2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-20 19:23:57 +08:00
linux-next/kernel/sched/clock.c
Peter Zijlstra 6577e42a3e sched/clock: Fix up clear_sched_clock_stable()
The below tells us the static_key conversion has a problem; since the
exact point of clearing that flag isn't too important, delay the flip
and use a workqueue to process it.

[ ] TSC synchronization [CPU#0 -> CPU#22]:
[ ] Measured 8 cycles TSC warp between CPUs, turning off TSC clock.
[ ]
[ ] ======================================================
[ ] [ INFO: possible circular locking dependency detected ]
[ ] 3.13.0-rc3-01745-g848b0d0322cb-dirty #637 Not tainted
[ ] -------------------------------------------------------
[ ] swapper/0/1 is trying to acquire lock:
[ ]  (jump_label_mutex){+.+...}, at: [<ffffffff8115a637>] jump_label_lock+0x17/0x20
[ ]
[ ] but task is already holding lock:
[ ]  (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8109408b>] cpu_hotplug_begin+0x2b/0x60
[ ]
[ ] which lock already depends on the new lock.
[ ]
[ ]
[ ] the existing dependency chain (in reverse order) is:
[ ]
[ ] -> #1 (cpu_hotplug.lock){+.+.+.}:
[ ]        [<ffffffff810def00>] lock_acquire+0x90/0x130
[ ]        [<ffffffff81661f83>] mutex_lock_nested+0x63/0x3e0
[ ]        [<ffffffff81093fdc>] get_online_cpus+0x3c/0x60
[ ]        [<ffffffff8104cc67>] arch_jump_label_transform+0x37/0x130
[ ]        [<ffffffff8115a3cf>] __jump_label_update+0x5f/0x80
[ ]        [<ffffffff8115a48d>] jump_label_update+0x9d/0xb0
[ ]        [<ffffffff8115aa6d>] static_key_slow_inc+0x9d/0xb0
[ ]        [<ffffffff810c0f65>] sched_feat_set+0xf5/0x100
[ ]        [<ffffffff810c5bdc>] set_numabalancing_state+0x2c/0x30
[ ]        [<ffffffff81d12f3d>] numa_policy_init+0x1af/0x1b7
[ ]        [<ffffffff81cebdf4>] start_kernel+0x35d/0x41f
[ ]        [<ffffffff81ceb5a5>] x86_64_start_reservations+0x2a/0x2c
[ ]        [<ffffffff81ceb6a2>] x86_64_start_kernel+0xfb/0xfe
[ ]
[ ] -> #0 (jump_label_mutex){+.+...}:
[ ]        [<ffffffff810de141>] __lock_acquire+0x1701/0x1eb0
[ ]        [<ffffffff810def00>] lock_acquire+0x90/0x130
[ ]        [<ffffffff81661f83>] mutex_lock_nested+0x63/0x3e0
[ ]        [<ffffffff8115a637>] jump_label_lock+0x17/0x20
[ ]        [<ffffffff8115aa3b>] static_key_slow_inc+0x6b/0xb0
[ ]        [<ffffffff810ca775>] clear_sched_clock_stable+0x15/0x20
[ ]        [<ffffffff810503b3>] mark_tsc_unstable+0x23/0x70
[ ]        [<ffffffff810772cb>] check_tsc_sync_source+0x14b/0x150
[ ]        [<ffffffff81076612>] native_cpu_up+0x3a2/0x890
[ ]        [<ffffffff810941cb>] _cpu_up+0xdb/0x160
[ ]        [<ffffffff810942c9>] cpu_up+0x79/0x90
[ ]        [<ffffffff81d0af6b>] smp_init+0x60/0x8c
[ ]        [<ffffffff81cebf42>] kernel_init_freeable+0x8c/0x197
[ ]        [<ffffffff8164e32e>] kernel_init+0xe/0x130
[ ]        [<ffffffff8166beec>] ret_from_fork+0x7c/0xb0
[ ]
