaps and keep cache_writeout_mutex
|
|
* locked while doing it because a concurrent trim can be manipulating
|
|
* or freeing the bitmap.
|
|
*/
|
|
ret = write_bitmap_entries(io_ctl, &bitmap_list);
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
if (ret)
|
|
goto out_nospc;
|
|
|
|
/* Zero out the rest of the pages just to make sure */
|
|
io_ctl_zero_remaining_pages(io_ctl);
|
|
|
|
/* Everything is written out, now we dirty the pages in the file. */
|
|
ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
|
|
0, i_size_read(inode), &cached_state);
|
|
if (ret)
|
|
goto out_nospc;
|
|
|
|
if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
|
|
up_write(&block_group->data_rwsem);
|
|
/*
|
|
* Release the pages and unlock the extent, we will flush
|
|
* them out later
|
|
*/
|
|
io_ctl_drop_pages(io_ctl);
|
|
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
|
|
i_size_read(inode) - 1, &cached_state, GFP_NOFS);
|
|
|
|
/*
|
|
* at this point the pages are under IO and we're happy,
|
|
* The caller is responsible for waiting on them and updating the
|
|
* the cache and the inode
|
|
*/
|
|
io_ctl->entries = entries;
|
|
io_ctl->bitmaps = bitmaps;
|
|
|
|
ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
io_ctl->inode = NULL;
|
|
io_ctl_free(io_ctl);
|
|
if (ret) {
|
|
invalidate_inode_pages2(inode->i_mapping);
|
|
BTRFS_I(inode)->generation = 0;
|
|
}
|
|
btrfs_update_inode(trans, root, inode);
|
|
if (must_iput)
|
|
iput(inode);
|
|
return ret;
|
|
|
|
out_nospc_locked:
|
|
cleanup_bitmap_list(&bitmap_list);
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
|
|
out_nospc:
|
|
cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
|
|
|
|
if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
|
|
up_write(&block_group->data_rwsem);
|
|
|
|
goto out;
|
|
}
|
|
|
|
int btrfs_write_out_cache(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct inode *inode;
|
|
int ret = 0;
|
|
|
|
root = root->fs_info->tree_root;
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
|
|
spin_unlock(&block_group->lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
inode = lookup_free_space_inode(root, block_group, path);
|
|
if (IS_ERR(inode))
|
|
return 0;
|
|
|
|
ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
|
|
&block_group->io_ctl, trans,
|
|
path, block_group->key.objectid);
|
|
if (ret) {
|
|
#ifdef DEBUG
|
|
btrfs_err(root->fs_info,
|
|
"failed to write free space cache for block group %llu",
|
|
block_group->key.objectid);
|
|
#endif
|
|
spin_lock(&block_group->lock);
|
|
block_group->disk_cache_state = BTRFS_DC_ERROR;
|
|
spin_unlock(&block_group->lock);
|
|
|
|
block_group->io_ctl.inode = NULL;
|
|
iput(inode);
|
|
}
|
|
|
|
/*
|
|
* if ret == 0 the caller is expected to call btrfs_wait_cache_io
|
|
* to wait for IO and put the inode
|
|
*/
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
|
|
u64 offset)
|
|
{
|
|
ASSERT(offset >= bitmap_start);
|
|
offset -= bitmap_start;
|
|
return (unsigned long)(div_u64(offset, unit));
|
|
}
|
|
|
|
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
|
|
{
|
|
return (unsigned long)(div_u64(bytes, unit));
|
|
}
|
|
|
|
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
u64 offset)
|
|
{
|
|
u64 bitmap_start;
|
|
u32 bytes_per_bitmap;
|
|
|
|
bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
|
|
bitmap_start = offset - ctl->start;
|
|
bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
|
|
bitmap_start *= bytes_per_bitmap;
|
|
bitmap_start += ctl->start;
|
|
|
|
return bitmap_start;
|
|
}
|
|
|
|
static int tree_insert_offset(struct rb_root *root, u64 offset,
|
|
struct rb_node *node, int bitmap)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_free_space *info;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
info = rb_entry(parent, struct btrfs_free_space, offset_index);
|
|
|
|
if (offset < info->offset) {
|
|
p = &(*p)->rb_left;
|
|
} else if (offset > info->offset) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
/*
|
|
* we could have a bitmap entry and an extent entry
|
|
* share the same offset. If this is the case, we want
|
|
* the extent entry to always be found first if we do a
|
|
* linear search through the tree, since we want to have
|
|
* the quickest allocation time, and allocating from an
|
|
* extent is faster than allocating from a bitmap. So
|
|
* if we're inserting a bitmap and we find an entry at
|
|
* this offset, we want to go right, or after this entry
|
|
* logically. If we are inserting an extent and we've
|
|
* found a bitmap, we want to go left, or before
|
|
* logically.
|
|
*/
|
|
if (bitmap) {
|
|
if (info->bitmap) {
|
|
WARN_ON_ONCE(1);
|
|
return -EEXIST;
|
|
}
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
if (!info->bitmap) {
|
|
WARN_ON_ONCE(1);
|
|
return -EEXIST;
|
|
}
|
|
p = &(*p)->rb_left;
|
|
}
|
|
}
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* searches the tree for the given offset.
|
|
*
|
|
* fuzzy - If this is set, then we are trying to make an allocation, and we just
|
|
* want a section that has at least bytes size and comes at or after the given
|
|
* offset.
|
|
*/
|
|
static struct btrfs_free_space *
|
|
tree_search_offset(struct btrfs_free_space_ctl *ctl,
|
|
u64 offset, int bitmap_only, int fuzzy)
|
|
{
|
|
struct rb_node *n = ctl->free_space_offset.rb_node;
|
|
struct btrfs_free_space *entry, *prev = NULL;
|
|
|
|
/* find entry that is closest to the 'offset' */
|
|
while (1) {
|
|
if (!n) {
|
|
entry = NULL;
|
|
break;
|
|
}
|
|
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
prev = entry;
|
|
|
|
if (offset < entry->offset)
|
|
n = n->rb_left;
|
|
else if (offset > entry->offset)
|
|
n = n->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (bitmap_only) {
|
|
if (!entry)
|
|
return NULL;
|
|
if (entry->bitmap)
|
|
return entry;
|
|
|
|
/*
|
|
* bitmap entry and extent entry may share same offset,
|
|
* in that case, bitmap entry comes after extent entry.
