2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/fs/nfs/file.c
Jeff Layton 3c87ef6efb sunrpc: keep a count of swapfiles associated with the rpc_clnt
Jerome reported seeing a warning pop when working with a swapfile on
NFS. The nfs_swap_activate can end up calling sk_set_memalloc while
holding the rcu_read_lock and that function can sleep.

To fix that, we need to take a reference to the xprt while holding the
rcu_read_lock, set the socket up for swapping and then drop that
reference. But, xprt_put is not exported and having NFS deal with the
underlying xprt is a bit of layering violation anyway.

Fix this by adding a set of activate/deactivate functions that take a
rpc_clnt pointer instead of an rpc_xprt, and have nfs_swap_activate and
nfs_swap_deactivate call those.

Also, add a per-rpc_clnt atomic counter to keep track of the number of
active swapfiles associated with it. When the counter does a 0->1
transition, we enable swapping on the xprt, when we do a 1->0 transition
we disable swapping on it.

This also allows us to be a bit more selective with the RPC_TASK_SWAPPER
flag. If non-swapper and swapper clnts are sharing a xprt, then we only
need to flag the tasks from the swapper clnt with that flag.

Acked-by: Mel Gorman <mgorman@suse.de>
Reported-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2015-06-10 18:26:14 -04:00

937 lines
24 KiB
C

/*
* linux/fs/nfs/file.c
*
* Copyright (C) 1992 Rick Sladkey
*
* Changes Copyright (C) 1994 by Florian La Roche
* - Do not copy data too often around in the kernel.
* - In nfs_file_read the return value of kmalloc wasn't checked.
* - Put in a better version of read look-ahead buffering. Original idea
* and implementation by Wai S Kok elekokws@ee.nus.sg.
*
* Expire cache on write to a file by Wai S Kok (Oct 1994).
*
* Total rewrite of read side for new NFS buffer cache.. Linus.
*
* nfs regular file handling functions
*/
#include <linux/module.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/fcntl.h>
#include <linux/stat.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_mount.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/gfp.h>
#include <linux/swap.h>
#include <asm/uaccess.h>
#include "delegation.h"
#include "internal.h"
#include "iostat.h"
#include "fscache.h"
#include "pnfs.h"
#include "nfstrace.h"
#define NFSDBG_FACILITY NFSDBG_FILE
static const struct vm_operations_struct nfs_file_vm_ops;
/* Hack for future NFS swap support */
#ifndef IS_SWAPFILE
# define IS_SWAPFILE(inode) (0)
#endif
int nfs_check_flags(int flags)
{
if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(nfs_check_flags);
/*
* Open file
*/
static int
nfs_file_open(struct inode *inode, struct file *filp)
{
int res;
dprintk("NFS: open file(%pD2)\n", filp);
nfs_inc_stats(inode, NFSIOS_VFSOPEN);
res = nfs_check_flags(filp->f_flags);
if (res)
return res;
res = nfs_open(inode, filp);
return res;
}
int
nfs_file_release(struct inode *inode, struct file *filp)
{
dprintk("NFS: release(%pD2)\n", filp);
nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
return nfs_release(inode, filp);
}
EXPORT_SYMBOL_GPL(nfs_file_release);
/**
* nfs_revalidate_size - Revalidate the file size
* @inode - pointer to inode struct
* @file - pointer to struct file
*
* Revalidates the file length. This is basically a wrapper around
* nfs_revalidate_inode() that takes into account the fact that we may
* have cached writes (in which case we don't care about the server's
* idea of what the file length is), or O_DIRECT (in which case we
* shouldn't trust the cache).
*/
static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_inode *nfsi = NFS_I(inode);
if (nfs_have_delegated_attributes(inode))
goto out_noreval;
if (filp->f_flags & O_DIRECT)
goto force_reval;
if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
goto force_reval;
if (nfs_attribute_timeout(inode))
goto force_reval;
out_noreval:
return 0;
force_reval:
return __nfs_revalidate_inode(server, inode);
}
loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
{
dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
filp, offset, whence);
/*
* whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
* the cached file length
*/
if (whence != SEEK_SET && whence != SEEK_CUR) {
struct inode *inode = filp->f_mapping->host;
int retval = nfs_revalidate_file_size(inode, filp);
if (retval < 0)
return (loff_t)retval;
}
return generic_file_llseek(filp, offset, whence);
}
EXPORT_SYMBOL_GPL(nfs_file_llseek);
/*
* Flush all dirty pages, and check for write errors.
*/
int
nfs_file_flush(struct file *file, fl_owner_t id)
{
struct inode *inode = file_inode(file);
dprintk("NFS: flush(%pD2)\n", file);
nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
if ((file->f_mode & FMODE_WRITE) == 0)
return 0;
/*
* If we're holding a write delegation, then just start the i/o
* but don't wait for completion (or send a commit).
*/
if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
return filemap_fdatawrite(file->f_mapping);
/* Flush writes to the server and return any errors */
return vfs_fsync(file, 0);
}
EXPORT_SYMBOL_GPL(nfs_file_flush);
ssize_t
nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
ssize_t result;
if (iocb->ki_flags & IOCB_DIRECT)
return nfs_file_direct_read(iocb, to, iocb->ki_pos);
dprintk("NFS: read(%pD2, %zu@%lu)\n",
iocb->ki_filp,
iov_iter_count(to), (unsigned long) iocb->ki_pos);
result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
if (!result) {
result = generic_file_read_iter(iocb, to);
if (result > 0)
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
}
return result;
}
EXPORT_SYMBOL_GPL(nfs_file_read);
ssize_t
nfs_file_splice_read(struct file *filp, loff_t *ppos,
struct pipe_inode_info *pipe, size_t count,
unsigned int flags)
{
struct inode *inode = file_inode(filp);
ssize_t res;
dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
filp, (unsigned long) count, (unsigned long long) *ppos);
res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
if (!res) {
res = generic_file_splice_read(filp, ppos, pipe, count, flags);
if (res > 0)
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
}
return res;
}
EXPORT_SYMBOL_GPL(nfs_file_splice_read);
int
nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
{
struct inode *inode = file_inode(file);
int status;
dprintk("NFS: mmap(%pD2)\n", file);
/* Note: generic_file_mmap() returns ENOSYS on nommu systems
* so we call that before revalidating the mapping
*/
status = generic_file_mmap(file, vma);
if (!status) {
vma->vm_ops = &nfs_file_vm_ops;
status = nfs_revalidate_mapping(inode, file->f_mapping);
}
return status;
}
EXPORT_SYMBOL_GPL(nfs_file_mmap);
/*
* Flush any dirty pages for this process, and check for write errors.
* The return status from this call provides a reliable indication of
* whether any write errors occurred for this process.
*
* Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
* disk, but it retrieves and clears ctx->error after synching, despite
* the two being set at the same time in nfs_context_set_write_error().
* This is because the former is used to notify the _next_ call to
* nfs_file_write() that a write error occurred, and hence cause it to
* fall back to doing a synchronous write.
*/
int
nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
{
struct nfs_open_context *ctx = nfs_file_open_context(file);
struct inode *inode = file_inode(file);
int have_error, do_resend, status;
int ret = 0;
dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
status = nfs_commit_inode(inode, FLUSH_SYNC);
have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
if (have_error) {
ret = xchg(&ctx->error, 0);
if (ret)
goto out;
}
if (status < 0) {
ret = status;
goto out;
}
do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
if (do_resend)
ret = -EAGAIN;
out:
return ret;
}
EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
static int
nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
int ret;
struct inode *inode = file_inode(file);
trace_nfs_fsync_enter(inode);
nfs_inode_dio_wait(inode);
do {
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (ret != 0)
break;
mutex_lock(&inode->i_mutex);
ret = nfs_file_fsync_commit(file, start, end, datasync);
mutex_unlock(&inode->i_mutex);
/*
* If nfs_file_fsync_commit detected a server reboot, then
* resend all dirty pages that might have been covered by
* the NFS_CONTEXT_RESEND_WRITES flag
*/
start = 0;
end = LLONG_MAX;
} while (ret == -EAGAIN);
trace_nfs_fsync_exit(inode, ret);
return ret;
}
/*
* Decide whether a read/modify/write cycle may be more efficient
* then a modify/write/read cycle when writing to a page in the
* page cache.
*
* The modify/write/read cycle may occur if a page is read before
* being completely filled by the writer. In this situation, the
* page must be completely written to stable storage on the server
* before it can be refilled by reading in the page from the server.
* This can lead to expensive, small, FILE_SYNC mode writes being
* done.
*
* It may be more efficient to read the page first if the file is
* open for reading in addition to writing, the page is not marked
* as Uptodate, it is not dirty or waiting to be committed,
* indicating that it was previously allocated and then modified,
* that there were valid bytes of data in that range of the file,
* and that the new data won't completely replace the old data in
