2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/atm/zatm.c

1665 lines
43 KiB
C

/* drivers/atm/zatm.c - ZeitNet ZN122x device driver */
/* Written 1995-2000 by Werner Almesberger, EPFL LRC/ICA */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/atm.h>
#include <linux/atmdev.h>
#include <linux/sonet.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/delay.h>
#include <linux/uio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/atm_zatm.h>
#include <linux/capability.h>
#include <linux/bitops.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <asm/string.h>
#include <asm/io.h>
#include <linux/atomic.h>
#include <linux/uaccess.h>
#include "uPD98401.h"
#include "uPD98402.h"
#include "zeprom.h"
#include "zatm.h"
/*
* TODO:
*
* Minor features
* - support 64 kB SDUs (will have to use multibuffer batches then :-( )
* - proper use of CDV, credit = max(1,CDVT*PCR)
* - AAL0
* - better receive timestamps
* - OAM
*/
#define ZATM_COPPER 1
#if 0
#define DPRINTK(format,args...) printk(KERN_DEBUG format,##args)
#else
#define DPRINTK(format,args...)
#endif
#ifndef CONFIG_ATM_ZATM_DEBUG
#define NULLCHECK(x)
#define EVENT(s,a,b)
static void event_dump(void)
{
}
#else
/*
* NULL pointer checking
*/
#define NULLCHECK(x) \
if ((unsigned long) (x) < 0x30) printk(KERN_CRIT #x "==0x%x\n", (int) (x))
/*
* Very extensive activity logging. Greatly improves bug detection speed but
* costs a few Mbps if enabled.
*/
#define EV 64
static const char *ev[EV];
static unsigned long ev_a[EV],ev_b[EV];
static int ec = 0;
static void EVENT(const char *s,unsigned long a,unsigned long b)
{
ev[ec] = s;
ev_a[ec] = a;
ev_b[ec] = b;
ec = (ec+1) % EV;
}
static void event_dump(void)
{
int n,i;
printk(KERN_NOTICE "----- event dump follows -----\n");
for (n = 0; n < EV; n++) {
i = (ec+n) % EV;
printk(KERN_NOTICE);
printk(ev[i] ? ev[i] : "(null)",ev_a[i],ev_b[i]);
}
printk(KERN_NOTICE "----- event dump ends here -----\n");
}
#endif /* CONFIG_ATM_ZATM_DEBUG */
#define RING_BUSY 1 /* indication from do_tx that PDU has to be
backlogged */
static struct atm_dev *zatm_boards = NULL;
static unsigned long dummy[2] = {0,0};
#define zin_n(r) inl(zatm_dev->base+r*4)
#define zin(r) inl(zatm_dev->base+uPD98401_##r*4)
#define zout(v,r) outl(v,zatm_dev->base+uPD98401_##r*4)
#define zwait while (zin(CMR) & uPD98401_BUSY)
/* RX0, RX1, TX0, TX1 */
static const int mbx_entries[NR_MBX] = { 1024,1024,1024,1024 };
static const int mbx_esize[NR_MBX] = { 16,16,4,4 }; /* entry size in bytes */
#define MBX_SIZE(i) (mbx_entries[i]*mbx_esize[i])
/*-------------------------------- utilities --------------------------------*/
static void zpokel(struct zatm_dev *zatm_dev,u32 value,u32 addr)
{
zwait;
zout(value,CER);
zout(uPD98401_IND_ACC | uPD98401_IA_BALL |
(uPD98401_IA_TGT_CM << uPD98401_IA_TGT_SHIFT) | addr,CMR);
}
static u32 zpeekl(struct zatm_dev *zatm_dev,u32 addr)
{
zwait;
zout(uPD98401_IND_ACC | uPD98401_IA_BALL | uPD98401_IA_RW |
(uPD98401_IA_TGT_CM << uPD98401_IA_TGT_SHIFT) | addr,CMR);
zwait;
return zin(CER);
}
/*------------------------------- free lists --------------------------------*/
/*
* Free buffer head structure:
* [0] pointer to buffer (for SAR)
* [1] buffer descr link pointer (for SAR)
* [2] back pointer to skb (for poll_rx)
* [3] data
* ...
*/
struct rx_buffer_head {
u32 buffer; /* pointer to buffer (for SAR) */
u32 link; /* buffer descriptor link pointer (for SAR) */
struct sk_buff *skb; /* back pointer to skb (for poll_rx) */
};
static void refill_pool(struct atm_dev *dev,int pool)
{
struct zatm_dev *zatm_dev;
struct sk_buff *skb;
struct rx_buffer_head *first;
unsigned long flags;
int align,offset,free,count,size;
EVENT("refill_pool\n",0,0);
zatm_dev = ZATM_DEV(dev);
size = (64 << (pool <= ZATM_AAL5_POOL_BASE ? 0 :
pool-ZATM_AAL5_POOL_BASE))+sizeof(struct rx_buffer_head);
if (size < PAGE_SIZE) {
align = 32; /* for 32 byte alignment */
offset = sizeof(struct rx_buffer_head);
}
else {
align = 4096;
offset = zatm_dev->pool_info[pool].offset+
sizeof(struct rx_buffer_head);
}
size += align;
spin_lock_irqsave(&zatm_dev->lock, flags);
free = zpeekl(zatm_dev,zatm_dev->pool_base+2*pool) &
uPD98401_RXFP_REMAIN;
spin_unlock_irqrestore(&zatm_dev->lock, flags);
if (free >= zatm_dev->pool_info[pool].low_water) return;
EVENT("starting ... POOL: 0x%x, 0x%x\n",
zpeekl(zatm_dev,zatm_dev->pool_base+2*pool),
zpeekl(zatm_dev,zatm_dev->pool_base+2*pool+1));
EVENT("dummy: 0x%08lx, 0x%08lx\n",dummy[0],dummy[1]);
count = 0;
first = NULL;
while (free < zatm_dev->pool_info[pool].high_water) {
struct rx_buffer_head *head;
skb = alloc_skb(size,GFP_ATOMIC);
if (!skb) {
printk(KERN_WARNING DEV_LABEL "(Itf %d): got no new "
"skb (%d) with %d free\n",dev->number,size,free);
break;
}
skb_reserve(skb,(unsigned char *) ((((unsigned long) skb->data+
align+offset-1) & ~(unsigned long) (align-1))-offset)-
skb->data);
head = (struct rx_buffer_head *) skb->data;
skb_reserve(skb,sizeof(struct rx_buffer_head));
if (!first) first = head;
count++;
head->buffer = virt_to_bus(skb->data);
head->link = 0;
head->skb = skb;
EVENT("enq skb 0x%08lx/0x%08lx\n",(unsigned long) skb,
(unsigned long) head);
spin_lock_irqsave(&zatm_dev->lock, flags);
if (zatm_dev->last_free[pool])
((struct rx_buffer_head *) (zatm_dev->last_free[pool]->
data))[-1].link = virt_to_bus(head);
zatm_dev->last_free[pool] = skb;
skb_queue_tail(&zatm_dev->pool[pool],skb);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
free++;
}
if (first) {
spin_lock_irqsave(&zatm_dev->lock, flags);
zwait;
zout(virt_to_bus(first),CER);