|
|
*/
|
|
n = rb_next(n);
|
|
if (!n)
|
|
return NULL;
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (entry->offset != offset)
|
|
return NULL;
|
|
|
|
WARN_ON(!entry->bitmap);
|
|
return entry;
|
|
} else if (entry) {
|
|
if (entry->bitmap) {
|
|
/*
|
|
* if previous extent entry covers the offset,
|
|
* we should return it instead of the bitmap entry
|
|
*/
|
|
n = rb_prev(&entry->offset_index);
|
|
if (n) {
|
|
prev = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
if (!prev->bitmap &&
|
|
prev->offset + prev->bytes > offset)
|
|
entry = prev;
|
|
}
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
if (!prev)
|
|
return NULL;
|
|
|
|
/* find last entry before the 'offset' */
|
|
entry = prev;
|
|
if (entry->offset > offset) {
|
|
n = rb_prev(&entry->offset_index);
|
|
if (n) {
|
|
entry = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
ASSERT(entry->offset <= offset);
|
|
} else {
|
|
if (fuzzy)
|
|
return entry;
|
|
else
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (entry->bitmap) {
|
|
n = rb_prev(&entry->offset_index);
|
|
if (n) {
|
|
prev = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
if (!prev->bitmap &&
|
|
prev->offset + prev->bytes > offset)
|
|
return prev;
|
|
}
|
|
if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
|
|
return entry;
|
|
} else if (entry->offset + entry->bytes > offset)
|
|
return entry;
|
|
|
|
if (!fuzzy)
|
|
return NULL;
|
|
|
|
while (1) {
|
|
if (entry->bitmap) {
|
|
if (entry->offset + BITS_PER_BITMAP *
|
|
ctl->unit > offset)
|
|
break;
|
|
} else {
|
|
if (entry->offset + entry->bytes > offset)
|
|
break;
|
|
}
|
|
|
|
n = rb_next(&entry->offset_index);
|
|
if (!n)
|
|
return NULL;
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
static inline void
|
|
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
rb_erase(&info->offset_index, &ctl->free_space_offset);
|
|
ctl->free_extents--;
|
|
}
|
|
|
|
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
__unlink_free_space(ctl, info);
|
|
ctl->free_space -= info->bytes;
|
|
}
|
|
|
|
static int link_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
int ret = 0;
|
|
|
|
ASSERT(info->bytes || info->bitmap);
|
|
ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
|
|
&info->offset_index, (info->bitmap != NULL));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctl->free_space += info->bytes;
|
|
ctl->free_extents++;
|
|
return ret;
|
|
}
|
|
|
|
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
struct btrfs_block_group_cache *block_group = ctl->private;
|
|
u64 max_bytes;
|
|
u64 bitmap_bytes;
|
|
u64 extent_bytes;
|
|
u64 size = block_group->key.offset;
|
|
u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
|
|
u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
|
|
|
|
max_bitmaps = max_t(u32, max_bitmaps, 1);
|
|
|
|
ASSERT(ctl->total_bitmaps <= max_bitmaps);
|
|
|
|
/*
|
|
* The goal is to keep the total amount of memory used per 1gb of space
|
|
* at or below 32k, so we need to adjust how much memory we allow to be
|
|
* used by extent based free space tracking
|
|
*/
|
|
if (size < 1024 * 1024 * 1024)
|
|
max_bytes = MAX_CACHE_BYTES_PER_GIG;
|
|
else
|
|
max_bytes = MAX_CACHE_BYTES_PER_GIG *
|
|
div_u64(size, 1024 * 1024 * 1024);
|
|
|
|
/*
|
|
* we want to account for 1 more bitmap than what we have so we can make
|
|
* sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
|
|
* we add more bitmaps.
|
|
*/
|
|
bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
|
|
|
|
if (bitmap_bytes >= max_bytes) {
|
|
ctl->extents_thresh = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* we want the extent entry threshold to always be at most 1/2 the max
|
|
* bytes we can have, or whatever is less than that.
|
|
*/
|
|
extent_bytes = max_bytes - bitmap_bytes;
|
|
extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
|
|
|
|
ctl->extents_thresh =
|
|
div_u64(extent_bytes, sizeof(struct btrfs_free_space));
|
|
}
|
|
|
|
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
unsigned long start, count;
|
|
|
|
start = offset_to_bit(info->offset, ctl->unit, offset);
|
|
count = bytes_to_bits(bytes, ctl->unit);
|
|
ASSERT(start + count <= BITS_PER_BITMAP);
|
|
|
|
bitmap_clear(info->bitmap, start, count);
|
|
|
|
info->bytes -= bytes;
|
|
}
|
|
|
|
static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
__bitmap_clear_bits(ctl, info, offset, bytes);
|
|
ctl->free_space -= bytes;
|
|
}
|
|
|
|
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
unsigned long start, count;
|
|
|
|
start = offset_to_bit(info->offset, ctl->unit, offset);
|
|
count = bytes_to_bits(bytes, ctl->unit);
|
|
ASSERT(start + count <= BITS_PER_BITMAP);
|
|
|
|
bitmap_set(info->bitmap, start, count);
|
|
|
|
info->bytes += bytes;
|
|
ctl->free_space += bytes;
|
|
}
|
|
|
|
/*
|
|
* If we can not find suitable extent, we will use bytes to record
|
|
* the size of the max extent.
|
|
*/
|
|
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *bitmap_info, u64 *offset,
|
|
u64 *bytes)
|
|
{
|
|
unsigned long found_bits = 0;
|
|
unsigned long max_bits = 0;
|
|
unsigned long bits, i;
|
|
unsigned long next_zero;
|
|
unsigned long extent_bits;
|
|
|
|
i = offset_to_bit(bitmap_info->offset, ctl->unit,
|
|
max_t(u64, *offset, bitmap_info->offset));
|
|
bits = bytes_to_bits(*bytes, ctl->unit);
|
|
|
|
for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
|
|
next_zero = find_next_zero_bit(bitmap_info->bitmap,
|
|
BITS_PER_BITMAP, i);
|
|
extent_bits = next_zero - i;
|
|
if (extent_bits >= bits) {
|
|
found_bits = extent_bits;
|
|
break;
|
|
} else if (extent_bits > max_bits) {
|
|
max_bits = extent_bits;
|
|
}
|
|
i = next_zero;
|
|
}
|
|
|
|
if (found_bits) {
|
|
*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
|
|
*bytes = (u64)(found_bits) * ctl->unit;
|
|
return 0;
|
|
}
|
|
|
|
*bytes = (u64)(max_bits) * ctl->unit;
|
|
return -1;
|
|
}
|
|
|
|
/* Cache the size of the max extent in bytes */
|
|
static struct btrfs_free_space *
|
|
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
|
|
unsigned long align, u64 *max_extent_size)
|
|
{
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
u64 tmp;
|
|
u64 align_off;
|
|
int ret;
|
|
|
|
if (!ctl->free_space_offset.rb_node)
|
|
goto out;
|
|
|
|
entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
for (node = &entry->offset_index; node; node = rb_next(node)) {
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
if (entry->bytes < *bytes) {
|
|
if (entry->bytes > *max_extent_size)
|
|
*max_extent_size = entry->bytes;
|
|
continue;
|
|
}
|
|
|
|
/* make sure the space returned is big enough
|
|
* to match our requested alignment
|
|
*/
|
|
if (*bytes >= align) {
|
|
tmp = entry->offset - ctl->start + align - 1;
|
|
tmp = div64_u64(tmp, align);
|
|
tmp = tmp * align + ctl->start;
|
|
align_off = tmp - entry->offset;
|
|
} else {
|
|
align_off = 0;
|
|
tmp = entry->offset;
|
|
}
|
|
|
|
if (entry->bytes < *bytes + align_off) {
|
|
if (entry->bytes > *max_extent_size)
|
|
*max_extent_size = entry->bytes;
|
|
continue;
|
|
}
|
|
|
|
if (entry->bitmap) {
|
|
u64 size = *bytes;
|
|
|
|
ret = search_bitmap(ctl, entry, &tmp, &size);
|
|
if (!ret) {
|
|
*offset = tmp;
|
|
*bytes = size;
|
|
return entry;
|
|
} else if (size > *max_extent_size) {
|
|
*max_extent_size = size;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
*offset = tmp;
|
|
*bytes = entry->bytes - align_off;
|
|
return entry;
|
|
}
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, u64 offset)
|
|
{
|
|
info->offset = offset_to_bitmap(ctl, offset);
|
|
info->bytes = 0;
|
|
INIT_LIST_HEAD(&info->list);
|
|
link_free_space(ctl, info);
|
|
ctl->total_bitmaps++;
|
|
|
|
ctl->op->recalc_thresholds(ctl);
|
|
}
|
|
|
|
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *bitmap_info)
|
|
{
|
|
unlink_free_space(ctl, bitmap_info);
|
|
kfree(bitmap_info->bitmap);
|
|
kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
|
|
ctl->total_bitmaps--;
|
|
ctl->op->recalc_thresholds(ctl);
|
|
}
|
|
|
|
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *bitmap_info,
|
|
u64 *offset, u64 *bytes)
|
|
{
|
|
u64 end;
|
|
u64 search_start, search_bytes;
|
|
int ret;
|
|
|
|
again:
|
|
end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
|
|
|
|
/*
|
|
* We need to search for bits in this bitmap. We could only cover some
|
|
* of the extent in this bitmap thanks to how we add space, so we need
|
|
* to search for as much as it as we can and clear that amount, and then
|
|
* go searching for the next bit.
