2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/arch/powerpc/kvm/book3s_rmhandlers.S
Paul Mackerras 28c483b62f KVM: PPC: Book3S PR: Fix VSX handling
This fixes various issues in how we were handling the VSX registers
that exist on POWER7 machines.  First, we were running off the end
of the current->thread.fpr[] array.  Ultimately this was because the
vcpu->arch.vsr[] array is sized to be able to store both the FP
registers and the extra VSX registers (i.e. 64 entries), but PR KVM
only uses it for the extra VSX registers (i.e. 32 entries).

Secondly, calling load_up_vsx() from C code is a really bad idea,
because it jumps to fast_exception_return at the end, rather than
returning with a blr instruction.  This was causing it to jump off
to a random location with random register contents, since it was using
the largely uninitialized stack frame created by kvmppc_load_up_vsx.

In fact, it isn't necessary to call either __giveup_vsx or load_up_vsx,
since giveup_fpu and load_up_fpu handle the extra VSX registers as well
as the standard FP registers on machines with VSX.  Also, since VSX
instructions can access the VMX registers and the FP registers as well
as the extra VSX registers, we have to load up the FP and VMX registers
before we can turn on the MSR_VSX bit for the guest.  Conversely, if
we save away any of the VSX or FP registers, we have to turn off MSR_VSX
for the guest.

To handle all this, it is more convenient for a single call to
kvmppc_giveup_ext() to handle all the state saving that needs to be done,
so we make it take a set of MSR bits rather than just one, and the switch
statement becomes a series of if statements.  Similarly kvmppc_handle_ext
needs to be able to load up more than one set of registers.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:02 +01:00