zout(uPD98401_ADD_BAT | (pool << uPD98401_POOL_SHIFT) | count,
CMR);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
EVENT ("POOL: 0x%x, 0x%x\n",
zpeekl(zatm_dev,zatm_dev->pool_base+2*pool),
zpeekl(zatm_dev,zatm_dev->pool_base+2*pool+1));
EVENT("dummy: 0x%08lx, 0x%08lx\n",dummy[0],dummy[1]);
}
}
static void drain_free(struct atm_dev *dev,int pool)
{
skb_queue_purge(&ZATM_DEV(dev)->pool[pool]);
}
static int pool_index(int max_pdu)
{
int i;
if (max_pdu % ATM_CELL_PAYLOAD)
printk(KERN_ERR DEV_LABEL ": driver error in pool_index: "
"max_pdu is %d\n",max_pdu);
if (max_pdu > 65536) return -1;
for (i = 0; (64 << i) < max_pdu; i++);
return i+ZATM_AAL5_POOL_BASE;
}
/* use_pool isn't reentrant */
static void use_pool(struct atm_dev *dev,int pool)
{
struct zatm_dev *zatm_dev;
unsigned long flags;
int size;
zatm_dev = ZATM_DEV(dev);
if (!(zatm_dev->pool_info[pool].ref_count++)) {
skb_queue_head_init(&zatm_dev->pool[pool]);
size = pool-ZATM_AAL5_POOL_BASE;
if (size < 0) size = 0; /* 64B... */
else if (size > 10) size = 10; /* ... 64kB */
spin_lock_irqsave(&zatm_dev->lock, flags);
zpokel(zatm_dev,((zatm_dev->pool_info[pool].low_water/4) <<
uPD98401_RXFP_ALERT_SHIFT) |
(1 << uPD98401_RXFP_BTSZ_SHIFT) |
(size << uPD98401_RXFP_BFSZ_SHIFT),
zatm_dev->pool_base+pool*2);
zpokel(zatm_dev,(unsigned long) dummy,zatm_dev->pool_base+
pool*2+1);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
zatm_dev->last_free[pool] = NULL;
refill_pool(dev,pool);
}
DPRINTK("pool %d: %d\n",pool,zatm_dev->pool_info[pool].ref_count);
}
static void unuse_pool(struct atm_dev *dev,int pool)
{
if (!(--ZATM_DEV(dev)->pool_info[pool].ref_count))
drain_free(dev,pool);
}
/*----------------------------------- RX ------------------------------------*/
#if 0
static void exception(struct atm_vcc *vcc)
{
static int count = 0;
struct zatm_dev *zatm_dev = ZATM_DEV(vcc->dev);
struct zatm_vcc *zatm_vcc = ZATM_VCC(vcc);
unsigned long *qrp;
int i;
if (count++ > 2) return;
for (i = 0; i < 8; i++)
printk("TX%d: 0x%08lx\n",i,
zpeekl(zatm_dev,zatm_vcc->tx_chan*VC_SIZE/4+i));
for (i = 0; i < 5; i++)
printk("SH%d: 0x%08lx\n",i,
zpeekl(zatm_dev,uPD98401_IM(zatm_vcc->shaper)+16*i));
qrp = (unsigned long *) zpeekl(zatm_dev,zatm_vcc->tx_chan*VC_SIZE/4+
uPD98401_TXVC_QRP);
printk("qrp=0x%08lx\n",(unsigned long) qrp);
for (i = 0; i < 4; i++) printk("QRP[%d]: 0x%08lx",i,qrp[i]);
}
#endif
static const char *err_txt[] = {
"No error",
"RX buf underflow",
"RX FIFO overrun",
"Maximum len violation",
"CRC error",
"User abort",
"Length violation",
"T1 error",
"Deactivated",
"???",
"???",
"???",
"???",
"???",
"???",
"???"
};
static void poll_rx(struct atm_dev *dev,int mbx)
{
struct zatm_dev *zatm_dev;
unsigned long pos;
u32 x;
int error;
EVENT("poll_rx\n",0,0);
zatm_dev = ZATM_DEV(dev);
pos = (zatm_dev->mbx_start[mbx] & ~0xffffUL) | zin(MTA(mbx));
while (x = zin(MWA(mbx)), (pos & 0xffff) != x) {
u32 *here;
struct sk_buff *skb;
struct atm_vcc *vcc;
int cells,size,chan;
EVENT("MBX: host 0x%lx, nic 0x%x\n",pos,x);
here = (u32 *) pos;
if (((pos += 16) & 0xffff) == zatm_dev->mbx_end[mbx])
pos = zatm_dev->mbx_start[mbx];
cells = here[0] & uPD98401_AAL5_SIZE;
#if 0
printk("RX IND: 0x%x, 0x%x, 0x%x, 0x%x\n",here[0],here[1],here[2],here[3]);
{
unsigned long *x;
printk("POOL: 0x%08x, 0x%08x\n",zpeekl(zatm_dev,
zatm_dev->pool_base),
zpeekl(zatm_dev,zatm_dev->pool_base+1));
x = (unsigned long *) here[2];
printk("[0..3] = 0x%08lx, 0x%08lx, 0x%08lx, 0x%08lx\n",
x[0],x[1],x[2],x[3]);
}
#endif
error = 0;
if (here[3] & uPD98401_AAL5_ERR) {
error = (here[3] & uPD98401_AAL5_ES) >>
uPD98401_AAL5_ES_SHIFT;
if (error == uPD98401_AAL5_ES_DEACT ||
error == uPD98401_AAL5_ES_FREE) continue;
}
EVENT("error code 0x%x/0x%x\n",(here[3] & uPD98401_AAL5_ES) >>
uPD98401_AAL5_ES_SHIFT,error);
skb = ((struct rx_buffer_head *) bus_to_virt(here[2]))->skb;
__net_timestamp(skb);
#if 0
printk("[-3..0] 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",((unsigned *) skb->data)[-3],
((unsigned *) skb->data)[-2],((unsigned *) skb->data)[-1],
((unsigned *) skb->data)[0]);
#endif
EVENT("skb 0x%lx, here 0x%lx\n",(unsigned long) skb,
(unsigned long) here);
#if 0
printk("dummy: 0x%08lx, 0x%08lx\n",dummy[0],dummy[1]);
#endif
size = error ? 0 : ntohs(((__be16 *) skb->data)[cells*
ATM_CELL_PAYLOAD/sizeof(u16)-3]);
EVENT("got skb 0x%lx, size %d\n",(unsigned long) skb,size);
chan = (here[3] & uPD98401_AAL5_CHAN) >>
uPD98401_AAL5_CHAN_SHIFT;
if (chan < zatm_dev->chans && zatm_dev->rx_map[chan]) {
int pos;
vcc = zatm_dev->rx_map[chan];
pos = ZATM_VCC(vcc)->pool;
if (skb == zatm_dev->last_free[pos])
zatm_dev->last_free[pos] = NULL;
skb_unlink(skb, zatm_dev->pool + pos);
}
else {
printk(KERN_ERR DEV_LABEL "(itf %d): RX indication "
"for non-existing channel\n",dev->number);
size = 0;
vcc = NULL;
event_dump();
}
if (error) {
static unsigned long silence = 0;
static int last_error = 0;
if (error != last_error ||
time_after(jiffies, silence) || silence == 0){
printk(KERN_WARNING DEV_LABEL "(itf %d): "
"chan %d error %s\n",dev->number,chan,
err_txt[error]);
last_error = error;
silence = (jiffies+2*HZ)|1;
}
size = 0;
}
if (size && (size > cells*ATM_CELL_PAYLOAD-ATM_AAL5_TRAILER ||
size <= (cells-1)*ATM_CELL_PAYLOAD-ATM_AAL5_TRAILER)) {
printk(KERN_ERR DEV_LABEL "(itf %d): size %d with %d "
"cells\n",dev->number,size,cells);
size = 0;
event_dump();
}
if (size > ATM_MAX_AAL5_PDU) {
printk(KERN_ERR DEV_LABEL "(itf %d): size too big "
"(%d)\n",dev->number,size);
size = 0;
event_dump();
}
if (!size) {
dev_kfree_skb_irq(skb);