|
|
*/
|
|
search_start = *offset;
|
|
search_bytes = ctl->unit;
|
|
search_bytes = min(search_bytes, end - search_start + 1);
|
|
ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
|
|
if (ret < 0 || search_start != *offset)
|
|
return -EINVAL;
|
|
|
|
/* We may have found more bits than what we need */
|
|
search_bytes = min(search_bytes, *bytes);
|
|
|
|
/* Cannot clear past the end of the bitmap */
|
|
search_bytes = min(search_bytes, end - search_start + 1);
|
|
|
|
bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
|
|
*offset += search_bytes;
|
|
*bytes -= search_bytes;
|
|
|
|
if (*bytes) {
|
|
struct rb_node *next = rb_next(&bitmap_info->offset_index);
|
|
if (!bitmap_info->bytes)
|
|
free_bitmap(ctl, bitmap_info);
|
|
|
|
/*
|
|
* no entry after this bitmap, but we still have bytes to
|
|
* remove, so something has gone wrong.
|
|
*/
|
|
if (!next)
|
|
return -EINVAL;
|
|
|
|
bitmap_info = rb_entry(next, struct btrfs_free_space,
|
|
offset_index);
|
|
|
|
/*
|
|
* if the next entry isn't a bitmap we need to return to let the
|
|
* extent stuff do its work.
|
|
*/
|
|
if (!bitmap_info->bitmap)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Ok the next item is a bitmap, but it may not actually hold
|
|
* the information for the rest of this free space stuff, so
|
|
* look for it, and if we don't find it return so we can try
|
|
* everything over again.
|
|
*/
|
|
search_start = *offset;
|
|
search_bytes = ctl->unit;
|
|
ret = search_bitmap(ctl, bitmap_info, &search_start,
|
|
&search_bytes);
|
|
if (ret < 0 || search_start != *offset)
|
|
return -EAGAIN;
|
|
|
|
goto again;
|
|
} else if (!bitmap_info->bytes)
|
|
free_bitmap(ctl, bitmap_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
u64 bytes_to_set = 0;
|
|
u64 end;
|
|
|
|
end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
|
|
|
|
bytes_to_set = min(end - offset, bytes);
|
|
|
|
bitmap_set_bits(ctl, info, offset, bytes_to_set);
|
|
|
|
return bytes_to_set;
|
|
|
|
}
|
|
|
|
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
struct btrfs_block_group_cache *block_group = ctl->private;
|
|
|
|
/*
|
|
* If we are below the extents threshold then we can add this as an
|
|
* extent, and don't have to deal with the bitmap
|
|
*/
|
|
if (ctl->free_extents < ctl->extents_thresh) {
|
|
/*
|
|
* If this block group has some small extents we don't want to
|
|
* use up all of our free slots in the cache with them, we want
|
|
* to reserve them to larger extents, however if we have plent
|
|
* of cache left then go ahead an dadd them, no sense in adding
|
|
* the overhead of a bitmap if we don't have to.
|
|
*/
|
|
if (info->bytes <= block_group->sectorsize * 4) {
|
|
if (ctl->free_extents * 2 <= ctl->extents_thresh)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The original block groups from mkfs can be really small, like 8
|
|
* megabytes, so don't bother with a bitmap for those entries. However
|
|
* some block groups can be smaller than what a bitmap would cover but
|
|
* are still large enough that they could overflow the 32k memory limit,
|
|
* so allow those block groups to still be allowed to have a bitmap
|
|
* entry.
|
|
*/
|
|
if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct btrfs_free_space_op free_space_op = {
|
|
.recalc_thresholds = recalculate_thresholds,
|
|
.use_bitmap = use_bitmap,
|
|
};
|
|
|
|
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
struct btrfs_free_space *bitmap_info;
|
|
struct btrfs_block_group_cache *block_group = NULL;
|
|
int added = 0;
|
|
u64 bytes, offset, bytes_added;
|
|
int ret;
|
|
|
|
bytes = info->bytes;
|
|
offset = info->offset;
|
|
|
|
if (!ctl->op->use_bitmap(ctl, info))
|
|
return 0;
|
|
|
|
if (ctl->op == &free_space_op)
|
|
block_group = ctl->private;
|
|
again:
|
|
/*
|
|
* Since we link bitmaps right into the cluster we need to see if we
|
|
* have a cluster here, and if so and it has our bitmap we need to add
|
|
* the free space to that bitmap.
|
|
*/
|
|
if (block_group && !list_empty(&block_group->cluster_list)) {
|
|
struct btrfs_free_cluster *cluster;
|
|
struct rb_node *node;
|
|
struct btrfs_free_space *entry;
|
|
|
|
cluster = list_entry(block_group->cluster_list.next,
|
|
struct btrfs_free_cluster,
|
|
block_group_list);
|
|
spin_lock(&cluster->lock);
|
|
node = rb_first(&cluster->root);
|
|
if (!node) {
|
|
spin_unlock(&cluster->lock);
|
|
goto no_cluster_bitmap;
|
|
}
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
if (!entry->bitmap) {
|
|
spin_unlock(&cluster->lock);
|
|
goto no_cluster_bitmap;
|
|
}
|
|
|
|
if (entry->offset == offset_to_bitmap(ctl, offset)) {
|
|
bytes_added = add_bytes_to_bitmap(ctl, entry,
|
|
offset, bytes);
|
|
bytes -= bytes_added;
|
|
offset += bytes_added;
|
|
}
|
|
spin_unlock(&cluster->lock);
|
|
if (!bytes) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
no_cluster_bitmap:
|
|
bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
|
|
1, 0);
|
|
if (!bitmap_info) {
|
|
ASSERT(added == 0);
|
|
goto new_bitmap;
|
|
}
|
|
|
|
bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
|
|
bytes -= bytes_added;
|
|
offset += bytes_added;
|
|
added = 0;
|
|
|
|
if (!bytes) {
|
|
ret = 1;
|
|
goto out;
|
|
} else
|
|
goto again;
|
|
|
|
new_bitmap:
|
|
if (info && info->bitmap) {
|
|
add_new_bitmap(ctl, info, offset);
|
|
added = 1;
|
|
info = NULL;
|
|
goto again;
|
|
} else {
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
/* no pre-allocated info, allocate a new one */
|
|
if (!info) {
|
|
info = kmem_cache_zalloc(btrfs_free_space_cachep,
|
|
GFP_NOFS);
|
|
if (!info) {
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* allocate the bitmap */
|
|
info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
|
|
spin_lock(&ctl->tree_lock);
|
|
if (!info->bitmap) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
out:
|
|
if (info) {
|
|
if (info->bitmap)
|
|
kfree(info->bitmap);
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info, bool update_stat)
|
|
{
|
|
struct btrfs_free_space *left_info;
|
|
struct btrfs_free_space *right_info;
|
|
bool merged = false;
|
|
u64 offset = info->offset;
|
|
u64 bytes = info->bytes;
|
|
|
|
/*
|
|
* first we want to see if there is free space adjacent to the range we
|
|
* are adding, if there is remove that struct and add a new one to
|
|
* cover the entire range
|
|
*/
|
|
right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
|
|
if (right_info && rb_prev(&right_info->offset_index))
|
|
left_info = rb_entry(rb_prev(&right_info->offset_index),
|
|
struct btrfs_free_space, offset_index);
|
|
else
|
|
left_info = tree_search_offset(ctl, offset - 1, 0, 0);
|
|
|
|
if (right_info && !right_info->bitmap) {
|
|
if (update_stat)
|
|
unlink_free_space(ctl, right_info);
|
|
else
|
|
__unlink_free_space(ctl, right_info);
|
|
info->bytes += right_info->bytes;
|
|
kmem_cache_free(btrfs_free_space_cachep, right_info);
|
|
merged = true;
|
|
}
|
|
|
|
if (left_info && !left_info->bitmap &&
|
|
left_info->offset + left_info->bytes == offset) {
|
|
if (update_stat)
|
|
unlink_free_space(ctl, left_info);
|
|
else
|
|
__unlink_free_space(ctl, left_info);
|
|
info->offset = left_info->offset;
|
|
info->bytes += left_info->bytes;
|
|
kmem_cache_free(btrfs_free_space_cachep, left_info);
|
|
merged = true;
|
|
}
|
|
|
|
return merged;
|
|
}
|
|
|
|
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info,
|
|
bool update_stat)
|
|
{
|
|
struct btrfs_free_space *bitmap;
|
|
unsigned long i;
|
|
unsigned long j;
|
|
const u64 end = info->offset + info->bytes;
|
|
const u64 bitmap_offset = offset_to_bitmap(ctl, end);
|
|
u64 bytes;
|
|
|
|
bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
|
|
if (!bitmap)
|
|
return false;
|
|
|
|
i = offset_to_bit(bitmap->offset, ctl->unit, end);
|
|
j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
|
|
if (j == i)
|
|
return false;
|
|
bytes = (j - i) * ctl->unit;
|
|
info->bytes += bytes;
|
|
|
|
if (update_stat)
|
|
bitmap_clear_bits(ctl, bitmap, end, bytes);
|
|
else
|
|
__bitmap_clear_bits(ctl, bitmap, end, bytes);
|
|
|
|
if (!bitmap->bytes)
|
|
