2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 12:14:01 +08:00
linux-next/Documentation/ABI
Linus Torvalds fa4bff1650 Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MDS mitigations from Thomas Gleixner:
 "Microarchitectural Data Sampling (MDS) is a hardware vulnerability
  which allows unprivileged speculative access to data which is
  available in various CPU internal buffers. This new set of misfeatures
  has the following CVEs assigned:

     CVE-2018-12126  MSBDS  Microarchitectural Store Buffer Data Sampling
     CVE-2018-12130  MFBDS  Microarchitectural Fill Buffer Data Sampling
     CVE-2018-12127  MLPDS  Microarchitectural Load Port Data Sampling
     CVE-2019-11091  MDSUM  Microarchitectural Data Sampling Uncacheable Memory

  MDS attacks target microarchitectural buffers which speculatively
  forward data under certain conditions. Disclosure gadgets can expose
  this data via cache side channels.

  Contrary to other speculation based vulnerabilities the MDS
  vulnerability does not allow the attacker to control the memory target
  address. As a consequence the attacks are purely sampling based, but
  as demonstrated with the TLBleed attack samples can be postprocessed
  successfully.

  The mitigation is to flush the microarchitectural buffers on return to
  user space and before entering a VM. It's bolted on the VERW
  instruction and requires a microcode update. As some of the attacks
  exploit data structures shared between hyperthreads, full protection
  requires to disable hyperthreading. The kernel does not do that by
  default to avoid breaking unattended updates.

  The mitigation set comes with documentation for administrators and a
  deeper technical view"

* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  x86/speculation/mds: Fix documentation typo
  Documentation: Correct the possible MDS sysfs values
  x86/mds: Add MDSUM variant to the MDS documentation
  x86/speculation/mds: Add 'mitigations=' support for MDS
  x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
  x86/speculation/mds: Fix comment
  x86/speculation/mds: Add SMT warning message
  x86/speculation: Move arch_smt_update() call to after mitigation decisions
  x86/speculation/mds: Add mds=full,nosmt cmdline option
  Documentation: Add MDS vulnerability documentation
  Documentation: Move L1TF to separate directory
  x86/speculation/mds: Add mitigation mode VMWERV
  x86/speculation/mds: Add sysfs reporting for MDS
  x86/speculation/mds: Add mitigation control for MDS
  x86/speculation/mds: Conditionally clear CPU buffers on idle entry
  x86/kvm/vmx: Add MDS protection when L1D Flush is not active
  x86/speculation/mds: Clear CPU buffers on exit to user
  x86/speculation/mds: Add mds_clear_cpu_buffers()
  x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
  x86/speculation/mds: Add BUG_MSBDS_ONLY
  ...
2019-05-14 07:57:29 -07:00
..
obsolete This feature/cleanup patchset includes the following patches: 2019-03-28 09:52:42 -07:00
removed acpi, nfit: Remove ecc_unit_size 2018-06-03 12:49:15 -07:00
stable Char/Misc patches for 5.2-rc1 - part 2 2019-05-07 13:39:22 -07:00
testing Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip 2019-05-14 07:57:29 -07:00
README docs: fix locations of several documents that got moved 2016-10-24 08:12:35 -02:00

This directory attempts to document the ABI between the Linux kernel and
userspace, and the relative stability of these interfaces.  Due to the
everchanging nature of Linux, and the differing maturity levels, these
interfaces should be used by userspace programs in different ways.

We have four different levels of ABI stability, as shown by the four
different subdirectories in this location.  Interfaces may change levels
of stability according to the rules described below.

The different levels of stability are:

  stable/
	This directory documents the interfaces that the developer has
	defined to be stable.  Userspace programs are free to use these
	interfaces with no restrictions, and backward compatibility for
	them will be guaranteed for at least 2 years.  Most interfaces
	(like syscalls) are expected to never change and always be
	available.

  testing/
	This directory documents interfaces that are felt to be stable,
	as the main development of this interface has been completed.
	The interface can be changed to add new features, but the
	current interface will not break by doing this, unless grave
	errors or security problems are found in them.  Userspace
	programs can start to rely on these interfaces, but they must be
	aware of changes that can occur before these interfaces move to
	be marked stable.  Programs that use these interfaces are
	strongly encouraged to add their name to the description of
	these interfaces, so that the kernel developers can easily
	notify them if any changes occur (see the description of the
	layout of the files below for details on how to do this.)

  obsolete/
  	This directory documents interfaces that are still remaining in
	the kernel, but are marked to be removed at some later point in
	time.  The description of the interface will document the reason
	why it is obsolete and when it can be expected to be removed.

  removed/
	This directory contains a list of the old interfaces that have
	been removed from the kernel.

Every file in these directories will contain the following information:

What:		Short description of the interface
Date:		Date created
KernelVersion:	Kernel version this feature first showed up in.
Contact:	Primary contact for this interface (may be a mailing list)
Description:	Long description of the interface and how to use it.
Users:		All users of this interface who wish to be notified when
		it changes.  This is very important for interfaces in
		the "testing" stage, so that kernel developers can work
		with userspace developers to ensure that things do not
		break in ways that are unacceptable.  It is also
		important to get feedback for these interfaces to make
		sure they are working in a proper way and do not need to
		be changed further.


How things move between levels:

Interfaces in stable may move to obsolete, as long as the proper
notification is given.

Interfaces may be removed from obsolete and the kernel as long as the
documented amount of time has gone by.

Interfaces in the testing state can move to the stable state when the
developers feel they are finished.  They cannot be removed from the
kernel tree without going through the obsolete state first.

It's up to the developer to place their interfaces in the category they
wish for it to start out in.


Notable bits of non-ABI, which should not under any circumstances be considered
stable:

- Kconfig.  Userspace should not rely on the presence or absence of any
  particular Kconfig symbol, in /proc/config.gz, in the copy of .config
  commonly installed to /boot, or in any invocation of the kernel build
  process.

- Kernel-internal symbols.  Do not rely on the presence, absence, location, or
  type of any kernel symbol, either in System.map files or the kernel binary
  itself.  See Documentation/process/stable-api-nonsense.rst.