if (vcc) atomic_inc(&vcc->stats->rx_err);
continue;
}
if (!atm_charge(vcc,skb->truesize)) {
dev_kfree_skb_irq(skb);
continue;
}
skb->len = size;
ATM_SKB(skb)->vcc = vcc;
vcc->push(vcc,skb);
atomic_inc(&vcc->stats->rx);
}
zout(pos & 0xffff,MTA(mbx));
#if 0 /* probably a stupid idea */
refill_pool(dev,zatm_vcc->pool);
/* maybe this saves us a few interrupts */
#endif
}
static int open_rx_first(struct atm_vcc *vcc)
{
struct zatm_dev *zatm_dev;
struct zatm_vcc *zatm_vcc;
unsigned long flags;
unsigned short chan;
int cells;
DPRINTK("open_rx_first (0x%x)\n",inb_p(0xc053));
zatm_dev = ZATM_DEV(vcc->dev);
zatm_vcc = ZATM_VCC(vcc);
zatm_vcc->rx_chan = 0;
if (vcc->qos.rxtp.traffic_class == ATM_NONE) return 0;
if (vcc->qos.aal == ATM_AAL5) {
if (vcc->qos.rxtp.max_sdu > 65464)
vcc->qos.rxtp.max_sdu = 65464;
/* fix this - we may want to receive 64kB SDUs
later */
cells = DIV_ROUND_UP(vcc->qos.rxtp.max_sdu + ATM_AAL5_TRAILER,
ATM_CELL_PAYLOAD);
zatm_vcc->pool = pool_index(cells*ATM_CELL_PAYLOAD);
}
else {
cells = 1;
zatm_vcc->pool = ZATM_AAL0_POOL;
}
if (zatm_vcc->pool < 0) return -EMSGSIZE;
spin_lock_irqsave(&zatm_dev->lock, flags);
zwait;
zout(uPD98401_OPEN_CHAN,CMR);
zwait;
DPRINTK("0x%x 0x%x\n",zin(CMR),zin(CER));
chan = (zin(CMR) & uPD98401_CHAN_ADDR) >> uPD98401_CHAN_ADDR_SHIFT;
spin_unlock_irqrestore(&zatm_dev->lock, flags);
DPRINTK("chan is %d\n",chan);
if (!chan) return -EAGAIN;
use_pool(vcc->dev,zatm_vcc->pool);
DPRINTK("pool %d\n",zatm_vcc->pool);
/* set up VC descriptor */
spin_lock_irqsave(&zatm_dev->lock, flags);
zpokel(zatm_dev,zatm_vcc->pool << uPD98401_RXVC_POOL_SHIFT,
chan*VC_SIZE/4);
zpokel(zatm_dev,uPD98401_RXVC_OD | (vcc->qos.aal == ATM_AAL5 ?
uPD98401_RXVC_AR : 0) | cells,chan*VC_SIZE/4+1);
zpokel(zatm_dev,0,chan*VC_SIZE/4+2);
zatm_vcc->rx_chan = chan;
zatm_dev->rx_map[chan] = vcc;
spin_unlock_irqrestore(&zatm_dev->lock, flags);
return 0;
}
static int open_rx_second(struct atm_vcc *vcc)
{
struct zatm_dev *zatm_dev;
struct zatm_vcc *zatm_vcc;
unsigned long flags;
int pos,shift;
DPRINTK("open_rx_second (0x%x)\n",inb_p(0xc053));
zatm_dev = ZATM_DEV(vcc->dev);
zatm_vcc = ZATM_VCC(vcc);
if (!zatm_vcc->rx_chan) return 0;
spin_lock_irqsave(&zatm_dev->lock, flags);
/* should also handle VPI @@@ */
pos = vcc->vci >> 1;
shift = (1-(vcc->vci & 1)) << 4;
zpokel(zatm_dev,(zpeekl(zatm_dev,pos) & ~(0xffff << shift)) |
((zatm_vcc->rx_chan | uPD98401_RXLT_ENBL) << shift),pos);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
return 0;
}
static void close_rx(struct atm_vcc *vcc)
{
struct zatm_dev *zatm_dev;
struct zatm_vcc *zatm_vcc;
unsigned long flags;
int pos,shift;
zatm_vcc = ZATM_VCC(vcc);
zatm_dev = ZATM_DEV(vcc->dev);
if (!zatm_vcc->rx_chan) return;
DPRINTK("close_rx\n");
/* disable receiver */
if (vcc->vpi != ATM_VPI_UNSPEC && vcc->vci != ATM_VCI_UNSPEC) {
spin_lock_irqsave(&zatm_dev->lock, flags);
pos = vcc->vci >> 1;
shift = (1-(vcc->vci & 1)) << 4;
zpokel(zatm_dev,zpeekl(zatm_dev,pos) & ~(0xffff << shift),pos);
zwait;
zout(uPD98401_NOP,CMR);
zwait;
zout(uPD98401_NOP,CMR);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
}
spin_lock_irqsave(&zatm_dev->lock, flags);
zwait;
zout(uPD98401_DEACT_CHAN | uPD98401_CHAN_RT | (zatm_vcc->rx_chan <<
uPD98401_CHAN_ADDR_SHIFT),CMR);
zwait;
udelay(10); /* why oh why ... ? */
zout(uPD98401_CLOSE_CHAN | uPD98401_CHAN_RT | (zatm_vcc->rx_chan <<
uPD98401_CHAN_ADDR_SHIFT),CMR);
zwait;
if (!(zin(CMR) & uPD98401_CHAN_ADDR))
printk(KERN_CRIT DEV_LABEL "(itf %d): can't close RX channel "
"%d\n",vcc->dev->number,zatm_vcc->rx_chan);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
zatm_dev->rx_map[zatm_vcc->rx_chan] = NULL;
zatm_vcc->rx_chan = 0;
unuse_pool(vcc->dev,zatm_vcc->pool);
}
static int start_rx(struct atm_dev *dev)
{
struct zatm_dev *zatm_dev;
int i;
DPRINTK("start_rx\n");
zatm_dev = ZATM_DEV(dev);
zatm_dev->rx_map = kcalloc(zatm_dev->chans,
sizeof(*zatm_dev->rx_map),
GFP_KERNEL);
if (!zatm_dev->rx_map) return -ENOMEM;
/* set VPI/VCI split (use all VCIs and give what's left to VPIs) */
zpokel(zatm_dev,(1 << dev->ci_range.vci_bits)-1,uPD98401_VRR);
/* prepare free buffer pools */
for (i = 0; i <= ZATM_LAST_POOL; i++) {
zatm_dev->pool_info[i].ref_count = 0;
zatm_dev->pool_info[i].rqa_count = 0;
zatm_dev->pool_info[i].rqu_count = 0;
zatm_dev->pool_info[i].low_water = LOW_MARK;
zatm_dev->pool_info[i].high_water = HIGH_MARK;
zatm_dev->pool_info[i].offset = 0;
zatm_dev->pool_info[i].next_off = 0;
zatm_dev->pool_info[i].next_cnt = 0;
zatm_dev->pool_info[i].next_thres = OFF_CNG_THRES;
}
return 0;
}
/*----------------------------------- TX ------------------------------------*/
static int do_tx(struct sk_buff *skb)
{
struct atm_vcc *vcc;
struct zatm_dev *zatm_dev;
struct zatm_vcc *zatm_vcc;
u32 *dsc;
unsigned long flags;
EVENT("do_tx\n",0,0);
DPRINTK("sending skb %p\n",skb);
vcc = ATM_SKB(skb)->vcc;
zatm_dev = ZATM_DEV(vcc->dev);
zatm_vcc = ZATM_VCC(vcc);
EVENT("iovcnt=%d\n",skb_shinfo(skb)->nr_frags,0);
spin_lock_irqsave(&zatm_dev->lock, flags);
if (!skb_shinfo(skb)->nr_frags) {
if (zatm_vcc->txing == RING_ENTRIES-1) {
spin_unlock_irqrestore(&zatm_dev->lock, flags);
return RING_BUSY;
}
zatm_vcc->txing++;
dsc = zatm_vcc->ring+zatm_vcc->ring_curr;
zatm_vcc->ring_curr = (zatm_vcc->ring_curr+RING_WORDS) &
(RING_ENTRIES*RING_WORDS-1);
dsc[1] = 0;
dsc[2] = skb->len;
dsc[3] = virt_to_bus(skb->data);
mb();
dsc[0] = uPD98401_TXPD_V | uPD98401_TXPD_DP | uPD98401_TXPD_SM
| (vcc->qos.aal == ATM_AAL5 ? uPD98401_TXPD_AAL5 : 0 |
(ATM_SKB(skb)->atm_options & ATM_ATMOPT_CLP ?
