2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/kernel/sys_ni.c
Mike Rapoport 1507f51255 mm: introduce memfd_secret system call to create "secret" memory areas
Introduce "memfd_secret" system call with the ability to create memory
areas visible only in the context of the owning process and not mapped not
only to other processes but in the kernel page tables as well.

The secretmem feature is off by default and the user must explicitly
enable it at the boot time.

Once secretmem is enabled, the user will be able to create a file
descriptor using the memfd_secret() system call.  The memory areas created
by mmap() calls from this file descriptor will be unmapped from the kernel
direct map and they will be only mapped in the page table of the processes
that have access to the file descriptor.

Secretmem is designed to provide the following protections:

* Enhanced protection (in conjunction with all the other in-kernel
  attack prevention systems) against ROP attacks.  Seceretmem makes
  "simple" ROP insufficient to perform exfiltration, which increases the
  required complexity of the attack.  Along with other protections like
  the kernel stack size limit and address space layout randomization which
  make finding gadgets is really hard, absence of any in-kernel primitive
  for accessing secret memory means the one gadget ROP attack can't work.
  Since the only way to access secret memory is to reconstruct the missing
  mapping entry, the attacker has to recover the physical page and insert
  a PTE pointing to it in the kernel and then retrieve the contents.  That
  takes at least three gadgets which is a level of difficulty beyond most
  standard attacks.

* Prevent cross-process secret userspace memory exposures.  Once the
  secret memory is allocated, the user can't accidentally pass it into the
  kernel to be transmitted somewhere.  The secreremem pages cannot be
  accessed via the direct map and they are disallowed in GUP.

* Harden against exploited kernel flaws.  In order to access secretmem,
  a kernel-side attack would need to either walk the page tables and
  create new ones, or spawn a new privileged uiserspace process to perform
  secrets exfiltration using ptrace.

The file descriptor based memory has several advantages over the
"traditional" mm interfaces, such as mlock(), mprotect(), madvise().  File
descriptor approach allows explicit and controlled sharing of the memory
areas, it allows to seal the operations.  Besides, file descriptor based
memory paves the way for VMMs to remove the secret memory range from the
userspace hipervisor process, for instance QEMU.  Andy Lutomirski says:

  "Getting fd-backed memory into a guest will take some possibly major
  work in the kernel, but getting vma-backed memory into a guest without
  mapping it in the host user address space seems much, much worse."

memfd_secret() is made a dedicated system call rather than an extension to
memfd_create() because it's purpose is to allow the user to create more
secure memory mappings rather than to simply allow file based access to
the memory.  Nowadays a new system call cost is negligible while it is way
simpler for userspace to deal with a clear-cut system calls than with a
multiplexer or an overloaded syscall.  Moreover, the initial
implementation of memfd_secret() is completely distinct from
memfd_create() so there is no much sense in overloading memfd_create() to
begin with.  If there will be a need for code sharing between these
implementation it can be easily achieved without a need to adjust user
visible APIs.

The secret memory remains accessible in the process context using uaccess
primitives, but it is not exposed to the kernel otherwise; secret memory
areas are removed from the direct map and functions in the
follow_page()/get_user_page() family will refuse to return a page that
belongs to the secret memory area.

Once there will be a use case that will require exposing secretmem to the
kernel it will be an opt-in request in the system call flags so that user
would have to decide what data can be exposed to the kernel.

Removing of the pages from the direct map may cause its fragmentation on
architectures that use large pages to map the physical memory which
affects the system performance.  However, the original Kconfig text for
CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "...  can
improve the kernel's performance a tiny bit ..." (commit 00d1c5e057
("x86: add gbpages switches")) and the recent report [1] showed that "...
although 1G mappings are a good default choice, there is no compelling
evidence that it must be the only choice".  Hence, it is sufficient to
have secretmem disabled by default with the ability of a system
administrator to enable it at boot time.

Pages in the secretmem regions are unevictable and unmovable to avoid
accidental exposure of the sensitive data via swap or during page
migration.

Since the secretmem mappings are locked in memory they cannot exceed
RLIMIT_MEMLOCK.  Since these mappings are already locked independently
from mlock(), an attempt to mlock()/munlock() secretmem range would fail
and mlockall()/munlockall() will ignore secretmem mappings.