free_bitmap(ctl, bitmap);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info,
|
|
bool update_stat)
|
|
{
|
|
struct btrfs_free_space *bitmap;
|
|
u64 bitmap_offset;
|
|
unsigned long i;
|
|
unsigned long j;
|
|
unsigned long prev_j;
|
|
u64 bytes;
|
|
|
|
bitmap_offset = offset_to_bitmap(ctl, info->offset);
|
|
/* If we're on a boundary, try the previous logical bitmap. */
|
|
if (bitmap_offset == info->offset) {
|
|
if (info->offset == 0)
|
|
return false;
|
|
bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
|
|
}
|
|
|
|
bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
|
|
if (!bitmap)
|
|
return false;
|
|
|
|
i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
|
|
j = 0;
|
|
prev_j = (unsigned long)-1;
|
|
for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
|
|
if (j > i)
|
|
break;
|
|
prev_j = j;
|
|
}
|
|
if (prev_j == i)
|
|
return false;
|
|
|
|
if (prev_j == (unsigned long)-1)
|
|
bytes = (i + 1) * ctl->unit;
|
|
else
|
|
bytes = (i - prev_j) * ctl->unit;
|
|
|
|
info->offset -= bytes;
|
|
info->bytes += bytes;
|
|
|
|
if (update_stat)
|
|
bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
|
|
else
|
|
__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
|
|
|
|
if (!bitmap->bytes)
|
|
free_bitmap(ctl, bitmap);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We prefer always to allocate from extent entries, both for clustered and
|
|
* non-clustered allocation requests. So when attempting to add a new extent
|
|
* entry, try to see if there's adjacent free space in bitmap entries, and if
|
|
* there is, migrate that space from the bitmaps to the extent.
|
|
* Like this we get better chances of satisfying space allocation requests
|
|
* because we attempt to satisfy them based on a single cache entry, and never
|
|
* on 2 or more entries - even if the entries represent a contiguous free space
|
|
* region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
|
|
* ends).
|
|
*/
|
|
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
|
|
struct btrfs_free_space *info,
|
|
bool update_stat)
|
|
{
|
|
/*
|
|
* Only work with disconnected entries, as we can change their offset,
|
|
* and must be extent entries.
|
|
*/
|
|
ASSERT(!info->bitmap);
|
|
ASSERT(RB_EMPTY_NODE(&info->offset_index));
|
|
|
|
if (ctl->total_bitmaps > 0) {
|
|
bool stole_end;
|
|
bool stole_front = false;
|
|
|
|
stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
|
|
if (ctl->total_bitmaps > 0)
|
|
stole_front = steal_from_bitmap_to_front(ctl, info,
|
|
update_stat);
|
|
|
|
if (stole_end || stole_front)
|
|
try_merge_free_space(ctl, info, update_stat);
|
|
}
|
|
}
|
|
|
|
int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
int ret = 0;
|
|
|
|
info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->offset = offset;
|
|
info->bytes = bytes;
|
|
RB_CLEAR_NODE(&info->offset_index);
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
if (try_merge_free_space(ctl, info, true))
|
|
goto link;
|
|
|
|
/*
|
|
* There was no extent directly to the left or right of this new
|
|
* extent then we know we're going to have to allocate a new extent, so
|
|
* before we do that see if we need to drop this into a bitmap
|
|
*/
|
|
ret = insert_into_bitmap(ctl, info);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
link:
|
|
/*
|
|
* Only steal free space from adjacent bitmaps if we're sure we're not
|
|
* going to add the new free space to existing bitmap entries - because
|
|
* that would mean unnecessary work that would be reverted. Therefore
|
|
* attempt to steal space from bitmaps if we're adding an extent entry.
|
|
*/
|
|
steal_from_bitmap(ctl, info, true);
|
|
|
|
ret = link_free_space(ctl, info);
|
|
if (ret)
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
out:
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
if (ret) {
|
|
printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
|
|
ASSERT(ret != -EEXIST);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *info;
|
|
int ret;
|
|
bool re_search = false;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
again:
|
|
ret = 0;
|
|
if (!bytes)
|
|
goto out_lock;
|
|
|
|
info = tree_search_offset(ctl, offset, 0, 0);
|
|
if (!info) {
|
|
/*
|
|
* oops didn't find an extent that matched the space we wanted
|
|
* to remove, look for a bitmap instead
|
|
*/
|
|
info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
|
|
1, 0);
|
|
if (!info) {
|
|
/*
|
|
* If we found a partial bit of our free space in a
|
|
* bitmap but then couldn't find the other part this may
|
|
* be a problem, so WARN about it.
|
|
*/
|
|
WARN_ON(re_search);
|
|
goto out_lock;
|
|
}
|
|
}
|
|
|
|
re_search = false;
|
|
if (!info->bitmap) {
|
|
unlink_free_space(ctl, info);
|
|
if (offset == info->offset) {
|
|
u64 to_free = min(bytes, info->bytes);
|
|
|
|
info->bytes -= to_free;
|
|
info->offset += to_free;
|
|
if (info->bytes) {
|
|
ret = link_free_space(ctl, info);
|
|
WARN_ON(ret);
|
|
} else {
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
}
|
|
|
|
offset += to_free;
|
|
bytes -= to_free;
|
|
goto again;
|
|
} else {
|
|
u64 old_end = info->bytes + info->offset;
|
|
|
|
info->bytes = offset - info->offset;
|
|
ret = link_free_space(ctl, info);
|
|
WARN_ON(ret);
|
|
if (ret)
|
|
goto out_lock;
|
|
|
|
/* Not enough bytes in this entry to satisfy us */
|
|
if (old_end < offset + bytes) {
|
|
bytes -= old_end - offset;
|
|
offset = old_end;
|
|
goto again;
|
|
} else if (old_end == offset + bytes) {
|
|
/* all done */
|
|
goto out_lock;
|
|
}
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
ret = btrfs_add_free_space(block_group, offset + bytes,
|
|
old_end - (offset + bytes));
|
|
WARN_ON(ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = remove_from_bitmap(ctl, info, &offset, &bytes);
|
|
if (ret == -EAGAIN) {
|
|
re_search = true;
|
|
goto again;
|
|
}
|
|
out_lock:
|
|
spin_unlock(&ctl->tree_lock);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
int count = 0;
|
|
|
|
for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (info->bytes >= bytes && !block_group->ro)
|
|
count++;
|
|
btrfs_crit(block_group->fs_info,
|
|
"entry offset %llu, bytes %llu, bitmap %s",
|
|
info->offset, info->bytes,
|
|
(info->bitmap) ? "yes" : "no");
|
|
}
|
|
btrfs_info(block_group->fs_info, "block group has cluster?: %s",
|
|
list_empty(&block_group->cluster_list) ? "no" : "yes");
|
|
btrfs_info(block_group->fs_info,
|
|
"%d blocks of free space at or bigger than bytes is", count);
|
|
}
|
|
|
|
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
|
|
spin_lock_init(&ctl->tree_lock);
|
|
ctl->unit = block_group->sectorsize;
|
|
ctl->start = block_group->key.objectid;
|
|
ctl->private = block_group;
|
|
ctl->op = &free_space_op;
|
|
INIT_LIST_HEAD(&ctl->trimming_ranges);
|
|
mutex_init(&ctl->cache_writeout_mutex);
|
|
|
|
/*
|
|
* we only want to have 32k of ram per block group for keeping
|
|
* track of free space, and if we pass 1/2 of that we want to
|
|
* start converting things over to using bitmaps
|
|
*/
|
|
ctl->extents_thresh = ((1024 * 32) / 2) /
|
|
sizeof(struct btrfs_free_space);
|
|
}
|
|
|
|
/*
|
|
* for a given cluster, put all of its extents back into the free
|
|
* space cache. If the block group passed doesn't match the block group
|
|
* pointed to by the cluster, someone else raced in and freed the
|
|
* cluster already. In that case, we just return without changing anything
|
|
*/
|
|
static int
|
|
__btrfs_return_cluster_to_free_space(
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
|
|
spin_lock(&cluster->lock);
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
cluster->block_group = NULL;
|
|
cluster->window_start = 0;
|
|
list_del_init(&cluster->block_group_list);
|
|
|
|
node = rb_first(&cluster->root);
|
|
while (node) {
|
|
bool bitmap;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
node = rb_next(&entry->offset_index);
|
|
rb_erase(&entry->offset_index, &cluster->root);
|
|
RB_CLEAR_NODE(&entry->offset_index);
|
|
|
|
bitmap = (entry->bitmap != NULL);
|
|
if (!bitmap) {
|
|
try_merge_free_space(ctl, entry, false);
|
|
steal_from_bitmap(ctl, entry, false);
|
|
}
|
|
