2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/kernel/rcupdate.c
Antti P Miettinen 3705b88db0 rcu: Add a module parameter to force use of expedited RCU primitives
There have been some embedded applications that would benefit from
use of expedited grace-period primitives.  In some ways, this is
similar to synchronize_net() doing either a normal or an expedited
grace period depending on lock state, but with control outside of
the kernel.

This commit therefore adds rcu_expedited boot and sysfs parameters
that cause the kernel to substitute expedited primitives for the
normal grace-period primitives.

[ paulmck: Add trace/event/rcu.h to kernel/srcu.c to avoid build error.
	   Get rid of infinite loop through contention path.]

Signed-off-by: Antti P Miettinen <amiettinen@nvidia.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-10-23 14:54:08 -07:00

415 lines
12 KiB
C

/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright IBM Corporation, 2001
*
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
* Manfred Spraul <manfred@colorfullife.com>
*
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
* http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* http://lse.sourceforge.net/locking/rcupdate.html
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/export.h>
#include <linux/hardirq.h>
#include <linux/delay.h>
#include <linux/module.h>
#define CREATE_TRACE_POINTS
#include <trace/events/rcu.h>
#include "rcu.h"
module_param(rcu_expedited, int, 0);
#ifdef CONFIG_PREEMPT_RCU
/*
* Preemptible RCU implementation for rcu_read_lock().
* Just increment ->rcu_read_lock_nesting, shared state will be updated
* if we block.
*/
void __rcu_read_lock(void)
{
current->rcu_read_lock_nesting++;
barrier(); /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
/*
* Preemptible RCU implementation for rcu_read_unlock().
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
* invoke rcu_read_unlock_special() to clean up after a context switch
* in an RCU read-side critical section and other special cases.
*/
void __rcu_read_unlock(void)
{
struct task_struct *t = current;
if (t->rcu_read_lock_nesting != 1) {
--t->rcu_read_lock_nesting;
} else {
barrier(); /* critical section before exit code. */
t->rcu_read_lock_nesting = INT_MIN;
#ifdef CONFIG_PROVE_RCU_DELAY
udelay(10); /* Make preemption more probable. */
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
barrier(); /* assign before ->rcu_read_unlock_special load */
if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
rcu_read_unlock_special(t);
barrier(); /* ->rcu_read_unlock_special load before assign */
t->rcu_read_lock_nesting = 0;
}
#ifdef CONFIG_PROVE_LOCKING
{
int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
}
#endif /* #ifdef CONFIG_PROVE_LOCKING */
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
/*
* Check for a task exiting while in a preemptible-RCU read-side
* critical section, clean up if so. No need to issue warnings,
* as debug_check_no_locks_held() already does this if lockdep
* is enabled.
*/
void exit_rcu(void)
{
struct task_struct *t = current;
if (likely(list_empty(&current->rcu_node_entry)))
return;
t->rcu_read_lock_nesting = 1;
barrier();
t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
__rcu_read_unlock();
}
#else /* #ifdef CONFIG_PREEMPT_RCU */
void exit_rcu(void)
{
}
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_key;
struct lockdep_map rcu_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
EXPORT_SYMBOL_GPL(rcu_lock_map);
static struct lock_class_key rcu_bh_lock_key;
struct lockdep_map rcu_bh_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
static struct lock_class_key rcu_sched_lock_key;
struct lockdep_map rcu_sched_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
int debug_lockdep_rcu_enabled(void)
{
return rcu_scheduler_active && debug_locks &&
current->lockdep_recursion == 0;
}
EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
/**
* rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
*
* Check for bottom half being disabled, which covers both the
* CONFIG_PROVE_RCU and not cases. Note that if someone uses
* rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
* will show the situation. This is useful for debug checks in functions
* that require that they be called within an RCU read-side critical
* section.
*
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
*
* Note that rcu_read_lock() is disallowed if the CPU is either idle or
* offline from an RCU perspective, so check for those as well.
*/
int rcu_read_lock_bh_held(void)
{
if (!debug_lockdep_rcu_enabled())
return 1;
if (rcu_is_cpu_idle())
return 0;
if (!rcu_lockdep_current_cpu_online())
return 0;
return in_softirq() || irqs_disabled();
}
EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
struct rcu_synchronize {
struct rcu_head head;
struct completion completion;
};
/*
* Awaken the corresponding synchronize_rcu() instance now that a
* grace period has elapsed.
*/
static void wakeme_after_rcu(struct rcu_head *head)
{
struct rcu_synchronize *rcu;
rcu = container_of(head, struct rcu_synchronize, head);
complete(&rcu->completion);
}
void wait_rcu_gp(call_rcu_func_t crf)
{
struct rcu_synchronize rcu;
init_rcu_head_on_stack(&rcu.head);
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