However, unlike mlock()ed memory, secretmem currently behaves more like
long-term GUP: secretmem mappings are unmovable mappings directly consumed
by user space.  With default limits, there is no excessive use of
secretmem and it poses no real problem in combination with
ZONE_MOVABLE/CMA, but in the future this should be addressed to allow
balanced use of large amounts of secretmem along with ZONE_MOVABLE/CMA.

A page that was a part of the secret memory area is cleared when it is
freed to ensure the data is not exposed to the next user of that page.

The following example demonstrates creation of a secret mapping (error
handling is omitted):

	fd = memfd_secret(0);
	ftruncate(fd, MAP_SIZE);
	ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
		   MAP_SHARED, fd, 0);

[1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/

[akpm@linux-foundation.org: suppress Kconfig whine]

Link: https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Hagen Paul Pfeifer <hagen@jauu.net>
Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tycho Andersen <tycho@tycho.ws>
Cc: Will Deacon <will@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08 11:48:21 -07:00

484 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/linkage.h>
#include <linux/errno.h>
#include <asm/unistd.h>
#ifdef CONFIG_ARCH_HAS_SYSCALL_WRAPPER
/* Architectures may override COND_SYSCALL and COND_SYSCALL_COMPAT */
#include <asm/syscall_wrapper.h>
#endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */
/* we can't #include <linux/syscalls.h> here,
but tell gcc to not warn with -Wmissing-prototypes */
asmlinkage long sys_ni_syscall(void);
/*
* Non-implemented system calls get redirected here.
*/
asmlinkage long sys_ni_syscall(void)
{
return -ENOSYS;
}
#ifndef COND_SYSCALL
#define COND_SYSCALL(name) cond_syscall(sys_##name)
#endif /* COND_SYSCALL */
#ifndef COND_SYSCALL_COMPAT
#define COND_SYSCALL_COMPAT(name) cond_syscall(compat_sys_##name)
#endif /* COND_SYSCALL_COMPAT */
/*
* This list is kept in the same order as include/uapi/asm-generic/unistd.h.
* Architecture specific entries go below, followed by deprecated or obsolete
* system calls.
*/
COND_SYSCALL(io_setup);
COND_SYSCALL_COMPAT(io_setup);
COND_SYSCALL(io_destroy);
COND_SYSCALL(io_submit);
COND_SYSCALL_COMPAT(io_submit);
COND_SYSCALL(io_cancel);
COND_SYSCALL(io_getevents_time32);
COND_SYSCALL(io_getevents);
COND_SYSCALL(io_pgetevents_time32);
COND_SYSCALL(io_pgetevents);
COND_SYSCALL_COMPAT(io_pgetevents_time32);
COND_SYSCALL_COMPAT(io_pgetevents);
COND_SYSCALL(io_uring_setup);
COND_SYSCALL(io_uring_enter);
COND_SYSCALL(io_uring_register);
/* fs/xattr.c */
/* fs/dcache.c */
/* fs/cookies.c */
COND_SYSCALL(lookup_dcookie);
COND_SYSCALL_COMPAT(lookup_dcookie);
/* fs/eventfd.c */
COND_SYSCALL(eventfd2);
/* fs/eventfd.c */
COND_SYSCALL(epoll_create1);
COND_SYSCALL(epoll_ctl);
COND_SYSCALL(epoll_pwait);