tree_insert_offset(&ctl->free_space_offset,
|
|
entry->offset, &entry->offset_index, bitmap);
|
|
}
|
|
cluster->root = RB_ROOT;
|
|
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
btrfs_put_block_group(block_group);
|
|
return 0;
|
|
}
|
|
|
|
static void __btrfs_remove_free_space_cache_locked(
|
|
struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *node;
|
|
|
|
while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
|
|
info = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
if (!info->bitmap) {
|
|
unlink_free_space(ctl, info);
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
} else {
|
|
free_bitmap(ctl, info);
|
|
}
|
|
|
|
cond_resched_lock(&ctl->tree_lock);
|
|
}
|
|
}
|
|
|
|
void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
spin_lock(&ctl->tree_lock);
|
|
__btrfs_remove_free_space_cache_locked(ctl);
|
|
spin_unlock(&ctl->tree_lock);
|
|
}
|
|
|
|
void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_cluster *cluster;
|
|
struct list_head *head;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
while ((head = block_group->cluster_list.next) !=
|
|
&block_group->cluster_list) {
|
|
cluster = list_entry(head, struct btrfs_free_cluster,
|
|
block_group_list);
|
|
|
|
WARN_ON(cluster->block_group != block_group);
|
|
__btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
|
|
cond_resched_lock(&ctl->tree_lock);
|
|
}
|
|
__btrfs_remove_free_space_cache_locked(ctl);
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
}
|
|
|
|
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes, u64 empty_size,
|
|
u64 *max_extent_size)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry = NULL;
|
|
u64 bytes_search = bytes + empty_size;
|
|
u64 ret = 0;
|
|
u64 align_gap = 0;
|
|
u64 align_gap_len = 0;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
entry = find_free_space(ctl, &offset, &bytes_search,
|
|
block_group->full_stripe_len, max_extent_size);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
ret = offset;
|
|
if (entry->bitmap) {
|
|
bitmap_clear_bits(ctl, entry, offset, bytes);
|
|
if (!entry->bytes)
|
|
free_bitmap(ctl, entry);
|
|
} else {
|
|
unlink_free_space(ctl, entry);
|
|
align_gap_len = offset - entry->offset;
|
|
align_gap = entry->offset;
|
|
|
|
entry->offset = offset + bytes;
|
|
WARN_ON(entry->bytes < bytes + align_gap_len);
|
|
|
|
entry->bytes -= bytes + align_gap_len;
|
|
if (!entry->bytes)
|
|
kmem_cache_free(btrfs_free_space_cachep, entry);
|
|
else
|
|
link_free_space(ctl, entry);
|
|
}
|
|
out:
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
if (align_gap_len)
|
|
__btrfs_add_free_space(ctl, align_gap, align_gap_len);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a cluster, put all of its extents back into the free space
|
|
* cache. If a block group is passed, this function will only free
|
|
* a cluster that belongs to the passed block group.
|
|
*
|
|
* Otherwise, it'll get a reference on the block group pointed to by the
|
|
* cluster and remove the cluster from it.
|
|
*/
|
|
int btrfs_return_cluster_to_free_space(
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl;
|
|
int ret;
|
|
|
|
/* first, get a safe pointer to the block group */
|
|
spin_lock(&cluster->lock);
|
|
if (!block_group) {
|
|
block_group = cluster->block_group;
|
|
if (!block_group) {
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
} else if (cluster->block_group != block_group) {
|
|
/* someone else has already freed it don't redo their work */
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
atomic_inc(&block_group->count);
|
|
spin_unlock(&cluster->lock);
|
|
|
|
ctl = block_group->free_space_ctl;
|
|
|
|
/* now return any extents the cluster had on it */
|
|
spin_lock(&ctl->tree_lock);
|
|
ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
/* finally drop our ref */
|
|
btrfs_put_block_group(block_group);
|
|
return ret;
|
|
}
|
|
|
|
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
struct btrfs_free_space *entry,
|
|
u64 bytes, u64 min_start,
|
|
u64 *max_extent_size)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
int err;
|
|
u64 search_start = cluster->window_start;
|
|
u64 search_bytes = bytes;
|
|
u64 ret = 0;
|
|
|
|
search_start = min_start;
|
|
search_bytes = bytes;
|
|
|
|
err = search_bitmap(ctl, entry, &search_start, &search_bytes);
|
|
if (err) {
|
|
if (search_bytes > *max_extent_size)
|
|
*max_extent_size = search_bytes;
|
|
return 0;
|
|
}
|
|
|
|
ret = search_start;
|
|
__bitmap_clear_bits(ctl, entry, ret, bytes);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a cluster, try to allocate 'bytes' from it, returns 0
|
|
* if it couldn't find anything suitably large, or a logical disk offset
|
|
* if things worked out
|
|
*/
|
|
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster, u64 bytes,
|
|
u64 min_start, u64 *max_extent_size)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct rb_node *node;
|
|
u64 ret = 0;
|
|
|
|
spin_lock(&cluster->lock);
|
|
if (bytes > cluster->max_size)
|
|
goto out;
|
|
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
node = rb_first(&cluster->root);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
while (1) {
|
|
if (entry->bytes < bytes && entry->bytes > *max_extent_size)
|
|
*max_extent_size = entry->bytes;
|
|
|
|
if (entry->bytes < bytes ||
|
|
(!entry->bitmap && entry->offset < min_start)) {
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_free_space,
|
|
offset_index);
|
|
continue;
|
|
}
|
|
|
|
if (entry->bitmap) {
|
|
ret = btrfs_alloc_from_bitmap(block_group,
|
|
cluster, entry, bytes,
|
|
cluster->window_start,
|
|
max_extent_size);
|
|
if (ret == 0) {
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_free_space,
|
|
offset_index);
|
|
continue;
|
|
}
|
|
cluster->window_start += bytes;
|
|
} else {
|
|
ret = entry->offset;
|
|
|
|
entry->offset += bytes;
|
|
entry->bytes -= bytes;
|
|
}
|
|
|
|
if (entry->bytes == 0)
|
|
rb_erase(&entry->offset_index, &cluster->root);
|
|
break;
|
|
}
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
|
|
if (!ret)
|
|
return 0;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
ctl->free_space -= bytes;
|
|
if (entry->bytes == 0) {
|
|
ctl->free_extents--;
|
|
if (entry->bitmap) {
|
|
kfree(entry->bitmap);
|
|
ctl->total_bitmaps--;
|
|
ctl->op->recalc_thresholds(ctl);
|
|
}
|
|
kmem_cache_free(btrfs_free_space_cachep, entry);
|
|
}
|
|
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *entry,
|
|
struct btrfs_free_cluster *cluster,
|
|
u64 offset, u64 bytes,
|
|
u64 cont1_bytes, u64 min_bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
unsigned long next_zero;
|
|
unsigned long i;
|
|
unsigned long want_bits;
|
|
unsigned long min_bits;
|
|
unsigned long found_bits;
|
|
unsigned long start = 0;
|
|
unsigned long total_found = 0;
|
|
int ret;
|
|
|
|
i = offset_to_bit(entry->offset, ctl->unit,
|
|
max_t(u64, offset, entry->offset));
|
|
want_bits = bytes_to_bits(bytes, ctl->unit);
|
|
min_bits = bytes_to_bits(min_bytes, ctl->unit);
|
|
|
|
again:
|
|
found_bits = 0;
|
|
for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
|
|
next_zero = find_next_zero_bit(entry->bitmap,
|
|
BITS_PER_BITMAP, i);
|
|
if (next_zero - i >= min_bits) {
|
|
found_bits = next_zero - i;
|
|
break;
|
|
}
|
|
i = next_zero;
|
|
}
|
|
|
|
if (!found_bits)
|
|
return -ENOSPC;
|
|
|
|
if (!total_found) {
|
|
start = i;
|
|
cluster->max_size = 0;
|
|
}
|
|
|
|
total_found += found_bits;
|
|
|
|
if (cluster->max_size < found_bits * ctl->unit)
|
|
cluster->max_size = found_bits * ctl->unit;
|
|
|
|
if (total_found < want_bits || cluster->max_size < cont1_bytes) {
|
|
i = next_zero + 1;
|
|
goto again;
|
|
}
|
|
|
|
cluster->window_start = start * ctl->unit + entry->offset;
|
|
rb_erase(&entry->offset_index, &ctl->free_space_offset);
|
|
ret = tree_insert_offset(&cluster->root, entry->offset,
|
|
&entry->offset_index, 1);
|
|
ASSERT(!ret); /* -EEXIST; Logic error */
|
|
|
|
trace_btrfs_setup_cluster(block_group, cluster,
|
|
total_found * ctl->unit, 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This searches the block group for just extents to fill the cluster with.
