2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 06:04:14 +08:00
linux-next/arch/x86/kvm/pmu.c
Robert O'Callahan bba82fd756 KVM: x86: never specify a sample period for virtualized in_tx_cp counters
pmc_reprogram_counter() always sets a sample period based on the value of
pmc->counter. However, hsw_hw_config() rejects sample periods less than
2^31 - 1. So for example, if a KVM guest does

    struct perf_event_attr attr;
    memset(&attr, 0, sizeof(attr));
    attr.type = PERF_TYPE_RAW;
    attr.size = sizeof(attr);
    attr.config = 0x2005101c4; // conditional branches retired IN_TXCP
    attr.sample_period = 0;
    int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0);
    ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
    ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

the guest kernel counts some conditional branch events, then updates the
virtual PMU register with a nonzero count. The host reaches
pmc_reprogram_counter() with nonzero pmc->counter, triggers EOPNOTSUPP
in hsw_hw_config(), prints "kvm_pmu: event creation failed" in
pmc_reprogram_counter(), and silently (from the guest's point of view) stops
counting events.

We fix event counting by forcing attr.sample_period to always be zero for
in_tx_cp counters. Sampling doesn't work, but it already didn't work and
can't be fixed without major changes to the approach in hsw_hw_config().

Signed-off-by: Robert O'Callahan <robert@ocallahan.org>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-03-01 14:19:46 +01:00