COND_SYSCALL_COMPAT(epoll_pwait);
COND_SYSCALL(epoll_pwait2);
COND_SYSCALL_COMPAT(epoll_pwait2);
/* fs/fcntl.c */
/* fs/inotify_user.c */
COND_SYSCALL(inotify_init1);
COND_SYSCALL(inotify_add_watch);
COND_SYSCALL(inotify_rm_watch);
/* fs/ioctl.c */
/* fs/ioprio.c */
COND_SYSCALL(ioprio_set);
COND_SYSCALL(ioprio_get);
/* fs/locks.c */
COND_SYSCALL(flock);
/* fs/namei.c */
/* fs/namespace.c */
/* fs/nfsctl.c */
/* fs/open.c */
/* fs/pipe.c */
/* fs/quota.c */
COND_SYSCALL(quotactl);
COND_SYSCALL(quotactl_fd);
/* fs/readdir.c */
/* fs/read_write.c */
/* fs/sendfile.c */
/* fs/select.c */
/* fs/signalfd.c */
COND_SYSCALL(signalfd4);
COND_SYSCALL_COMPAT(signalfd4);
/* fs/splice.c */
/* fs/stat.c */
/* fs/sync.c */
/* fs/timerfd.c */
COND_SYSCALL(timerfd_create);
COND_SYSCALL(timerfd_settime);
COND_SYSCALL(timerfd_settime32);
COND_SYSCALL(timerfd_gettime);
COND_SYSCALL(timerfd_gettime32);
/* fs/utimes.c */
/* kernel/acct.c */
COND_SYSCALL(acct);
/* kernel/capability.c */
COND_SYSCALL(capget);
COND_SYSCALL(capset);
/* kernel/exec_domain.c */
/* kernel/exit.c */
/* kernel/fork.c */
/* __ARCH_WANT_SYS_CLONE3 */
COND_SYSCALL(clone3);
/* kernel/futex.c */
COND_SYSCALL(futex);
COND_SYSCALL(futex_time32);
COND_SYSCALL(set_robust_list);
COND_SYSCALL_COMPAT(set_robust_list);
COND_SYSCALL(get_robust_list);
COND_SYSCALL_COMPAT(get_robust_list);
/* kernel/hrtimer.c */
/* kernel/itimer.c */
/* kernel/kexec.c */
COND_SYSCALL(kexec_load);
COND_SYSCALL_COMPAT(kexec_load);
/* kernel/module.c */
COND_SYSCALL(init_module);
COND_SYSCALL(delete_module);
/* kernel/posix-timers.c */
/* kernel/printk.c */
COND_SYSCALL(syslog);
/* kernel/ptrace.c */
/* kernel/sched/core.c */
/* kernel/sys.c */
COND_SYSCALL(setregid);
COND_SYSCALL(setgid);
COND_SYSCALL(setreuid);
COND_SYSCALL(setuid);
COND_SYSCALL(setresuid);
COND_SYSCALL(getresuid);
COND_SYSCALL(setresgid);
COND_SYSCALL(getresgid);
COND_SYSCALL(setfsuid);
COND_SYSCALL(setfsgid);
COND_SYSCALL(setgroups);
COND_SYSCALL(getgroups);
/* kernel/time.c */
/* kernel/timer.c */
/* ipc/mqueue.c */
COND_SYSCALL(mq_open);
COND_SYSCALL_COMPAT(mq_open);
COND_SYSCALL(mq_unlink);
COND_SYSCALL(mq_timedsend);
COND_SYSCALL(mq_timedsend_time32);
COND_SYSCALL(mq_timedreceive);
COND_SYSCALL(mq_timedreceive_time32);
COND_SYSCALL(mq_notify);
COND_SYSCALL_COMPAT(mq_notify);
COND_SYSCALL(mq_getsetattr);
COND_SYSCALL_COMPAT(mq_getsetattr);
/* ipc/msg.c */
COND_SYSCALL(msgget);
COND_SYSCALL(old_msgctl);
COND_SYSCALL(msgctl);
COND_SYSCALL_COMPAT(msgctl);
COND_SYSCALL_COMPAT(old_msgctl);
COND_SYSCALL(msgrcv);
COND_SYSCALL_COMPAT(msgrcv);
COND_SYSCALL(msgsnd);
COND_SYSCALL_COMPAT(msgsnd);
/* ipc/sem.c */
COND_SYSCALL(semget);
COND_SYSCALL(old_semctl);
COND_SYSCALL(semctl);
COND_SYSCALL_COMPAT(semctl);
COND_SYSCALL_COMPAT(old_semctl);
COND_SYSCALL(semtimedop);
COND_SYSCALL(semtimedop_time32);
COND_SYSCALL(semop);
/* ipc/shm.c */
COND_SYSCALL(shmget);