|
|
* Try to find a cluster with at least bytes total bytes, at least one
|
|
* extent of cont1_bytes, and other clusters of at least min_bytes.
|
|
*/
|
|
static noinline int
|
|
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
struct list_head *bitmaps, u64 offset, u64 bytes,
|
|
u64 cont1_bytes, u64 min_bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *first = NULL;
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct btrfs_free_space *last;
|
|
struct rb_node *node;
|
|
u64 window_free;
|
|
u64 max_extent;
|
|
u64 total_size = 0;
|
|
|
|
entry = tree_search_offset(ctl, offset, 0, 1);
|
|
if (!entry)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* We don't want bitmaps, so just move along until we find a normal
|
|
* extent entry.
|
|
*/
|
|
while (entry->bitmap || entry->bytes < min_bytes) {
|
|
if (entry->bitmap && list_empty(&entry->list))
|
|
list_add_tail(&entry->list, bitmaps);
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
return -ENOSPC;
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
}
|
|
|
|
window_free = entry->bytes;
|
|
max_extent = entry->bytes;
|
|
first = entry;
|
|
last = entry;
|
|
|
|
for (node = rb_next(&entry->offset_index); node;
|
|
node = rb_next(&entry->offset_index)) {
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
|
|
if (entry->bitmap) {
|
|
if (list_empty(&entry->list))
|
|
list_add_tail(&entry->list, bitmaps);
|
|
continue;
|
|
}
|
|
|
|
if (entry->bytes < min_bytes)
|
|
continue;
|
|
|
|
last = entry;
|
|
window_free += entry->bytes;
|
|
if (entry->bytes > max_extent)
|
|
max_extent = entry->bytes;
|
|
}
|
|
|
|
if (window_free < bytes || max_extent < cont1_bytes)
|
|
return -ENOSPC;
|
|
|
|
cluster->window_start = first->offset;
|
|
|
|
node = &first->offset_index;
|
|
|
|
/*
|
|
* now we've found our entries, pull them out of the free space
|
|
* cache and put them into the cluster rbtree
|
|
*/
|
|
do {
|
|
int ret;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
node = rb_next(&entry->offset_index);
|
|
if (entry->bitmap || entry->bytes < min_bytes)
|
|
continue;
|
|
|
|
rb_erase(&entry->offset_index, &ctl->free_space_offset);
|
|
ret = tree_insert_offset(&cluster->root, entry->offset,
|
|
&entry->offset_index, 0);
|
|
total_size += entry->bytes;
|
|
ASSERT(!ret); /* -EEXIST; Logic error */
|
|
} while (node && entry != last);
|
|
|
|
cluster->max_size = max_extent;
|
|
trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This specifically looks for bitmaps that may work in the cluster, we assume
|
|
* that we have already failed to find extents that will work.
|
|
*/
|
|
static noinline int
|
|
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
struct list_head *bitmaps, u64 offset, u64 bytes,
|
|
u64 cont1_bytes, u64 min_bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry;
|
|
int ret = -ENOSPC;
|
|
u64 bitmap_offset = offset_to_bitmap(ctl, offset);
|
|
|
|
if (ctl->total_bitmaps == 0)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* The bitmap that covers offset won't be in the list unless offset
|
|
* is just its start offset.
|
|
*/
|
|
entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
|
|
if (entry->offset != bitmap_offset) {
|
|
entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
|
|
if (entry && list_empty(&entry->list))
|
|
list_add(&entry->list, bitmaps);
|
|
}
|
|
|
|
list_for_each_entry(entry, bitmaps, list) {
|
|
if (entry->bytes < bytes)
|
|
continue;
|
|
ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
|
|
bytes, cont1_bytes, min_bytes);
|
|
if (!ret)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The bitmaps list has all the bitmaps that record free space
|
|
* starting after offset, so no more search is required.
|
|
*/
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* here we try to find a cluster of blocks in a block group. The goal
|
|
* is to find at least bytes+empty_size.
|
|
* We might not find them all in one contiguous area.
|
|
*
|
|
* returns zero and sets up cluster if things worked out, otherwise
|
|
* it returns -enospc
|
|
*/
|
|
int btrfs_find_space_cluster(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
u64 offset, u64 bytes, u64 empty_size)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry, *tmp;
|
|
LIST_HEAD(bitmaps);
|
|
u64 min_bytes;
|
|
u64 cont1_bytes;
|
|
int ret;
|
|
|
|
/*
|
|
* Choose the minimum extent size we'll require for this
|
|
* cluster. For SSD_SPREAD, don't allow any fragmentation.
|
|
* For metadata, allow allocates with smaller extents. For
|
|
* data, keep it dense.
|
|
*/
|
|
if (btrfs_test_opt(root, SSD_SPREAD)) {
|
|
cont1_bytes = min_bytes = bytes + empty_size;
|
|
} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
|
|
cont1_bytes = bytes;
|
|
min_bytes = block_group->sectorsize;
|
|
} else {
|
|
cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
|
|
min_bytes = block_group->sectorsize;
|
|
}
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
/*
|
|
* If we know we don't have enough space to make a cluster don't even
|
|
* bother doing all the work to try and find one.