uPD98401_CLPM_1 : uPD98401_CLPM_0));
EVENT("dsc (0x%lx)\n",(unsigned long) dsc,0);
}
else {
printk("NONONONOO!!!!\n");
dsc = NULL;
#if 0
u32 *put;
int i;
dsc = kmalloc(uPD98401_TXPD_SIZE * 2 +
uPD98401_TXBD_SIZE * ATM_SKB(skb)->iovcnt, GFP_ATOMIC);
if (!dsc) {
if (vcc->pop)
vcc->pop(vcc, skb);
else
dev_kfree_skb_irq(skb);
return -EAGAIN;
}
/* @@@ should check alignment */
put = dsc+8;
dsc[0] = uPD98401_TXPD_V | uPD98401_TXPD_DP |
(vcc->aal == ATM_AAL5 ? uPD98401_TXPD_AAL5 : 0 |
(ATM_SKB(skb)->atm_options & ATM_ATMOPT_CLP ?
uPD98401_CLPM_1 : uPD98401_CLPM_0));
dsc[1] = 0;
dsc[2] = ATM_SKB(skb)->iovcnt * uPD98401_TXBD_SIZE;
dsc[3] = virt_to_bus(put);
for (i = 0; i < ATM_SKB(skb)->iovcnt; i++) {
*put++ = ((struct iovec *) skb->data)[i].iov_len;
*put++ = virt_to_bus(((struct iovec *)
skb->data)[i].iov_base);
}
put[-2] |= uPD98401_TXBD_LAST;
#endif
}
ZATM_PRV_DSC(skb) = dsc;
skb_queue_tail(&zatm_vcc->tx_queue,skb);
DPRINTK("QRP=0x%08lx\n",zpeekl(zatm_dev,zatm_vcc->tx_chan*VC_SIZE/4+
uPD98401_TXVC_QRP));
zwait;
zout(uPD98401_TX_READY | (zatm_vcc->tx_chan <<
uPD98401_CHAN_ADDR_SHIFT),CMR);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
EVENT("done\n",0,0);
return 0;
}
static inline void dequeue_tx(struct atm_vcc *vcc)
{
struct zatm_vcc *zatm_vcc;
struct sk_buff *skb;
EVENT("dequeue_tx\n",0,0);
zatm_vcc = ZATM_VCC(vcc);
skb = skb_dequeue(&zatm_vcc->tx_queue);
if (!skb) {
printk(KERN_CRIT DEV_LABEL "(itf %d): dequeue_tx but not "
"txing\n",vcc->dev->number);
return;
}
#if 0 /* @@@ would fail on CLP */
if (*ZATM_PRV_DSC(skb) != (uPD98401_TXPD_V | uPD98401_TXPD_DP |
uPD98401_TXPD_SM | uPD98401_TXPD_AAL5)) printk("@#*$!!!! (%08x)\n",
*ZATM_PRV_DSC(skb));
#endif
*ZATM_PRV_DSC(skb) = 0; /* mark as invalid */
zatm_vcc->txing--;
if (vcc->pop) vcc->pop(vcc,skb);
else dev_kfree_skb_irq(skb);
while ((skb = skb_dequeue(&zatm_vcc->backlog)))
if (do_tx(skb) == RING_BUSY) {
skb_queue_head(&zatm_vcc->backlog,skb);
break;
}
atomic_inc(&vcc->stats->tx);
wake_up(&zatm_vcc->tx_wait);
}
static void poll_tx(struct atm_dev *dev,int mbx)
{
struct zatm_dev *zatm_dev;
unsigned long pos;
u32 x;
EVENT("poll_tx\n",0,0);
zatm_dev = ZATM_DEV(dev);
pos = (zatm_dev->mbx_start[mbx] & ~0xffffUL) | zin(MTA(mbx));
while (x = zin(MWA(mbx)), (pos & 0xffff) != x) {
int chan;
#if 1
u32 data,*addr;
EVENT("MBX: host 0x%lx, nic 0x%x\n",pos,x);
addr = (u32 *) pos;
data = *addr;
chan = (data & uPD98401_TXI_CONN) >> uPD98401_TXI_CONN_SHIFT;
EVENT("addr = 0x%lx, data = 0x%08x,",(unsigned long) addr,
data);
EVENT("chan = %d\n",chan,0);
#else
NO !
chan = (zatm_dev->mbx_start[mbx][pos >> 2] & uPD98401_TXI_CONN)
>> uPD98401_TXI_CONN_SHIFT;
#endif
if (chan < zatm_dev->chans && zatm_dev->tx_map[chan])
dequeue_tx(zatm_dev->tx_map[chan]);
else {
printk(KERN_CRIT DEV_LABEL "(itf %d): TX indication "
"for non-existing channel %d\n",dev->number,chan);
event_dump();
}
if (((pos += 4) & 0xffff) == zatm_dev->mbx_end[mbx])
pos = zatm_dev->mbx_start[mbx];
}
zout(pos & 0xffff,MTA(mbx));
}
/*
* BUG BUG BUG: Doesn't handle "new-style" rate specification yet.