COND_SYSCALL(old_shmctl);
COND_SYSCALL(shmctl);
COND_SYSCALL_COMPAT(shmctl);
COND_SYSCALL_COMPAT(old_shmctl);
COND_SYSCALL(shmat);
COND_SYSCALL_COMPAT(shmat);
COND_SYSCALL(shmdt);
/* net/socket.c */
COND_SYSCALL(socket);
COND_SYSCALL(socketpair);
COND_SYSCALL(bind);
COND_SYSCALL(listen);
COND_SYSCALL(accept);
COND_SYSCALL(connect);
COND_SYSCALL(getsockname);
COND_SYSCALL(getpeername);
COND_SYSCALL(setsockopt);
COND_SYSCALL_COMPAT(setsockopt);
COND_SYSCALL(getsockopt);
COND_SYSCALL_COMPAT(getsockopt);
COND_SYSCALL(sendto);
COND_SYSCALL(shutdown);
COND_SYSCALL(recvfrom);
COND_SYSCALL_COMPAT(recvfrom);
COND_SYSCALL(sendmsg);
COND_SYSCALL_COMPAT(sendmsg);
COND_SYSCALL(recvmsg);
COND_SYSCALL_COMPAT(recvmsg);
/* mm/filemap.c */
/* mm/nommu.c, also with MMU */
COND_SYSCALL(mremap);
/* security/keys/keyctl.c */
COND_SYSCALL(add_key);
COND_SYSCALL(request_key);
COND_SYSCALL(keyctl);
COND_SYSCALL_COMPAT(keyctl);
/* security/landlock/syscalls.c */
COND_SYSCALL(landlock_create_ruleset);
COND_SYSCALL(landlock_add_rule);
COND_SYSCALL(landlock_restrict_self);
/* arch/example/kernel/sys_example.c */
/* mm/fadvise.c */
COND_SYSCALL(fadvise64_64);
/* mm/, CONFIG_MMU only */
COND_SYSCALL(swapon);
COND_SYSCALL(swapoff);
COND_SYSCALL(mprotect);
COND_SYSCALL(msync);
COND_SYSCALL(mlock);
COND_SYSCALL(munlock);
COND_SYSCALL(mlockall);
COND_SYSCALL(munlockall);
COND_SYSCALL(mincore);
COND_SYSCALL(madvise);
COND_SYSCALL(process_madvise);
COND_SYSCALL(remap_file_pages);
COND_SYSCALL(mbind);
COND_SYSCALL_COMPAT(mbind);
COND_SYSCALL(get_mempolicy);
COND_SYSCALL_COMPAT(get_mempolicy);
COND_SYSCALL(set_mempolicy);
COND_SYSCALL_COMPAT(set_mempolicy);
COND_SYSCALL(migrate_pages);
COND_SYSCALL_COMPAT(migrate_pages);
COND_SYSCALL(move_pages);
COND_SYSCALL_COMPAT(move_pages);
COND_SYSCALL(perf_event_open);
COND_SYSCALL(accept4);
COND_SYSCALL(recvmmsg);
COND_SYSCALL(recvmmsg_time32);
COND_SYSCALL_COMPAT(recvmmsg_time32);
COND_SYSCALL_COMPAT(recvmmsg_time64);
/*
* Architecture specific syscalls: see further below
*/
/* fanotify */
COND_SYSCALL(fanotify_init);
COND_SYSCALL(fanotify_mark);
/* open by handle */
COND_SYSCALL(name_to_handle_at);
COND_SYSCALL(open_by_handle_at);
COND_SYSCALL_COMPAT(open_by_handle_at);
COND_SYSCALL(sendmmsg);
COND_SYSCALL_COMPAT(sendmmsg);
COND_SYSCALL(process_vm_readv);
COND_SYSCALL_COMPAT(process_vm_readv);
COND_SYSCALL(process_vm_writev);
COND_SYSCALL_COMPAT(process_vm_writev);
/* compare kernel pointers */
COND_SYSCALL(kcmp);
COND_SYSCALL(finit_module);
/* operate on Secure Computing state */
COND_SYSCALL(seccomp);
COND_SYSCALL(memfd_create);
/* access BPF programs and maps */
COND_SYSCALL(bpf);
/* execveat */
COND_SYSCALL(execveat);
COND_SYSCALL(userfaultfd);
/* membarrier */
COND_SYSCALL(membarrier);
COND_SYSCALL(mlock2);
COND_SYSCALL(copy_file_range);
/* memory protection keys */
COND_SYSCALL(pkey_mprotect);
COND_SYSCALL(pkey_alloc);