|
|
*/
|
|
if (ctl->free_space < bytes) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
spin_lock(&cluster->lock);
|
|
|
|
/* someone already found a cluster, hooray */
|
|
if (cluster->block_group) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
|
|
min_bytes);
|
|
|
|
ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
|
|
bytes + empty_size,
|
|
cont1_bytes, min_bytes);
|
|
if (ret)
|
|
ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
|
|
offset, bytes + empty_size,
|
|
cont1_bytes, min_bytes);
|
|
|
|
/* Clear our temporary list */
|
|
list_for_each_entry_safe(entry, tmp, &bitmaps, list)
|
|
list_del_init(&entry->list);
|
|
|
|
if (!ret) {
|
|
atomic_inc(&block_group->count);
|
|
list_add_tail(&cluster->block_group_list,
|
|
&block_group->cluster_list);
|
|
cluster->block_group = block_group;
|
|
} else {
|
|
trace_btrfs_failed_cluster_setup(block_group);
|
|
}
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* simple code to zero out a cluster
|
|
*/
|
|
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
|
|
{
|
|
spin_lock_init(&cluster->lock);
|
|
spin_lock_init(&cluster->refill_lock);
|
|
cluster->root = RB_ROOT;
|
|
cluster->max_size = 0;
|
|
INIT_LIST_HEAD(&cluster->block_group_list);
|
|
cluster->block_group = NULL;
|
|
}
|
|
|
|
static int do_trimming(struct btrfs_block_group_cache *block_group,
|
|
u64 *total_trimmed, u64 start, u64 bytes,
|
|
u64 reserved_start, u64 reserved_bytes,
|
|
struct btrfs_trim_range *trim_entry)
|
|
{
|
|
struct btrfs_space_info *space_info = block_group->space_info;
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
int ret;
|
|
int update = 0;
|
|
u64 trimmed = 0;
|
|
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&block_group->lock);
|
|
if (!block_group->ro) {
|
|
block_group->reserved += reserved_bytes;
|
|
space_info->bytes_reserved += reserved_bytes;
|
|
update = 1;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
spin_unlock(&space_info->lock);
|
|
|
|
ret = btrfs_discard_extent(fs_info->extent_root,
|
|
start, bytes, &trimmed);
|
|
if (!ret)
|
|
*total_trimmed += trimmed;
|
|
|
|
mutex_lock(&ctl->cache_writeout_mutex);
|
|
btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
|
|
list_del(&trim_entry->list);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
|
|
if (update) {
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->ro)
|
|
space_info->bytes_readonly += reserved_bytes;
|
|
block_group->reserved -= reserved_bytes;
|
|
space_info->bytes_reserved -= reserved_bytes;
|
|
spin_unlock(&space_info->lock);
|
|
spin_unlock(&block_group->lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
|
|
u64 *total_trimmed, u64 start, u64 end, u64 minlen)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
int ret = 0;
|
|
u64 extent_start;
|
|
u64 extent_bytes;
|
|
u64 bytes;
|
|
|
|
while (start < end) {
|
|
struct btrfs_trim_range trim_entry;
|
|
|
|
mutex_lock(&ctl->cache_writeout_mutex);
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
if (ctl->free_space < minlen) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
break;
|
|
}
|
|
|
|
entry = tree_search_offset(ctl, start, 0, 1);
|
|
if (!entry) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
break;
|
|
}
|
|
|
|
/* skip bitmaps */
|
|
while (entry->bitmap) {
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
goto out;
|
|
}
|
|
entry = rb_entry(node, struct btrfs_free_space,
|
|
offset_index);
|
|
}
|
|
|
|
if (entry->offset >= end) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
break;
|
|
}
|
|
|
|
extent_start = entry->offset;
|
|
extent_bytes = entry->bytes;
|
|
start = max(start, extent_start);
|
|
bytes = min(extent_start + extent_bytes, end) - start;
|
|
if (bytes < minlen) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
goto next;
|
|
}
|
|
|
|
unlink_free_space(ctl, entry);
|
|
kmem_cache_free(btrfs_free_space_cachep, entry);
|
|
|
|
spin_unlock(&ctl->tree_lock);
|
|
trim_entry.start = extent_start;
|
|
trim_entry.bytes = extent_bytes;
|
|
list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
|
|
ret = do_trimming(block_group, total_trimmed, start, bytes,
|
|
extent_start, extent_bytes, &trim_entry);
|
|
if (ret)
|
|
break;
|
|
next:
|
|
start += bytes;
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
|
|
u64 *total_trimmed, u64 start, u64 end, u64 minlen)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
struct btrfs_free_space *entry;
|
|
int ret = 0;
|
|
int ret2;
|
|
u64 bytes;
|
|
u64 offset = offset_to_bitmap(ctl, start);
|
|
|
|
while (offset < end) {
|
|
bool next_bitmap = false;
|
|
struct btrfs_trim_range trim_entry;
|
|
|
|
mutex_lock(&ctl->cache_writeout_mutex);
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
if (ctl->free_space < minlen) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
break;
|
|
}
|
|
|
|
entry = tree_search_offset(ctl, offset, 1, 0);
|
|
if (!entry) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
next_bitmap = true;
|
|
goto next;
|
|
}
|
|
|
|
bytes = minlen;
|
|
ret2 = search_bitmap(ctl, entry, &start, &bytes);
|
|
if (ret2 || start >= end) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
next_bitmap = true;
|
|
goto next;
|
|
}
|
|
|
|
bytes = min(bytes, end - start);
|
|
if (bytes < minlen) {
|
|
spin_unlock(&ctl->tree_lock);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
goto next;
|
|
}
|
|
|
|
bitmap_clear_bits(ctl, entry, start, bytes);
|
|
if (entry->bytes == 0)
|
|
free_bitmap(ctl, entry);
|
|
|
|
spin_unlock(&ctl->tree_lock);
|
|
trim_entry.start = start;
|
|
trim_entry.bytes = bytes;
|
|
list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
|
|
mutex_unlock(&ctl->cache_writeout_mutex);
|
|
|
|
ret = do_trimming(block_group, total_trimmed, start, bytes,
|
|
start, bytes, &trim_entry);
|
|
if (ret)
|
|
break;
|
|
next:
|
|
if (next_bitmap) {
|
|
offset += BITS_PER_BITMAP * ctl->unit;
|
|
} else {
|
|
start += bytes;
|
|
if (start >= offset + BITS_PER_BITMAP * ctl->unit)
|
|
offset += BITS_PER_BITMAP * ctl->unit;
|
|
}
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
|
|
{
|
|
atomic_inc(&cache->trimming);
|
|
}
|
|
|
|
void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
bool cleanup;
|
|
|
|
spin_lock(&block_group->lock);
|
|
cleanup = (atomic_dec_and_test(&block_group->trimming) &&
|
|
block_group->removed);
|
|
spin_unlock(&block_group->lock);
|
|
|
|
if (cleanup) {
|
|
lock_chunks(block_group->fs_info->chunk_root);
|
|
em_tree = &block_group->fs_info->mapping_tree.map_tree;
|
|
write_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, block_group->key.objectid,
|
|
1);
|
|
BUG_ON(!em); /* logic error, can't happen */
|
|
/*
|
|
* remove_extent_mapping() will delete us from the pinned_chunks
|
|
* list, which is protected by the chunk mutex.
|
|
*/
|
|
remove_extent_mapping(em_tree, em);
|
|
write_unlock(&em_tree->lock);
|
|
unlock_chunks(block_group->fs_info->chunk_root);
|
|
|
|
/* once for us and once for the tree */
|
|
free_extent_map(em);
|
|
free_extent_map(em);
|
|
|
|
/*
|
|
* We've left one free space entry and other tasks trimming
|
|
* this block group have left 1 entry each one. Free them.
|
|
*/
|
|
__btrfs_remove_free_space_cache(block_group->free_space_ctl);
|
|
}
|
|
}
|
|
|
|
int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
|
|
u64 *trimmed, u64 start, u64 end, u64 minlen)
|
|
{
|
|
int ret;
|
|
|
|
*trimmed = 0;
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->removed) {
|
|
spin_unlock(&block_group->lock);
|
|
return 0;
|
|
}
|
|
btrfs_get_block_group_trimming(block_group);
|
|
spin_unlock(&block_group->lock);
|
|
|
|
ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
|
|
out:
|
|
btrfs_put_block_group_trimming(block_group);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Find the left-most item in the cache tree, and then return the
|
|
* smallest inode number in the item.
|
|
*
|
|
* Note: the returned inode number may not be the smallest one in
|
|
* the tree, if the left-most item is a bitmap.