*/
static int alloc_shaper(struct atm_dev *dev,int *pcr,int min,int max,int ubr)
{
struct zatm_dev *zatm_dev;
unsigned long flags;
unsigned long i,m,c;
int shaper;
DPRINTK("alloc_shaper (min = %d, max = %d)\n",min,max);
zatm_dev = ZATM_DEV(dev);
if (!zatm_dev->free_shapers) return -EAGAIN;
for (shaper = 0; !((zatm_dev->free_shapers >> shaper) & 1); shaper++);
zatm_dev->free_shapers &= ~1 << shaper;
if (ubr) {
c = 5;
i = m = 1;
zatm_dev->ubr_ref_cnt++;
zatm_dev->ubr = shaper;
*pcr = 0;
}
else {
if (min) {
if (min <= 255) {
i = min;
m = ATM_OC3_PCR;
}
else {
i = 255;
m = ATM_OC3_PCR*255/min;
}
}
else {
if (max > zatm_dev->tx_bw) max = zatm_dev->tx_bw;
if (max <= 255) {
i = max;
m = ATM_OC3_PCR;
}
else {
i = 255;
m = DIV_ROUND_UP(ATM_OC3_PCR*255, max);
}
}
if (i > m) {
printk(KERN_CRIT DEV_LABEL "shaper algorithm botched "
"[%d,%d] -> i=%ld,m=%ld\n",min,max,i,m);
m = i;
}
*pcr = i*ATM_OC3_PCR/m;
c = 20; /* @@@ should use max_cdv ! */
if ((min && *pcr < min) || (max && *pcr > max)) return -EINVAL;
if (zatm_dev->tx_bw < *pcr) return -EAGAIN;
zatm_dev->tx_bw -= *pcr;
}
spin_lock_irqsave(&zatm_dev->lock, flags);
DPRINTK("i = %d, m = %d, PCR = %d\n",i,m,*pcr);
zpokel(zatm_dev,(i << uPD98401_IM_I_SHIFT) | m,uPD98401_IM(shaper));
zpokel(zatm_dev,c << uPD98401_PC_C_SHIFT,uPD98401_PC(shaper));
zpokel(zatm_dev,0,uPD98401_X(shaper));
zpokel(zatm_dev,0,uPD98401_Y(shaper));
zpokel(zatm_dev,uPD98401_PS_E,uPD98401_PS(shaper));
spin_unlock_irqrestore(&zatm_dev->lock, flags);
return shaper;
}
static void dealloc_shaper(struct atm_dev *dev,int shaper)
{
struct zatm_dev *zatm_dev;
unsigned long flags;
zatm_dev = ZATM_DEV(dev);
if (shaper == zatm_dev->ubr) {
if (--zatm_dev->ubr_ref_cnt) return;
zatm_dev->ubr = -1;
}
spin_lock_irqsave(&zatm_dev->lock, flags);
zpokel(zatm_dev,zpeekl(zatm_dev,uPD98401_PS(shaper)) & ~uPD98401_PS_E,
uPD98401_PS(shaper));
spin_unlock_irqrestore(&zatm_dev->lock, flags);
zatm_dev->free_shapers |= 1 << shaper;
}
static void close_tx(struct atm_vcc *vcc)
{
struct zatm_dev *zatm_dev;
struct zatm_vcc *zatm_vcc;
unsigned long flags;
int chan;
zatm_vcc = ZATM_VCC(vcc);
zatm_dev = ZATM_DEV(vcc->dev);
chan = zatm_vcc->tx_chan;
if (!chan) return;
DPRINTK("close_tx\n");
if (skb_peek(&zatm_vcc->backlog)) {
printk("waiting for backlog to drain ...\n");
event_dump();
wait_event(zatm_vcc->tx_wait, !skb_peek(&zatm_vcc->backlog));
}
if (skb_peek(&zatm_vcc->tx_queue)) {
printk("waiting for TX queue to drain ...\n");
event_dump();
wait_event(zatm_vcc->tx_wait, !skb_peek(&zatm_vcc->tx_queue));
}
spin_lock_irqsave(&zatm_dev->lock, flags);
#if 0
zwait;
zout(uPD98401_DEACT_CHAN | (chan << uPD98401_CHAN_ADDR_SHIFT),CMR);
#endif
zwait;
zout(uPD98401_CLOSE_CHAN | (chan << uPD98401_CHAN_ADDR_SHIFT),CMR);
zwait;
if (!(zin(CMR) & uPD98401_CHAN_ADDR))
printk(KERN_CRIT DEV_LABEL "(itf %d): can't close TX channel "
"%d\n",vcc->dev->number,chan);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
zatm_vcc->tx_chan = 0;
zatm_dev->tx_map[chan] = NULL;
if (zatm_vcc->shaper != zatm_dev->ubr) {
zatm_dev->tx_bw += vcc->qos.txtp.min_pcr;
dealloc_shaper(vcc->dev,zatm_vcc->shaper);
}
kfree(zatm_vcc->ring);
}
static int open_tx_first(struct atm_vcc *vcc)
{
struct zatm_dev *zatm_dev;
struct zatm_vcc *zatm_vcc;
unsigned long flags;
u32 *loop;
unsigned short chan;
int unlimited;
DPRINTK("open_tx_first\n");
zatm_dev = ZATM_DEV(vcc->dev);
zatm_vcc = ZATM_VCC(vcc);
zatm_vcc->tx_chan = 0;
if (vcc->qos.txtp.traffic_class == ATM_NONE) return 0;
spin_lock_irqsave(&zatm_dev->lock, flags);
zwait;
zout(uPD98401_OPEN_CHAN,CMR);
zwait;
DPRINTK("0x%x 0x%x\n",zin(CMR),zin(CER));
chan = (zin(CMR) & uPD98401_CHAN_ADDR) >> uPD98401_CHAN_ADDR_SHIFT;
spin_unlock_irqrestore(&zatm_dev->lock, flags);
DPRINTK("chan is %d\n",chan);
if (!chan) return -EAGAIN;
unlimited = vcc->qos.txtp.traffic_class == ATM_UBR &&
(!vcc->qos.txtp.max_pcr || vcc->qos.txtp.max_pcr == ATM_MAX_PCR ||
vcc->qos.txtp.max_pcr >= ATM_OC3_PCR);
if (unlimited && zatm_dev->ubr != -1) zatm_vcc->shaper = zatm_dev->ubr;
else {
int uninitialized_var(pcr);
if (unlimited) vcc->qos.txtp.max_sdu = ATM_MAX_AAL5_PDU;
if ((zatm_vcc->shaper = alloc_shaper(vcc->dev,&pcr,
vcc->qos.txtp.min_pcr,vcc->qos.txtp.max_pcr,unlimited))
< 0) {
close_tx(vcc);
return zatm_vcc->shaper;
}
if (pcr > ATM_OC3_PCR) pcr = ATM_OC3_PCR;
vcc->qos.txtp.min_pcr = vcc->qos.txtp.max_pcr = pcr;
}
zatm_vcc->tx_chan = chan;
skb_queue_head_init(&zatm_vcc->tx_queue);
init_waitqueue_head(&zatm_vcc->tx_wait);
/* initialize ring */
zatm_vcc->ring = kzalloc(RING_SIZE,GFP_KERNEL);
if (!zatm_vcc->ring) return -ENOMEM;
loop = zatm_vcc->ring+RING_ENTRIES*RING_WORDS;
loop[0] = uPD98401_TXPD_V;
loop[1] = loop[2] = 0;
loop[3] = virt_to_bus(zatm_vcc->ring);
zatm_vcc->ring_curr = 0;
zatm_vcc->txing = 0;
skb_queue_head_init(&zatm_vcc->backlog);
zpokel(zatm_dev,virt_to_bus(zatm_vcc->ring),
chan*VC_SIZE/4+uPD98401_TXVC_QRP);
return 0;
}
static int open_tx_second(struct atm_vcc *vcc)
{
struct zatm_dev *zatm_dev;
struct zatm_vcc *zatm_vcc;
unsigned long flags;
DPRINTK("open_tx_second\n");
zatm_dev = ZATM_DEV(vcc->dev);
zatm_vcc = ZATM_VCC(vcc);
if (!zatm_vcc->tx_chan) return 0;
/* set up VC descriptor */
spin_lock_irqsave(&zatm_dev->lock, flags);
zpokel(zatm_dev,0,zatm_vcc->tx_chan*VC_SIZE/4);
zpokel(zatm_dev,uPD98401_TXVC_L | (zatm_vcc->shaper <<
uPD98401_TXVC_SHP_SHIFT) | (vcc->vpi << uPD98401_TXVC_VPI_SHIFT) |
vcc->vci,zatm_vcc->tx_chan*VC_SIZE/4+1);
zpokel(zatm_dev,0,zatm_vcc->tx_chan*VC_SIZE/4+2);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