239 lines
6.0 KiB
ArmAsm

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright SUSE Linux Products GmbH 2009
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#include <asm/ppc_asm.h>
#include <asm/kvm_asm.h>
#include <asm/reg.h>
#include <asm/mmu.h>
#include <asm/page.h>
#include <asm/asm-offsets.h>
#ifdef CONFIG_PPC_BOOK3S_64
#include <asm/exception-64s.h>
#endif
/*****************************************************************************
* *
* Real Mode handlers that need to be in low physical memory *
* *
****************************************************************************/
#if defined(CONFIG_PPC_BOOK3S_64)
#define FUNC(name) GLUE(.,name)
.globl kvmppc_skip_interrupt
kvmppc_skip_interrupt:
/*
* Here all GPRs are unchanged from when the interrupt happened
* except for r13, which is saved in SPRG_SCRATCH0.
*/
mfspr r13, SPRN_SRR0
addi r13, r13, 4
mtspr SPRN_SRR0, r13
GET_SCRATCH0(r13)
rfid
b .
.globl kvmppc_skip_Hinterrupt
kvmppc_skip_Hinterrupt:
/*
* Here all GPRs are unchanged from when the interrupt happened
* except for r13, which is saved in SPRG_SCRATCH0.
*/
mfspr r13, SPRN_HSRR0
addi r13, r13, 4
mtspr SPRN_HSRR0, r13
GET_SCRATCH0(r13)
hrfid
b .
#elif defined(CONFIG_PPC_BOOK3S_32)
#define FUNC(name) name
.macro INTERRUPT_TRAMPOLINE intno
.global kvmppc_trampoline_\intno
kvmppc_trampoline_\intno:
mtspr SPRN_SPRG_SCRATCH0, r13 /* Save r13 */
/*
* First thing to do is to find out if we're coming
* from a KVM guest or a Linux process.
*
* To distinguish, we check a magic byte in the PACA/current
*/
mfspr r13, SPRN_SPRG_THREAD
lwz r13, THREAD_KVM_SVCPU(r13)
/* PPC32 can have a NULL pointer - let's check for that */
mtspr SPRN_SPRG_SCRATCH1, r12 /* Save r12 */
mfcr r12
cmpwi r13, 0
bne 1f
2: mtcr r12
mfspr r12, SPRN_SPRG_SCRATCH1
mfspr r13, SPRN_SPRG_SCRATCH0 /* r13 = original r13 */
b kvmppc_resume_\intno /* Get back original handler */
1: tophys(r13, r13)
stw r12, HSTATE_SCRATCH1(r13)
mfspr r12, SPRN_SPRG_SCRATCH1
stw r12, HSTATE_SCRATCH0(r13)
lbz r12, HSTATE_IN_GUEST(r13)
cmpwi r12, KVM_GUEST_MODE_NONE
bne ..kvmppc_handler_hasmagic_\intno
/* No KVM guest? Then jump back to the Linux handler! */
lwz r12, HSTATE_SCRATCH1(r13)
b 2b
/* Now we know we're handling a KVM guest */
..kvmppc_handler_hasmagic_\intno:
/* Should we just skip the faulting instruction? */
cmpwi r12, KVM_GUEST_MODE_SKIP
beq kvmppc_handler_skip_ins
/* Let's store which interrupt we're handling */
li r12, \intno
/* Jump into the SLB exit code that goes to the highmem handler */
b kvmppc_handler_trampoline_exit
.endm
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_SYSTEM_RESET
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_MACHINE_CHECK
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_DATA_STORAGE
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_INST_STORAGE
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_EXTERNAL
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_ALIGNMENT
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_PROGRAM
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_FP_UNAVAIL
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_DECREMENTER
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_SYSCALL
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_TRACE
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_PERFMON
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_ALTIVEC
/*
* Bring us back to the faulting code, but skip the
* faulting instruction.
*
* This is a generic exit path from the interrupt
* trampolines above.
*
* Input Registers:
*
* R12 = free
* R13 = Shadow VCPU (PACA)
* HSTATE.SCRATCH0 = guest R12
* HSTATE.SCRATCH1 = guest CR
* SPRG_SCRATCH0 = guest R13
*
*/
kvmppc_handler_skip_ins:
/* Patch the IP to the next instruction */
mfsrr0 r12
addi r12, r12, 4
mtsrr0 r12
/* Clean up all state */
lwz r12, HSTATE_SCRATCH1(r13)
mtcr r12
PPC_LL r12, HSTATE_SCRATCH0(r13)
GET_SCRATCH0(r13)
/* And get back into the code */
RFI
#endif
/*
* Call kvmppc_handler_trampoline_enter in real mode
*
* On entry, r4 contains the guest shadow MSR
* MSR.EE has to be 0 when calling this function
*/
_GLOBAL(kvmppc_entry_trampoline)
mfmsr r5
LOAD_REG_ADDR(r7, kvmppc_handler_trampoline_enter)
toreal(r7)
li r6, MSR_IR | MSR_DR
andc r6, r5, r6 /* Clear DR and IR in MSR value */
/*
* Set EE in HOST_MSR so that it's enabled when we get into our
* C exit handler function
*/
ori r5, r5, MSR_EE
mtsrr0 r7
mtsrr1 r6
RFI
#if defined(CONFIG_PPC_BOOK3S_32)
#define STACK_LR INT_FRAME_SIZE+4
/* load_up_xxx have to run with MSR_DR=0 on Book3S_32 */
#define MSR_EXT_START \
PPC_STL r20, _NIP(r1); \
mfmsr r20; \
LOAD_REG_IMMEDIATE(r3, MSR_DR|MSR_EE); \
andc r3,r20,r3; /* Disable DR,EE */ \
mtmsr r3; \
sync
#define MSR_EXT_END \
mtmsr r20; /* Enable DR,EE */ \
sync; \
PPC_LL r20, _NIP(r1)
#elif defined(CONFIG_PPC_BOOK3S_64)
#define STACK_LR _LINK
#define MSR_EXT_START
#define MSR_EXT_END
#endif
/*
* Activate current's external feature (FPU/Altivec/VSX)
*/
#define define_load_up(what) \
\
_GLOBAL(kvmppc_load_up_ ## what); \
PPC_STLU r1, -INT_FRAME_SIZE(r1); \
mflr r3; \
PPC_STL r3, STACK_LR(r1); \
MSR_EXT_START; \
\
bl FUNC(load_up_ ## what); \
\
MSR_EXT_END; \
PPC_LL r3, STACK_LR(r1); \
mtlr r3; \
addi r1, r1, INT_FRAME_SIZE; \
blr
define_load_up(fpu)
#ifdef CONFIG_ALTIVEC
define_load_up(altivec)
#endif
#include "book3s_segment.S"