[ ] other info that might help us debug this:
[ ]
[ ]  Possible unsafe locking scenario:
[ ]
[ ]        CPU0                    CPU1
[ ]        ----                    ----
[ ]   lock(cpu_hotplug.lock);
[ ]                                lock(jump_label_mutex);
[ ]                                lock(cpu_hotplug.lock);
[ ]   lock(jump_label_mutex);
[ ]
[ ]  *** DEADLOCK ***
[ ]
[ ] 2 locks held by swapper/0/1:
[ ]  #0:  (cpu_add_remove_lock){+.+.+.}, at: [<ffffffff81094037>] cpu_maps_update_begin+0x17/0x20
[ ]  #1:  (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8109408b>] cpu_hotplug_begin+0x2b/0x60
[ ]
[ ] stack backtrace:
[ ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.13.0-rc3-01745-g848b0d0322cb-dirty #637
[ ] Hardware name: Supermicro X8DTN/X8DTN, BIOS 4.6.3 01/08/2010
[ ]  ffffffff82c9c270 ffff880236843bb8 ffffffff8165c5f5 ffffffff82c9c270
[ ]  ffff880236843bf8 ffffffff81658c02 ffff880236843c80 ffff8802368586a0
[ ]  ffff880236858678 0000000000000001 0000000000000002 ffff880236858000
[ ] Call Trace:
[ ]  [<ffffffff8165c5f5>] dump_stack+0x4e/0x7a
[ ]  [<ffffffff81658c02>] print_circular_bug+0x1f9/0x207
[ ]  [<ffffffff810de141>] __lock_acquire+0x1701/0x1eb0
[ ]  [<ffffffff816680ff>] ? __atomic_notifier_call_chain+0x8f/0xb0
[ ]  [<ffffffff810def00>] lock_acquire+0x90/0x130
[ ]  [<ffffffff8115a637>] ? jump_label_lock+0x17/0x20
[ ]  [<ffffffff8115a637>] ? jump_label_lock+0x17/0x20
[ ]  [<ffffffff81661f83>] mutex_lock_nested+0x63/0x3e0
[ ]  [<ffffffff8115a637>] ? jump_label_lock+0x17/0x20
[ ]  [<ffffffff8115a637>] jump_label_lock+0x17/0x20
[ ]  [<ffffffff8115aa3b>] static_key_slow_inc+0x6b/0xb0
[ ]  [<ffffffff810ca775>] clear_sched_clock_stable+0x15/0x20
[ ]  [<ffffffff810503b3>] mark_tsc_unstable+0x23/0x70
[ ]  [<ffffffff810772cb>] check_tsc_sync_source+0x14b/0x150
[ ]  [<ffffffff81076612>] native_cpu_up+0x3a2/0x890
[ ]  [<ffffffff810941cb>] _cpu_up+0xdb/0x160
[ ]  [<ffffffff810942c9>] cpu_up+0x79/0x90
[ ]  [<ffffffff81d0af6b>] smp_init+0x60/0x8c
[ ]  [<ffffffff81cebf42>] kernel_init_freeable+0x8c/0x197
[ ]  [<ffffffff8164e320>] ? rest_init+0xd0/0xd0
[ ]  [<ffffffff8164e32e>] kernel_init+0xe/0x130
[ ]  [<ffffffff8166beec>] ret_from_fork+0x7c/0xb0
[ ]  [<ffffffff8164e320>] ? rest_init+0xd0/0xd0
[ ] ------------[ cut here ]------------
[ ] WARNING: CPU: 0 PID: 1 at /usr/src/linux-2.6/kernel/smp.c:374 smp_call_function_many+0xad/0x300()
[ ] Modules linked in:
[ ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.13.0-rc3-01745-g848b0d0322cb-dirty #637
[ ] Hardware name: Supermicro X8DTN/X8DTN, BIOS 4.6.3 01/08/2010
[ ]  0000000000000009 ffff880236843be0 ffffffff8165c5f5 0000000000000000
[ ]  ffff880236843c18 ffffffff81093d8c 0000000000000000 0000000000000000
[ ]  ffffffff81ccd1a0 ffffffff810ca951 0000000000000000 ffff880236843c28
[ ] Call Trace:
[ ]  [<ffffffff8165c5f5>] dump_stack+0x4e/0x7a