zatm_dev->tx_map[zatm_vcc->tx_chan] = vcc;
return 0;
}
static int start_tx(struct atm_dev *dev)
{
struct zatm_dev *zatm_dev;
int i;
DPRINTK("start_tx\n");
zatm_dev = ZATM_DEV(dev);
zatm_dev->tx_map = kmalloc_array(zatm_dev->chans,
sizeof(*zatm_dev->tx_map),
GFP_KERNEL);
if (!zatm_dev->tx_map) return -ENOMEM;
zatm_dev->tx_bw = ATM_OC3_PCR;
zatm_dev->free_shapers = (1 << NR_SHAPERS)-1;
zatm_dev->ubr = -1;
zatm_dev->ubr_ref_cnt = 0;
/* initialize shapers */
for (i = 0; i < NR_SHAPERS; i++) zpokel(zatm_dev,0,uPD98401_PS(i));
return 0;
}
/*------------------------------- interrupts --------------------------------*/
static irqreturn_t zatm_int(int irq,void *dev_id)
{
struct atm_dev *dev;
struct zatm_dev *zatm_dev;
u32 reason;
int handled = 0;
dev = dev_id;
zatm_dev = ZATM_DEV(dev);
while ((reason = zin(GSR))) {
handled = 1;
EVENT("reason 0x%x\n",reason,0);
if (reason & uPD98401_INT_PI) {
EVENT("PHY int\n",0,0);
dev->phy->interrupt(dev);
}
if (reason & uPD98401_INT_RQA) {
unsigned long pools;
int i;
pools = zin(RQA);
EVENT("RQA (0x%08x)\n",pools,0);
for (i = 0; pools; i++) {
if (pools & 1) {
refill_pool(dev,i);
zatm_dev->pool_info[i].rqa_count++;
}
pools >>= 1;
}
}
if (reason & uPD98401_INT_RQU) {
unsigned long pools;
int i;
pools = zin(RQU);
printk(KERN_WARNING DEV_LABEL "(itf %d): RQU 0x%08lx\n",
dev->number,pools);
event_dump();
for (i = 0; pools; i++) {
if (pools & 1) {
refill_pool(dev,i);
zatm_dev->pool_info[i].rqu_count++;
}
pools >>= 1;
}
}
/* don't handle RD */
if (reason & uPD98401_INT_SPE)
printk(KERN_ALERT DEV_LABEL "(itf %d): system parity "
"error at 0x%08x\n",dev->number,zin(ADDR));
if (reason & uPD98401_INT_CPE)
printk(KERN_ALERT DEV_LABEL "(itf %d): control memory "
"parity error at 0x%08x\n",dev->number,zin(ADDR));
if (reason & uPD98401_INT_SBE) {
printk(KERN_ALERT DEV_LABEL "(itf %d): system bus "
"error at 0x%08x\n",dev->number,zin(ADDR));
event_dump();
}
/* don't handle IND */
if (reason & uPD98401_INT_MF) {
printk(KERN_CRIT DEV_LABEL "(itf %d): mailbox full "
"(0x%x)\n",dev->number,(reason & uPD98401_INT_MF)
>> uPD98401_INT_MF_SHIFT);
event_dump();
/* @@@ should try to recover */
}
if (reason & uPD98401_INT_MM) {
if (reason & 1) poll_rx(dev,0);
if (reason & 2) poll_rx(dev,1);
if (reason & 4) poll_tx(dev,2);
if (reason & 8) poll_tx(dev,3);
}
/* @@@ handle RCRn */
}
return IRQ_RETVAL(handled);
}
/*----------------------------- (E)EPROM access -----------------------------*/
static void eprom_set(struct zatm_dev *zatm_dev, unsigned long value,
unsigned short cmd)
{
int error;
if ((error = pci_write_config_dword(zatm_dev->pci_dev,cmd,value)))
printk(KERN_ERR DEV_LABEL ": PCI write failed (0x%02x)\n",
error);
}
static unsigned long eprom_get(struct zatm_dev *zatm_dev, unsigned short cmd)
{
unsigned int value;
int error;
if ((error = pci_read_config_dword(zatm_dev->pci_dev,cmd,&value)))
printk(KERN_ERR DEV_LABEL ": PCI read failed (0x%02x)\n",
error);
return value;
}
static void eprom_put_bits(struct zatm_dev *zatm_dev, unsigned long data,
int bits, unsigned short cmd)
{
unsigned long value;
int i;
for (i = bits-1; i >= 0; i--) {
value = ZEPROM_CS | (((data >> i) & 1) ? ZEPROM_DI : 0);
eprom_set(zatm_dev,value,cmd);
eprom_set(zatm_dev,value | ZEPROM_SK,cmd);
eprom_set(zatm_dev,value,cmd);
}
}
static void eprom_get_byte(struct zatm_dev *zatm_dev, unsigned char *byte,
unsigned short cmd)
{
int i;
*byte = 0;
for (i = 8; i; i--) {
eprom_set(zatm_dev,ZEPROM_CS,cmd);
eprom_set(zatm_dev,ZEPROM_CS | ZEPROM_SK,cmd);
*byte <<= 1;
if (eprom_get(zatm_dev,cmd) & ZEPROM_DO) *byte |= 1;
eprom_set(zatm_dev,ZEPROM_CS,cmd);
}
}
static unsigned char eprom_try_esi(struct atm_dev *dev, unsigned short cmd,
int offset, int swap)
{
unsigned char buf[ZEPROM_SIZE];
struct zatm_dev *zatm_dev;
int i;
zatm_dev = ZATM_DEV(dev);
for (i = 0; i < ZEPROM_SIZE; i += 2) {
eprom_set(zatm_dev,ZEPROM_CS,cmd); /* select EPROM */
eprom_put_bits(zatm_dev,ZEPROM_CMD_READ,ZEPROM_CMD_LEN,cmd);
eprom_put_bits(zatm_dev,i >> 1,ZEPROM_ADDR_LEN,cmd);
eprom_get_byte(zatm_dev,buf+i+swap,cmd);
eprom_get_byte(zatm_dev,buf+i+1-swap,cmd);
eprom_set(zatm_dev,0,cmd); /* deselect EPROM */
}
memcpy(dev->esi,buf+offset,ESI_LEN);
return memcmp(dev->esi,"\0\0\0\0\0",ESI_LEN); /* assumes ESI_LEN == 6 */
}
static void eprom_get_esi(struct atm_dev *dev)
{
if (eprom_try_esi(dev,ZEPROM_V1_REG,ZEPROM_V1_ESI_OFF,1)) return;
(void) eprom_try_esi(dev,ZEPROM_V2_REG,ZEPROM_V2_ESI_OFF,0);
}
/*--------------------------------- entries ---------------------------------*/
static int zatm_init(struct atm_dev *dev)
{
struct zatm_dev *zatm_dev;
struct pci_dev *pci_dev;
unsigned short command;
int error,i,last;
unsigned long t0,t1,t2;
DPRINTK(">zatm_init\n");
zatm_dev = ZATM_DEV(dev);
spin_lock_init(&zatm_dev->lock);
pci_dev = zatm_dev->pci_dev;
zatm_dev->base = pci_resource_start(pci_dev, 0);
zatm_dev->irq = pci_dev->irq;
if ((error = pci_read_config_word(pci_dev,PCI_COMMAND,&command))) {
printk(KERN_ERR DEV_LABEL "(itf %d): init error 0x%02x\n",
dev->number,error);
return -EINVAL;
}
if ((error = pci_write_config_word(pci_dev,PCI_COMMAND,
command | PCI_COMMAND_IO | PCI_COMMAND_MASTER))) {
printk(KERN_ERR DEV_LABEL "(itf %d): can't enable IO (0x%02x)"
"\n",dev->number,error);
return -EIO;
}
eprom_get_esi(dev);
printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d,base=0x%x,irq=%d,",
dev->number,pci_dev->revision,zatm_dev->base,zatm_dev->irq);
/* reset uPD98401 */
zout(0,SWR);
while (!(zin(GSR) & uPD98401_INT_IND));