|
|
*/
|
|
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
|
|
struct btrfs_free_space *entry = NULL;
|
|
u64 ino = 0;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
|
|
if (RB_EMPTY_ROOT(&ctl->free_space_offset))
|
|
goto out;
|
|
|
|
entry = rb_entry(rb_first(&ctl->free_space_offset),
|
|
struct btrfs_free_space, offset_index);
|
|
|
|
if (!entry->bitmap) {
|
|
ino = entry->offset;
|
|
|
|
unlink_free_space(ctl, entry);
|
|
entry->offset++;
|
|
entry->bytes--;
|
|
if (!entry->bytes)
|
|
kmem_cache_free(btrfs_free_space_cachep, entry);
|
|
else
|
|
link_free_space(ctl, entry);
|
|
} else {
|
|
u64 offset = 0;
|
|
u64 count = 1;
|
|
int ret;
|
|
|
|
ret = search_bitmap(ctl, entry, &offset, &count);
|
|
/* Logic error; Should be empty if it can't find anything */
|
|
ASSERT(!ret);
|
|
|
|
ino = offset;
|
|
bitmap_clear_bits(ctl, entry, offset, 1);
|
|
if (entry->bytes == 0)
|
|
free_bitmap(ctl, entry);
|
|
}
|
|
out:
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
return ino;
|
|
}
|
|
|
|
struct inode *lookup_free_ino_inode(struct btrfs_root *root,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct inode *inode = NULL;
|
|
|
|
spin_lock(&root->ino_cache_lock);
|
|
if (root->ino_cache_inode)
|
|
inode = igrab(root->ino_cache_inode);
|
|
spin_unlock(&root->ino_cache_lock);
|
|
if (inode)
|
|
return inode;
|
|
|
|
inode = __lookup_free_space_inode(root, path, 0);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
|
|
spin_lock(&root->ino_cache_lock);
|
|
if (!btrfs_fs_closing(root->fs_info))
|
|
root->ino_cache_inode = igrab(inode);
|
|
spin_unlock(&root->ino_cache_lock);
|
|
|
|
return inode;
|
|
}
|
|
|
|
int create_free_ino_inode(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path)
|
|
{
|
|
return __create_free_space_inode(root, trans, path,
|
|
BTRFS_FREE_INO_OBJECTID, 0);
|
|
}
|
|
|
|
int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
struct btrfs_path *path;
|
|
struct inode *inode;
|
|
int ret = 0;
|
|
u64 root_gen = btrfs_root_generation(&root->root_item);
|
|
|
|
if (!btrfs_test_opt(root, INODE_MAP_CACHE))
|
|
return 0;
|
|
|
|
/*
|
|
* If we're unmounting then just return, since this does a search on the
|
|
* normal root and not the commit root and we could deadlock.
|
|
*/
|
|
if (btrfs_fs_closing(fs_info))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return 0;
|
|
|
|
inode = lookup_free_ino_inode(root, path);
|
|
if (IS_ERR(inode))
|
|
goto out;
|
|
|
|
if (root_gen != BTRFS_I(inode)->generation)
|
|
goto out_put;
|
|
|
|
ret = __load_free_space_cache(root, inode, ctl, path, 0);
|
|
|
|
if (ret < 0)
|
|
btrfs_err(fs_info,
|
|
"failed to load free ino cache for root %llu",
|
|
root->root_key.objectid);
|
|
out_put:
|
|
iput(inode);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_write_out_ino_cache(struct btrfs_root *root,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
|
int ret;
|
|
struct btrfs_io_ctl io_ctl;
|
|
bool release_metadata = true;
|
|
|
|
if (!btrfs_test_opt(root, INODE_MAP_CACHE))
|
|
return 0;
|
|
|
|
memset(&io_ctl, 0, sizeof(io_ctl));
|
|
ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
|
|
trans, path, 0);
|
|
if (!ret) {
|
|
/*
|
|
* At this point writepages() didn't error out, so our metadata
|
|
* reservation is released when the writeback finishes, at
|
|
* inode.c:btrfs_finish_ordered_io(), regardless of it finishing
|
|
* with or without an error.
|
|
*/
|
|
release_metadata = false;
|
|
ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
|
|
}
|
|
|
|
if (ret) {
|
|
if (release_metadata)
|
|
btrfs_delalloc_release_metadata(inode, inode->i_size);
|
|
#ifdef DEBUG
|
|
btrfs_err(root->fs_info,
|
|
"failed to write free ino cache for root %llu",
|
|
root->root_key.objectid);
|
|
#endif
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
/*
|
|
* Use this if you need to make a bitmap or extent entry specifically, it
|
|
* doesn't do any of the merging that add_free_space does, this acts a lot like
|
|
* how the free space cache loading stuff works, so you can get really weird
|
|
* configurations.
|
|
*/
|
|
int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
|
|
u64 offset, u64 bytes, bool bitmap)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
|
|
struct btrfs_free_space *info = NULL, *bitmap_info;
|
|
void *map = NULL;
|
|
u64 bytes_added;
|
|
int ret;
|
|
|
|
again:
|
|
if (!info) {
|
|
info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!bitmap) {
|
|
spin_lock(&ctl->tree_lock);
|
|
info->offset = offset;
|
|
info->bytes = bytes;
|
|
ret = link_free_space(ctl, info);
|
|
spin_unlock(&ctl->tree_lock);
|
|
if (ret)
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
return ret;
|
|
}
|
|
|
|
if (!map) {
|
|
map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
|
|
if (!map) {
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
|
|
1, 0);
|
|
if (!bitmap_info) {
|
|
info->bitmap = map;
|
|
map = NULL;
|
|
add_new_bitmap(ctl, info, offset);
|
|
bitmap_info = info;
|
|
info = NULL;
|
|
}
|
|
|
|
bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
|
|
bytes -= bytes_added;
|
|
offset += bytes_added;
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
if (bytes)
|
|
goto again;
|
|
|
|
if (info)
|
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
|
if (map)
|
|
kfree(map);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Checks to see if the given range is in the free space cache. This is really
|
|
* just used to check the absence of space, so if there is free space in the
|
|
* range at all we will return 1.
|
|
*/
|
|
int test_check_exists(struct btrfs_block_group_cache *cache,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
|
|
struct btrfs_free_space *info;
|
|
int ret = 0;
|
|
|
|
spin_lock(&ctl->tree_lock);
|
|
info = tree_search_offset(ctl, offset, 0, 0);
|
|
if (!info) {
|
|
info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
|
|
1, 0);
|
|
if (!info)
|
|
goto out;
|
|
}
|
|
|
|
have_info:
|
|
if (info->bitmap) {
|
|
u64 bit_off, bit_bytes;
|
|
struct rb_node *n;
|
|
struct btrfs_free_space *tmp;
|
|
|
|
bit_off = offset;
|
|
bit_bytes = ctl->unit;
|
|
ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
|
|
if (!ret) {
|
|
if (bit_off == offset) {
|
|
ret = 1;
|
|
goto out;
|
|
} else if (bit_off > offset &&
|
|
offset + bytes > bit_off) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
n = rb_prev(&info->offset_index);
|
|
while (n) {
|
|
tmp = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
if (tmp->offset + tmp->bytes < offset)
|
|
break;
|
|
if (offset + bytes < tmp->offset) {
|
|
n = rb_prev(&info->offset_index);
|
|
continue;
|
|
}
|
|
info = tmp;
|
|
goto have_info;
|
|
}
|
|
|
|
n = rb_next(&info->offset_index);
|
|
while (n) {
|
|
tmp = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
if (offset + bytes < tmp->offset)
|
|
break;
|
|
if (tmp->offset + tmp->bytes < offset) {
|
|
n = rb_next(&info->offset_index);
|
|
continue;
|
|
}
|
|
info = tmp;
|
|
goto have_info;
|
|
}
|
|
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (info->offset == offset) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (offset > info->offset && offset < info->offset + info->bytes)
|
|
ret = 1;
|
|
out:
|
|
spin_unlock(&ctl->tree_lock);
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
|