[ ]  [<ffffffff81093d8c>] warn_slowpath_common+0x8c/0xc0
[ ]  [<ffffffff810ca951>] ? sched_clock_tick+0x1/0xa0
[ ]  [<ffffffff81093dda>] warn_slowpath_null+0x1a/0x20
[ ]  [<ffffffff8110b72d>] smp_call_function_many+0xad/0x300
[ ]  [<ffffffff8104f200>] ? arch_unregister_cpu+0x30/0x30
[ ]  [<ffffffff8104f200>] ? arch_unregister_cpu+0x30/0x30
[ ]  [<ffffffff810ca951>] ? sched_clock_tick+0x1/0xa0
[ ]  [<ffffffff8110ba96>] smp_call_function+0x46/0x80
[ ]  [<ffffffff8104f200>] ? arch_unregister_cpu+0x30/0x30
[ ]  [<ffffffff8110bb3c>] on_each_cpu+0x3c/0xa0
[ ]  [<ffffffff810ca950>] ? sched_clock_idle_sleep_event+0x20/0x20
[ ]  [<ffffffff810ca951>] ? sched_clock_tick+0x1/0xa0
[ ]  [<ffffffff8104f964>] text_poke_bp+0x64/0xd0
[ ]  [<ffffffff810ca950>] ? sched_clock_idle_sleep_event+0x20/0x20
[ ]  [<ffffffff8104ccde>] arch_jump_label_transform+0xae/0x130
[ ]  [<ffffffff8115a3cf>] __jump_label_update+0x5f/0x80
[ ]  [<ffffffff8115a48d>] jump_label_update+0x9d/0xb0
[ ]  [<ffffffff8115aa6d>] static_key_slow_inc+0x9d/0xb0
[ ]  [<ffffffff810ca775>] clear_sched_clock_stable+0x15/0x20
[ ]  [<ffffffff810503b3>] mark_tsc_unstable+0x23/0x70
[ ]  [<ffffffff810772cb>] check_tsc_sync_source+0x14b/0x150
[ ]  [<ffffffff81076612>] native_cpu_up+0x3a2/0x890
[ ]  [<ffffffff810941cb>] _cpu_up+0xdb/0x160
[ ]  [<ffffffff810942c9>] cpu_up+0x79/0x90
[ ]  [<ffffffff81d0af6b>] smp_init+0x60/0x8c
[ ]  [<ffffffff81cebf42>] kernel_init_freeable+0x8c/0x197
[ ]  [<ffffffff8164e320>] ? rest_init+0xd0/0xd0
[ ]  [<ffffffff8164e32e>] kernel_init+0xe/0x130
[ ]  [<ffffffff8166beec>] ret_from_fork+0x7c/0xb0
[ ]  [<ffffffff8164e320>] ? rest_init+0xd0/0xd0
[ ] ---[ end trace 6ff1df5620c49d26 ]---
[ ] tsc: Marking TSC unstable due to check_tsc_sync_source failed

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-v55fgqj3nnyqnngmvuu8ep6h@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 15:13:15 +01:00

393 lines
9.0 KiB
C

/*
* sched_clock for unstable cpu clocks
*
* Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*
* Updates and enhancements:
* Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
*
* Based on code by:
* Ingo Molnar <mingo@redhat.com>
* Guillaume Chazarain <guichaz@gmail.com>
*
*
* What:
*
* cpu_clock(i) provides a fast (execution time) high resolution
* clock with bounded drift between CPUs. The value of cpu_clock(i)
* is monotonic for constant i. The timestamp returned is in nanoseconds.
*
* ######################### BIG FAT WARNING ##########################
* # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
* # go backwards !! #
* ####################################################################
*
* There is no strict promise about the base, although it tends to start
* at 0 on boot (but people really shouldn't rely on that).
*
* cpu_clock(i) -- can be used from any context, including NMI.
* local_clock() -- is cpu_clock() on the current cpu.