zout(uPD98401_GMR_ONE /*uPD98401_BURST4*/,GMR);
last = MAX_CRAM_SIZE;
for (i = last-RAM_INCREMENT; i >= 0; i -= RAM_INCREMENT) {
zpokel(zatm_dev,0x55555555,i);
if (zpeekl(zatm_dev,i) != 0x55555555) last = i;
else {
zpokel(zatm_dev,0xAAAAAAAA,i);
if (zpeekl(zatm_dev,i) != 0xAAAAAAAA) last = i;
else zpokel(zatm_dev,i,i);
}
}
for (i = 0; i < last; i += RAM_INCREMENT)
if (zpeekl(zatm_dev,i) != i) break;
zatm_dev->mem = i << 2;
while (i) zpokel(zatm_dev,0,--i);
/* reset again to rebuild memory pointers */
zout(0,SWR);
while (!(zin(GSR) & uPD98401_INT_IND));
zout(uPD98401_GMR_ONE | uPD98401_BURST8 | uPD98401_BURST4 |
uPD98401_BURST2 | uPD98401_GMR_PM | uPD98401_GMR_DR,GMR);
/* TODO: should shrink allocation now */
printk("mem=%dkB,%s (",zatm_dev->mem >> 10,zatm_dev->copper ? "UTP" :
"MMF");
for (i = 0; i < ESI_LEN; i++)
printk("%02X%s",dev->esi[i],i == ESI_LEN-1 ? ")\n" : "-");
do {
unsigned long flags;
spin_lock_irqsave(&zatm_dev->lock, flags);
t0 = zpeekl(zatm_dev,uPD98401_TSR);
udelay(10);
t1 = zpeekl(zatm_dev,uPD98401_TSR);
udelay(1010);
t2 = zpeekl(zatm_dev,uPD98401_TSR);
spin_unlock_irqrestore(&zatm_dev->lock, flags);
}
while (t0 > t1 || t1 > t2); /* loop if wrapping ... */
zatm_dev->khz = t2-2*t1+t0;
printk(KERN_NOTICE DEV_LABEL "(itf %d): uPD98401 %d.%d at %d.%03d "
"MHz\n",dev->number,
(zin(VER) & uPD98401_MAJOR) >> uPD98401_MAJOR_SHIFT,
zin(VER) & uPD98401_MINOR,zatm_dev->khz/1000,zatm_dev->khz % 1000);
return uPD98402_init(dev);
}
static int zatm_start(struct atm_dev *dev)
{
struct zatm_dev *zatm_dev = ZATM_DEV(dev);
struct pci_dev *pdev = zatm_dev->pci_dev;
unsigned long curr;
int pools,vccs,rx;
int error, i, ld;
DPRINTK("zatm_start\n");
zatm_dev->rx_map = zatm_dev->tx_map = NULL;
for (i = 0; i < NR_MBX; i++)
zatm_dev->mbx_start[i] = 0;
error = request_irq(zatm_dev->irq, zatm_int, IRQF_SHARED, DEV_LABEL, dev);
if (error < 0) {
printk(KERN_ERR DEV_LABEL "(itf %d): IRQ%d is already in use\n",
dev->number,zatm_dev->irq);
goto done;
}
/* define memory regions */
pools = NR_POOLS;
if (NR_SHAPERS*SHAPER_SIZE > pools*POOL_SIZE)
pools = NR_SHAPERS*SHAPER_SIZE/POOL_SIZE;
vccs = (zatm_dev->mem-NR_SHAPERS*SHAPER_SIZE-pools*POOL_SIZE)/
(2*VC_SIZE+RX_SIZE);
ld = -1;
for (rx = 1; rx < vccs; rx <<= 1) ld++;
dev->ci_range.vpi_bits = 0; /* @@@ no VPI for now */
dev->ci_range.vci_bits = ld;
dev->link_rate = ATM_OC3_PCR;
zatm_dev->chans = vccs; /* ??? */
curr = rx*RX_SIZE/4;
DPRINTK("RX pool 0x%08lx\n",curr);
zpokel(zatm_dev,curr,uPD98401_PMA); /* receive pool */
zatm_dev->pool_base = curr;
curr += pools*POOL_SIZE/4;
DPRINTK("Shapers 0x%08lx\n",curr);
zpokel(zatm_dev,curr,uPD98401_SMA); /* shapers */
curr += NR_SHAPERS*SHAPER_SIZE/4;
DPRINTK("Free 0x%08lx\n",curr);
zpokel(zatm_dev,curr,uPD98401_TOS); /* free pool */
printk(KERN_INFO DEV_LABEL "(itf %d): %d shapers, %d pools, %d RX, "
"%ld VCs\n",dev->number,NR_SHAPERS,pools,rx,
(zatm_dev->mem-curr*4)/VC_SIZE);
/* create mailboxes */
for (i = 0; i < NR_MBX; i++) {
void *mbx;
dma_addr_t mbx_dma;
if (!mbx_entries[i])
continue;
mbx = dma_alloc_coherent(&pdev->dev,
2 * MBX_SIZE(i), &mbx_dma, GFP_KERNEL);
if (!mbx) {
error = -ENOMEM;
goto out;
}
/*
* Alignment provided by dma_alloc_coherent() isn't enough
* for this device.
*/
if (((unsigned long)mbx ^ mbx_dma) & 0xffff) {
printk(KERN_ERR DEV_LABEL "(itf %d): system "
"bus incompatible with driver\n", dev->number);
dma_free_coherent(&pdev->dev, 2*MBX_SIZE(i), mbx, mbx_dma);
error = -ENODEV;
goto out;
}
DPRINTK("mbx@0x%08lx-0x%08lx\n", mbx, mbx + MBX_SIZE(i));
zatm_dev->mbx_start[i] = (unsigned long)mbx;
zatm_dev->mbx_dma[i] = mbx_dma;
zatm_dev->mbx_end[i] = (zatm_dev->mbx_start[i] + MBX_SIZE(i)) &
0xffff;
zout(mbx_dma >> 16, MSH(i));
zout(mbx_dma, MSL(i));
zout(zatm_dev->mbx_end[i], MBA(i));
zout((unsigned long)mbx & 0xffff, MTA(i));
zout((unsigned long)mbx & 0xffff, MWA(i));
}
error = start_tx(dev);
if (error)
goto out;
error = start_rx(dev);
if (error)
goto out_tx;
error = dev->phy->start(dev);
if (error)
goto out_rx;
zout(0xffffffff,IMR); /* enable interrupts */
/* enable TX & RX */
zout(zin(GMR) | uPD98401_GMR_SE | uPD98401_GMR_RE,GMR);
done:
return error;
out_rx:
kfree(zatm_dev->rx_map);
out_tx:
kfree(zatm_dev->tx_map);
out:
while (i-- > 0) {
dma_free_coherent(&pdev->dev, 2 * MBX_SIZE(i),
(void *)zatm_dev->mbx_start[i],
zatm_dev->mbx_dma[i]);
}
free_irq(zatm_dev->irq, dev);
goto done;
}
static void zatm_close(struct atm_vcc *vcc)
{
DPRINTK(">zatm_close\n");
if (!ZATM_VCC(vcc)) return;
clear_bit(ATM_VF_READY,&vcc->flags);
close_rx(vcc);
EVENT("close_tx\n",0,0);
close_tx(vcc);
DPRINTK("zatm_close: done waiting\n");
/* deallocate memory */
kfree(ZATM_VCC(vcc));
vcc->dev_data = NULL;
clear_bit(ATM_VF_ADDR,&vcc->flags);
}
static int zatm_open(struct atm_vcc *vcc)
{
struct zatm_dev *zatm_dev;
struct zatm_vcc *zatm_vcc;
short vpi = vcc->vpi;
int vci = vcc->vci;
int error;
DPRINTK(">zatm_open\n");
zatm_dev = ZATM_DEV(vcc->dev);
if (!test_bit(ATM_VF_PARTIAL,&vcc->flags))
vcc->dev_data = NULL;
if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
set_bit(ATM_VF_ADDR,&vcc->flags);
if (vcc->qos.aal != ATM_AAL5) return -EINVAL; /* @@@ AAL0 */
DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n",vcc->dev->number,vcc->vpi,
vcc->vci);
if (!test_bit(ATM_VF_PARTIAL,&vcc->flags)) {
zatm_vcc = kmalloc(sizeof(*zatm_vcc), GFP_KERNEL);
if (!zatm_vcc) {
clear_bit(ATM_VF_ADDR,&vcc->flags);
return -ENOMEM;
}
vcc->dev_data = zatm_vcc;
ZATM_VCC(vcc)->tx_chan = 0; /* for zatm_close after open_rx */
if ((error = open_rx_first(vcc))) {