crf(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(wait_rcu_gp);
#ifdef CONFIG_PROVE_RCU
/*
* wrapper function to avoid #include problems.
*/
int rcu_my_thread_group_empty(void)
{
return thread_group_empty(current);
}
EXPORT_SYMBOL_GPL(rcu_my_thread_group_empty);
#endif /* #ifdef CONFIG_PROVE_RCU */
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
static inline void debug_init_rcu_head(struct rcu_head *head)
{
debug_object_init(head, &rcuhead_debug_descr);
}
static inline void debug_rcu_head_free(struct rcu_head *head)
{
debug_object_free(head, &rcuhead_debug_descr);
}
/*
* fixup_init is called when:
* - an active object is initialized
*/
static int rcuhead_fixup_init(void *addr, enum debug_obj_state state)
{
struct rcu_head *head = addr;
switch (state) {
case ODEBUG_STATE_ACTIVE:
/*
* Ensure that queued callbacks are all executed.
* If we detect that we are nested in a RCU read-side critical
* section, we should simply fail, otherwise we would deadlock.
* In !PREEMPT configurations, there is no way to tell if we are
* in a RCU read-side critical section or not, so we never
* attempt any fixup and just print a warning.
*/
#ifndef CONFIG_PREEMPT
WARN_ON_ONCE(1);
return 0;
#endif
if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
irqs_disabled()) {
WARN_ON_ONCE(1);
return 0;
}
rcu_barrier();
rcu_barrier_sched();
rcu_barrier_bh();
debug_object_init(head, &rcuhead_debug_descr);
return 1;
default:
return 0;
}
}
/*
* fixup_activate is called when:
* - an active object is activated
* - an unknown object is activated (might be a statically initialized object)
* Activation is performed internally by call_rcu().
*/
static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
{
struct rcu_head *head = addr;
switch (state) {
case ODEBUG_STATE_NOTAVAILABLE:
/*
* This is not really a fixup. We just make sure that it is
* tracked in the object tracker.
*/
debug_object_init(head, &rcuhead_debug_descr);
debug_object_activate(head, &rcuhead_debug_descr);
return 0;
case ODEBUG_STATE_ACTIVE:
/*
* Ensure that queued callbacks are all executed.
* If we detect that we are nested in a RCU read-side critical
* section, we should simply fail, otherwise we would deadlock.
* In !PREEMPT configurations, there is no way to tell if we are
* in a RCU read-side critical section or not, so we never
* attempt any fixup and just print a warning.
*/
#ifndef CONFIG_PREEMPT
WARN_ON_ONCE(1);
return 0;
#endif
if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
irqs_disabled()) {
WARN_ON_ONCE(1);
return 0;
}
rcu_barrier();
rcu_barrier_sched();
rcu_barrier_bh();
debug_object_activate(head, &rcuhead_debug_descr);
return 1;
default:
return 0;
}
}
/*
* fixup_free is called when:
* - an active object is freed
*/
static int rcuhead_fixup_free(void *addr, enum debug_obj_state state)
{
struct rcu_head *head = addr;
switch (state) {
case ODEBUG_STATE_ACTIVE:
/*
* Ensure that queued callbacks are all executed.
* If we detect that we are nested in a RCU read-side critical
* section, we should simply fail, otherwise we would deadlock.
* In !PREEMPT configurations, there is no way to tell if we are
* in a RCU read-side critical section or not, so we never
* attempt any fixup and just print a warning.
*/
#ifndef CONFIG_PREEMPT
WARN_ON_ONCE(1);
return 0;
#endif
if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
irqs_disabled()) {
WARN_ON_ONCE(1);
return 0;
}
rcu_barrier();
rcu_barrier_sched();
rcu_barrier_bh();
debug_object_free(head, &rcuhead_debug_descr);
return 1;
default:
return 0;
}
}
/**
* init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
* @head: pointer to rcu_head structure to be initialized
*
* This function informs debugobjects of a new rcu_head structure that
* has been allocated as an auto variable on the stack. This function
* is not required for rcu_head structures that are statically defined or
* that are dynamically allocated on the heap. This function has no
* effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
*/
void init_rcu_head_on_stack(struct rcu_head *head)
{
debug_object_init_on_stack(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
/**
* destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
* @head: pointer to rcu_head structure to be initialized
*
* This function informs debugobjects that an on-stack rcu_head structure
* is about to go out of scope. As with init_rcu_head_on_stack(), this
* function is not required for rcu_head structures that are statically
* defined or that are dynamically allocated on the heap. Also as with
* init_rcu_head_on_stack(), this function has no effect for
* !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
*/
void destroy_rcu_head_on_stack(struct rcu_head *head)
{
debug_object_free(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
struct debug_obj_descr rcuhead_debug_descr = {
.name = "rcu_head",
.fixup_init = rcuhead_fixup_init,
.fixup_activate = rcuhead_fixup_activate,
.fixup_free = rcuhead_fixup_free,
};
EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
void do_trace_rcu_torture_read(char *rcutorturename, struct rcu_head *rhp)
{
trace_rcu_torture_read(rcutorturename, rhp);
}
EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
#else
#define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
#endif