317 lines
8.8 KiB
C

/*
* Kernel-based Virtual Machine -- Performance Monitoring Unit support
*
* Copyright 2015 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@redhat.com>
* Gleb Natapov <gleb@redhat.com>
* Wei Huang <wei@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/types.h>
#include <linux/kvm_host.h>
#include <linux/perf_event.h>
#include <asm/perf_event.h>
#include "x86.h"
#include "cpuid.h"
#include "lapic.h"
#include "pmu.h"
/* NOTE:
* - Each perf counter is defined as "struct kvm_pmc";
* - There are two types of perf counters: general purpose (gp) and fixed.
* gp counters are stored in gp_counters[] and fixed counters are stored
* in fixed_counters[] respectively. Both of them are part of "struct
* kvm_pmu";
* - pmu.c understands the difference between gp counters and fixed counters.
* However AMD doesn't support fixed-counters;
* - There are three types of index to access perf counters (PMC):
* 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
* has MSR_K7_PERFCTRn.
* 2. MSR Index (named idx): This normally is used by RDPMC instruction.
* For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
* C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
* that it also supports fixed counters. idx can be used to as index to
* gp and fixed counters.
* 3. Global PMC Index (named pmc): pmc is an index specific to PMU
* code. Each pmc, stored in kvm_pmc.idx field, is unique across
* all perf counters (both gp and fixed). The mapping relationship
* between pmc and perf counters is as the following:
* * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
* [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
* * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
*/
static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
{
struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
kvm_pmu_deliver_pmi(vcpu);
}
static void kvm_perf_overflow(struct perf_event *perf_event,
struct perf_sample_data *data,
struct pt_regs *regs)
{
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
if (!test_and_set_bit(pmc->idx,
(unsigned long *)&pmu->reprogram_pmi)) {
__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
}
}
static void kvm_perf_overflow_intr(struct perf_event *perf_event,
struct perf_sample_data *data,
struct pt_regs *regs)
{
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
if (!test_and_set_bit(pmc->idx,
(unsigned long *)&pmu->reprogram_pmi)) {
__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
/*
* Inject PMI. If vcpu was in a guest mode during NMI PMI
* can be ejected on a guest mode re-entry. Otherwise we can't
* be sure that vcpu wasn't executing hlt instruction at the
* time of vmexit and is not going to re-enter guest mode until
* woken up. So we should wake it, but this is impossible from
* NMI context. Do it from irq work instead.
*/
if (!kvm_is_in_guest())
irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
else
kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
}
}
static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
unsigned config, bool exclude_user,
bool exclude_kernel, bool intr,
bool in_tx, bool in_tx_cp)
{
struct perf_event *event;
struct perf_event_attr attr = {
.type = type,
.size = sizeof(attr),
.pinned = true,
.exclude_idle = true,
.exclude_host = 1,
.exclude_user = exclude_user,
.exclude_kernel = exclude_kernel,
.config = config,
};
attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);
if (in_tx)
attr.config |= HSW_IN_TX;
if (in_tx_cp) {
/*
* HSW_IN_TX_CHECKPOINTED is not supported with nonzero
* period. Just clear the sample period so at least
* allocating the counter doesn't fail.
*/
attr.sample_period = 0;
attr.config |= HSW_IN_TX_CHECKPOINTED;
}
event = perf_event_create_kernel_counter(&attr, -1, current,
intr ? kvm_perf_overflow_intr :
kvm_perf_overflow, pmc);
if (IS_ERR(event)) {
printk_once("kvm_pmu: event creation failed %ld\n",
PTR_ERR(event));
return;
}
pmc->perf_event = event;
clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi);
}
void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
{
unsigned config, type = PERF_TYPE_RAW;
u8 event_select, unit_mask;
if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
printk_once("kvm pmu: pin control bit is ignored\n");
pmc->eventsel = eventsel;
pmc_stop_counter(pmc);
if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
return;
event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
ARCH_PERFMON_EVENTSEL_INV |
ARCH_PERFMON_EVENTSEL_CMASK |
HSW_IN_TX |
HSW_IN_TX_CHECKPOINTED))) {
config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc),
event_select,
unit_mask);
if (config != PERF_COUNT_HW_MAX)
type = PERF_TYPE_HARDWARE;
}
if (type == PERF_TYPE_RAW)
config = eventsel & X86_RAW_EVENT_MASK;
pmc_reprogram_counter(pmc, type, config,
!(eventsel & ARCH_PERFMON_EVENTSEL_USR),
!(eventsel & ARCH_PERFMON_EVENTSEL_OS),
eventsel & ARCH_PERFMON_EVENTSEL_INT,
(eventsel & HSW_IN_TX),
(eventsel & HSW_IN_TX_CHECKPOINTED));
}
EXPORT_SYMBOL_GPL(reprogram_gp_counter);
void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
{
unsigned en_field = ctrl & 0x3;
bool pmi = ctrl & 0x8;
pmc_stop_counter(pmc);
if (!en_field || !pmc_is_enabled(pmc))
return;
pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
kvm_x86_ops->pmu_ops->find_fixed_event(idx),
!(en_field & 0x2), /* exclude user */
!(en_field & 0x1), /* exclude kernel */
pmi, false, false);
}
EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
{
struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
if (!pmc)
return;
if (pmc_is_gp(pmc))
reprogram_gp_counter(pmc, pmc->eventsel);
else {
int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
reprogram_fixed_counter(pmc, ctrl, idx);
}
}
EXPORT_SYMBOL_GPL(reprogram_counter);
void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
u64 bitmask;
int bit;
bitmask = pmu->reprogram_pmi;
for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) {
struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit);
if (unlikely(!pmc || !pmc->perf_event)) {
clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi);
continue;
}
reprogram_counter(pmu, bit);
}
}
/* check if idx is a valid index to access PMU */
int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx)
{
return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx);
}
int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
{
bool fast_mode = idx & (1u << 31);
struct kvm_pmc *pmc;
u64 ctr_val;
pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx);
if (!pmc)
return 1;
ctr_val = pmc_read_counter(pmc);
if (fast_mode)
ctr_val = (u32)ctr_val;
*data = ctr_val;
return 0;
}
void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
{
if (lapic_in_kernel(vcpu))
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
}
bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
{
return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr);
}
int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
{
return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data);
}
int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info);
}
/* refresh PMU settings. This function generally is called when underlying
* settings are changed (such as changes of PMU CPUID by guest VMs), which
* should rarely happen.
*/
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->pmu_ops->refresh(vcpu);
}
void kvm_pmu_reset(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
irq_work_sync(&pmu->irq_work);
kvm_x86_ops->pmu_ops->reset(vcpu);
}
void kvm_pmu_init(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
memset(pmu, 0, sizeof(*pmu));
kvm_x86_ops->pmu_ops->init(vcpu);
init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
kvm_pmu_refresh(vcpu);
}
void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
{
kvm_pmu_reset(vcpu);
}