zatm_close(vcc);
return error;
}
if ((error = open_tx_first(vcc))) {
zatm_close(vcc);
return error;
}
}
if (vci == ATM_VPI_UNSPEC || vpi == ATM_VCI_UNSPEC) return 0;
if ((error = open_rx_second(vcc))) {
zatm_close(vcc);
return error;
}
if ((error = open_tx_second(vcc))) {
zatm_close(vcc);
return error;
}
set_bit(ATM_VF_READY,&vcc->flags);
return 0;
}
static int zatm_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
{
printk("Not yet implemented\n");
return -ENOSYS;
/* @@@ */
}
static int zatm_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
{
struct zatm_dev *zatm_dev;
unsigned long flags;
zatm_dev = ZATM_DEV(dev);
switch (cmd) {
case ZATM_GETPOOLZ:
if (!capable(CAP_NET_ADMIN)) return -EPERM;
/* fall through */
case ZATM_GETPOOL:
{
struct zatm_pool_info info;
int pool;
if (get_user(pool,
&((struct zatm_pool_req __user *) arg)->pool_num))
return -EFAULT;
if (pool < 0 || pool > ZATM_LAST_POOL)
return -EINVAL;
spin_lock_irqsave(&zatm_dev->lock, flags);
info = zatm_dev->pool_info[pool];
if (cmd == ZATM_GETPOOLZ) {
zatm_dev->pool_info[pool].rqa_count = 0;
zatm_dev->pool_info[pool].rqu_count = 0;
}
spin_unlock_irqrestore(&zatm_dev->lock, flags);
return copy_to_user(
&((struct zatm_pool_req __user *) arg)->info,
&info,sizeof(info)) ? -EFAULT : 0;
}
case ZATM_SETPOOL:
{
struct zatm_pool_info info;
int pool;
if (!capable(CAP_NET_ADMIN)) return -EPERM;
if (get_user(pool,
&((struct zatm_pool_req __user *) arg)->pool_num))
return -EFAULT;
if (pool < 0 || pool > ZATM_LAST_POOL)
return -EINVAL;
if (copy_from_user(&info,
&((struct zatm_pool_req __user *) arg)->info,
sizeof(info))) return -EFAULT;
if (!info.low_water)
info.low_water = zatm_dev->
pool_info[pool].low_water;
if (!info.high_water)
info.high_water = zatm_dev->
pool_info[pool].high_water;
if (!info.next_thres)
info.next_thres = zatm_dev->
pool_info[pool].next_thres;
if (info.low_water >= info.high_water ||
info.low_water < 0)
return -EINVAL;
spin_lock_irqsave(&zatm_dev->lock, flags);
zatm_dev->pool_info[pool].low_water =
info.low_water;
zatm_dev->pool_info[pool].high_water =
info.high_water;
zatm_dev->pool_info[pool].next_thres =
info.next_thres;
spin_unlock_irqrestore(&zatm_dev->lock, flags);
return 0;
}
default:
if (!dev->phy->ioctl) return -ENOIOCTLCMD;
return dev->phy->ioctl(dev,cmd,arg);
}
}
static int zatm_getsockopt(struct atm_vcc *vcc,int level,int optname,
void __user *optval,int optlen)
{
return -EINVAL;
}
static int zatm_setsockopt(struct atm_vcc *vcc,int level,int optname,
void __user *optval,unsigned int optlen)
{
return -EINVAL;
}
static int zatm_send(struct atm_vcc *vcc,struct sk_buff *skb)
{
int error;
EVENT(">zatm_send 0x%lx\n",(unsigned long) skb,0);
if (!ZATM_VCC(vcc)->tx_chan || !test_bit(ATM_VF_READY,&vcc->flags)) {
if (vcc->pop) vcc->pop(vcc,skb);
else dev_kfree_skb(skb);
return -EINVAL;
}
if (!skb) {
printk(KERN_CRIT "!skb in zatm_send ?\n");
if (vcc->pop) vcc->pop(vcc,skb);
return -EINVAL;
}
ATM_SKB(skb)->vcc = vcc;
error = do_tx(skb);
if (error != RING_BUSY) return error;
skb_queue_tail(&ZATM_VCC(vcc)->backlog,skb);
return 0;
}
static void zatm_phy_put(struct atm_dev *dev,unsigned char value,
unsigned long addr)
{
struct zatm_dev *zatm_dev;
zatm_dev = ZATM_DEV(dev);
zwait;
zout(value,CER);
zout(uPD98401_IND_ACC | uPD98401_IA_B0 |
(uPD98401_IA_TGT_PHY << uPD98401_IA_TGT_SHIFT) | addr,CMR);
}
static unsigned char zatm_phy_get(struct atm_dev *dev,unsigned long addr)
{
struct zatm_dev *zatm_dev;
zatm_dev = ZATM_DEV(dev);
zwait;
zout(uPD98401_IND_ACC | uPD98401_IA_B0 | uPD98401_IA_RW |
(uPD98401_IA_TGT_PHY << uPD98401_IA_TGT_SHIFT) | addr,CMR);
zwait;
return zin(CER) & 0xff;
}
static const struct atmdev_ops ops = {
.open = zatm_open,
.close = zatm_close,
.ioctl = zatm_ioctl,
.getsockopt = zatm_getsockopt,
.setsockopt = zatm_setsockopt,
.send = zatm_send,
.phy_put = zatm_phy_put,
.phy_get = zatm_phy_get,
.change_qos = zatm_change_qos,
};
static int zatm_init_one(struct pci_dev *pci_dev,
const struct pci_device_id *ent)
{
struct atm_dev *dev;
struct zatm_dev *zatm_dev;
int ret = -ENOMEM;
zatm_dev = kmalloc(sizeof(*zatm_dev), GFP_KERNEL);
if (!zatm_dev) {
printk(KERN_EMERG "%s: memory shortage\n", DEV_LABEL);
goto out;
}
dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &ops, -1, NULL);
if (!dev)
goto out_free;
ret = pci_enable_device(pci_dev);
if (ret < 0)
goto out_deregister;
ret = pci_request_regions(pci_dev, DEV_LABEL);
if (ret < 0)
goto out_disable;
ret = dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32));
if (ret < 0)
goto out_release;
zatm_dev->pci_dev = pci_dev;
dev->dev_data = zatm_dev;
zatm_dev->copper = (int)ent->driver_data;
if ((ret = zatm_init(dev)) || (ret = zatm_start(dev)))
goto out_release;
pci_set_drvdata(pci_dev, dev);
zatm_dev->more = zatm_boards;
zatm_boards = dev;
ret = 0;
out:
return ret;
out_release:
pci_release_regions(pci_dev);
out_disable:
pci_disable_device(pci_dev);
out_deregister:
atm_dev_deregister(dev);
out_free:
kfree(zatm_dev);
goto out;
}
MODULE_LICENSE("GPL");
static const struct pci_device_id zatm_pci_tbl[] = {
{ PCI_VDEVICE(ZEITNET, PCI_DEVICE_ID_ZEITNET_1221), ZATM_COPPER },
{ PCI_VDEVICE(ZEITNET, PCI_DEVICE_ID_ZEITNET_1225), 0 },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, zatm_pci_tbl);
static struct pci_driver zatm_driver = {
.name = DEV_LABEL,
.id_table = zatm_pci_tbl,
.probe = zatm_init_one,
};
static int __init zatm_init_module(void)
{
return pci_register_driver(&zatm_driver);
}
module_init(zatm_init_module);
/* module_exit not defined so not unloadable */