*
* sched_clock_cpu(i)
*
* How:
*
* The implementation either uses sched_clock() when
* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
* sched_clock() is assumed to provide these properties (mostly it means
* the architecture provides a globally synchronized highres time source).
*
* Otherwise it tries to create a semi stable clock from a mixture of other
* clocks, including:
*
* - GTOD (clock monotomic)
* - sched_clock()
* - explicit idle events
*
* We use GTOD as base and use sched_clock() deltas to improve resolution. The
* deltas are filtered to provide monotonicity and keeping it within an
* expected window.
*
* Furthermore, explicit sleep and wakeup hooks allow us to account for time
* that is otherwise invisible (TSC gets stopped).
*
*/
#include <linux/spinlock.h>
#include <linux/hardirq.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/static_key.h>
#include <linux/workqueue.h>
/*
* Scheduler clock - returns current time in nanosec units.
* This is default implementation.
* Architectures and sub-architectures can override this.
*/
unsigned long long __attribute__((weak)) sched_clock(void)
{
return (unsigned long long)(jiffies - INITIAL_JIFFIES)
* (NSEC_PER_SEC / HZ);
}
EXPORT_SYMBOL_GPL(sched_clock);
__read_mostly int sched_clock_running;
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
int sched_clock_stable(void)
{
if (static_key_false(&__sched_clock_stable))
return false;
return true;
}
void set_sched_clock_stable(void)
{
if (!sched_clock_stable())
static_key_slow_dec(&__sched_clock_stable);
}
static void __clear_sched_clock_stable(struct work_struct *work)
{
/* XXX worry about clock continuity */
if (sched_clock_stable())
static_key_slow_inc(&__sched_clock_stable);
}
static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
void clear_sched_clock_stable(void)
{
if (keventd_up())
schedule_work(&sched_clock_work);
else
__clear_sched_clock_stable(&sched_clock_work);
}
struct sched_clock_data {
u64 tick_raw;
u64 tick_gtod;
u64 clock;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
static inline struct sched_clock_data *this_scd(void)
{
return &__get_cpu_var(sched_clock_data);
}
static inline struct sched_clock_data *cpu_sdc(int cpu)
{
return &per_cpu(sched_clock_data, cpu);
}
void sched_clock_init(void)
{
u64 ktime_now = ktime_to_ns(ktime_get());
int cpu;
for_each_possible_cpu(cpu) {
struct sched_clock_data *scd = cpu_sdc(cpu);
scd->tick_raw = 0;
scd->tick_gtod = ktime_now;
scd->clock = ktime_now;
}
sched_clock_running = 1;
}
/*
* min, max except they take wrapping into account
*/
static inline u64 wrap_min(u64 x, u64 y)
{
return (s64)(x - y) < 0 ? x : y;
}
static inline u64 wrap_max(u64 x, u64 y)
{
return (s64)(x - y) > 0 ? x : y;
}
/*
* update the percpu scd from the raw @now value
*
* - filter out backward motion
* - use the GTOD tick value to create a window to filter crazy TSC values
*/
static u64 sched_clock_local(struct sched_clock_data *scd)
{
u64 now, clock, old_clock, min_clock, max_clock;
s64 delta;
again:
now = sched_clock();
delta = now - scd->tick_raw;
if (unlikely(delta < 0))
delta = 0;
old_clock = scd->clock;
/*
* scd->clock = clamp(scd->tick_gtod + delta,
* max(scd->tick_gtod, scd->clock),
* scd->tick_gtod + TICK_NSEC);
*/
clock = scd->tick_gtod + delta;
min_clock = wrap_max(scd->tick_gtod, old_clock);
max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
clock = wrap_max(clock, min_clock);
clock = wrap_min(clock, max_clock);
if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
goto again;
return clock;
}
static u64 sched_clock_remote(struct sched_clock_data *scd)
{
struct sched_clock_data *my_scd = this_scd();
u64 this_clock, remote_clock;
u64 *ptr, old_val, val;
#if BITS_PER_LONG != 64
again:
/*
* Careful here: The local and the remote clock values need to
* be read out atomic as we need to compare the values and
* then update either the local or the remote side. So the
* cmpxchg64 below only protects one readout.