COND_SYSCALL(pkey_free);
/* memfd_secret */
COND_SYSCALL(memfd_secret);
/*
* Architecture specific weak syscall entries.
*/
/* pciconfig: alpha, arm, arm64, ia64, sparc */
COND_SYSCALL(pciconfig_read);
COND_SYSCALL(pciconfig_write);
COND_SYSCALL(pciconfig_iobase);
/* sys_socketcall: arm, mips, x86, ... */
COND_SYSCALL(socketcall);
COND_SYSCALL_COMPAT(socketcall);
/* compat syscalls for arm64, x86, ... */
COND_SYSCALL_COMPAT(fanotify_mark);
/* x86 */
COND_SYSCALL(vm86old);
COND_SYSCALL(modify_ldt);
COND_SYSCALL(vm86);
COND_SYSCALL(kexec_file_load);
/* s390 */
COND_SYSCALL(s390_pci_mmio_read);
COND_SYSCALL(s390_pci_mmio_write);
COND_SYSCALL(s390_ipc);
COND_SYSCALL_COMPAT(s390_ipc);
/* powerpc */
COND_SYSCALL(rtas);
COND_SYSCALL(spu_run);
COND_SYSCALL(spu_create);
COND_SYSCALL(subpage_prot);
/*
* Deprecated system calls which are still defined in
* include/uapi/asm-generic/unistd.h and wanted by >= 1 arch
*/
/* __ARCH_WANT_SYSCALL_NO_FLAGS */
COND_SYSCALL(epoll_create);
COND_SYSCALL(inotify_init);
COND_SYSCALL(eventfd);
COND_SYSCALL(signalfd);
COND_SYSCALL_COMPAT(signalfd);
/* __ARCH_WANT_SYSCALL_OFF_T */
COND_SYSCALL(fadvise64);
/* __ARCH_WANT_SYSCALL_DEPRECATED */
COND_SYSCALL(epoll_wait);
COND_SYSCALL(recv);
COND_SYSCALL_COMPAT(recv);
COND_SYSCALL(send);
COND_SYSCALL(bdflush);
COND_SYSCALL(uselib);
/* optional: time32 */
COND_SYSCALL(time32);
COND_SYSCALL(stime32);
COND_SYSCALL(utime32);
COND_SYSCALL(adjtimex_time32);
COND_SYSCALL(sched_rr_get_interval_time32);
COND_SYSCALL(nanosleep_time32);
COND_SYSCALL(rt_sigtimedwait_time32);
COND_SYSCALL_COMPAT(rt_sigtimedwait_time32);
COND_SYSCALL(timer_settime32);
COND_SYSCALL(timer_gettime32);
COND_SYSCALL(clock_settime32);
COND_SYSCALL(clock_gettime32);
COND_SYSCALL(clock_getres_time32);
COND_SYSCALL(clock_nanosleep_time32);
COND_SYSCALL(utimes_time32);
COND_SYSCALL(futimesat_time32);
COND_SYSCALL(pselect6_time32);
COND_SYSCALL_COMPAT(pselect6_time32);
COND_SYSCALL(ppoll_time32);
COND_SYSCALL_COMPAT(ppoll_time32);
COND_SYSCALL(utimensat_time32);
COND_SYSCALL(clock_adjtime32);
/*
* The syscalls below are not found in include/uapi/asm-generic/unistd.h
*/
/* obsolete: SGETMASK_SYSCALL */
COND_SYSCALL(sgetmask);
COND_SYSCALL(ssetmask);
/* obsolete: SYSFS_SYSCALL */
COND_SYSCALL(sysfs);
/* obsolete: __ARCH_WANT_SYS_IPC */
COND_SYSCALL(ipc);
COND_SYSCALL_COMPAT(ipc);
/* obsolete: UID16 */
COND_SYSCALL(chown16);
COND_SYSCALL(fchown16);
COND_SYSCALL(getegid16);
COND_SYSCALL(geteuid16);
COND_SYSCALL(getgid16);
COND_SYSCALL(getgroups16);
COND_SYSCALL(getresgid16);
COND_SYSCALL(getresuid16);
COND_SYSCALL(getuid16);
COND_SYSCALL(lchown16);
COND_SYSCALL(setfsgid16);
COND_SYSCALL(setfsuid16);
COND_SYSCALL(setgid16);
COND_SYSCALL(setgroups16);
COND_SYSCALL(setregid16);
COND_SYSCALL(setresgid16);
COND_SYSCALL(setresuid16);
COND_SYSCALL(setreuid16);
COND_SYSCALL(setuid16);
/* restartable sequence */
COND_SYSCALL(rseq);