*
* We must reread via sched_clock_local() in the retry case on
* 32bit as an NMI could use sched_clock_local() via the
* tracer and hit between the readout of
* the low32bit and the high 32bit portion.
*/
this_clock = sched_clock_local(my_scd);
/*
* We must enforce atomic readout on 32bit, otherwise the
* update on the remote cpu can hit inbetween the readout of
* the low32bit and the high 32bit portion.
*/
remote_clock = cmpxchg64(&scd->clock, 0, 0);
#else
/*
* On 64bit the read of [my]scd->clock is atomic versus the
* update, so we can avoid the above 32bit dance.
*/
sched_clock_local(my_scd);
again:
this_clock = my_scd->clock;
remote_clock = scd->clock;
#endif
/*
* Use the opportunity that we have both locks
* taken to couple the two clocks: we take the
* larger time as the latest time for both
* runqueues. (this creates monotonic movement)
*/
if (likely((s64)(remote_clock - this_clock) < 0)) {
ptr = &scd->clock;
old_val = remote_clock;
val = this_clock;
} else {
/*
* Should be rare, but possible:
*/
ptr = &my_scd->clock;
old_val = this_clock;
val = remote_clock;
}
if (cmpxchg64(ptr, old_val, val) != old_val)
goto again;
return val;
}
/*
* Similar to cpu_clock(), but requires local IRQs to be disabled.
*
* See cpu_clock().
*/
u64 sched_clock_cpu(int cpu)
{
struct sched_clock_data *scd;
u64 clock;
if (sched_clock_stable())
return sched_clock();
if (unlikely(!sched_clock_running))
return 0ull;
preempt_disable();
scd = cpu_sdc(cpu);
if (cpu != smp_processor_id())
clock = sched_clock_remote(scd);
else
clock = sched_clock_local(scd);
preempt_enable();
return clock;
}
void sched_clock_tick(void)
{
struct sched_clock_data *scd;
u64 now, now_gtod;
if (sched_clock_stable())
return;
if (unlikely(!sched_clock_running))
return;
WARN_ON_ONCE(!irqs_disabled());
scd = this_scd();
now_gtod = ktime_to_ns(ktime_get());
now = sched_clock();
scd->tick_raw = now;
scd->tick_gtod = now_gtod;
sched_clock_local(scd);
}
/*
* We are going deep-idle (irqs are disabled):
*/
void sched_clock_idle_sleep_event(void)
{
sched_clock_cpu(smp_processor_id());
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
/*
* We just idled delta nanoseconds (called with irqs disabled):
*/
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
if (timekeeping_suspended)
return;
sched_clock_tick();
touch_softlockup_watchdog();
}
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
/*
* As outlined at the top, provides a fast, high resolution, nanosecond
* time source that is monotonic per cpu argument and has bounded drift
* between cpus.
*
* ######################### BIG FAT WARNING ##########################
* # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
* # go backwards !! #
* ####################################################################
*/
u64 cpu_clock(int cpu)
{
if (static_key_false(&__sched_clock_stable))
return sched_clock_cpu(cpu);
return sched_clock();
}
/*
* Similar to cpu_clock() for the current cpu. Time will only be observed
* to be monotonic if care is taken to only compare timestampt taken on the
* same CPU.
*
* See cpu_clock().
*/
u64 local_clock(void)
{
if (static_key_false(&__sched_clock_stable))
return sched_clock_cpu(raw_smp_processor_id());
return sched_clock();
}
#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
void sched_clock_init(void)
{
sched_clock_running = 1;
}
u64 sched_clock_cpu(int cpu)
{
if (unlikely(!sched_clock_running))
return 0;
return sched_clock();
}
u64 cpu_clock(int cpu)
{
return sched_clock();
}
u64 local_clock(void)
{
return sched_clock();
}
#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
EXPORT_SYMBOL_GPL(cpu_clock);
EXPORT_SYMBOL_GPL(local_clock);