* that range of the file.
*/
static int nfs_want_read_modify_write(struct file *file, struct page *page,
loff_t pos, unsigned len)
{
unsigned int pglen = nfs_page_length(page);
unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
unsigned int end = offset + len;
if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
if (!PageUptodate(page))
return 1;
return 0;
}
if ((file->f_mode & FMODE_READ) && /* open for read? */
!PageUptodate(page) && /* Uptodate? */
!PagePrivate(page) && /* i/o request already? */
pglen && /* valid bytes of file? */
(end < pglen || offset)) /* replace all valid bytes? */
return 1;
return 0;
}
/*
* This does the "real" work of the write. We must allocate and lock the
* page to be sent back to the generic routine, which then copies the
* data from user space.
*
* If the writer ends up delaying the write, the writer needs to
* increment the page use counts until he is done with the page.
*/
static int nfs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
int ret;
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
struct page *page;
int once_thru = 0;
dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
file, mapping->host->i_ino, len, (long long) pos);
start:
/*
* Prevent starvation issues if someone is doing a consistency
* sync-to-disk
*/
ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
nfs_wait_bit_killable, TASK_KILLABLE);
if (ret)
return ret;
/*
* Wait for O_DIRECT to complete
*/
nfs_inode_dio_wait(mapping->host);
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
*pagep = page;
ret = nfs_flush_incompatible(file, page);
if (ret) {
unlock_page(page);
page_cache_release(page);
} else if (!once_thru &&
nfs_want_read_modify_write(file, page, pos, len)) {
once_thru = 1;
ret = nfs_readpage(file, page);
page_cache_release(page);
if (!ret)
goto start;
}
return ret;
}
static int nfs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
struct nfs_open_context *ctx = nfs_file_open_context(file);
int status;
dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
file, mapping->host->i_ino, len, (long long) pos);
/*
* Zero any uninitialised parts of the page, and then mark the page
* as up to date if it turns out that we're extending the file.
*/
if (!PageUptodate(page)) {
unsigned pglen = nfs_page_length(page);
unsigned end = offset + len;
if (pglen == 0) {
zero_user_segments(page, 0, offset,
end, PAGE_CACHE_SIZE);
SetPageUptodate(page);
} else if (end >= pglen) {
zero_user_segment(page, end, PAGE_CACHE_SIZE);
if (offset == 0)
SetPageUptodate(page);
} else
zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
}
status = nfs_updatepage(file, page, offset, copied);
unlock_page(page);
page_cache_release(page);
if (status < 0)
return status;
NFS_I(mapping->host)->write_io += copied;
if (nfs_ctx_key_to_expire(ctx)) {
status = nfs_wb_all(mapping->host);
if (status < 0)
return status;
}
return copied;
}
/*
* Partially or wholly invalidate a page
* - Release the private state associated with a page if undergoing complete
* page invalidation
* - Called if either PG_private or PG_fscache is set on the page
* - Caller holds page lock
*/
static void nfs_invalidate_page(struct page *page, unsigned int offset,
unsigned int length)
{
dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
page, offset, length);
if (offset != 0 || length < PAGE_CACHE_SIZE)
return;
/* Cancel any unstarted writes on this page */
nfs_wb_page_cancel(page_file_mapping(page)->host, page);
nfs_fscache_invalidate_page(page, page->mapping->host);
}
/*
* Attempt to release the private state associated with a page
* - Called if either PG_private or PG_fscache is set on the page
* - Caller holds page lock
* - Return true (may release page) or false (may not)
*/
static int nfs_release_page(struct page *page, gfp_t gfp)
{
struct address_space *mapping = page->mapping;
dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
/* Always try to initiate a 'commit' if relevant, but only
* wait for it if __GFP_WAIT is set. Even then, only wait 1
* second and only if the 'bdi' is not congested.
* Waiting indefinitely can cause deadlocks when the NFS
* server is on this machine, when a new TCP connection is
* needed and in other rare cases. There is no particular
* need to wait extensively here. A short wait has the
* benefit that someone else can worry about the freezer.
*/
if (mapping) {
struct nfs_server *nfss = NFS_SERVER(mapping->host);
nfs_commit_inode(mapping->host, 0);
if ((gfp & __GFP_WAIT) &&
!bdi_write_congested(&nfss->backing_dev_info)) {
wait_on_page_bit_killable_timeout(page, PG_private,
HZ);
if (PagePrivate(page))
set_bdi_congested(&nfss->backing_dev_info,
BLK_RW_ASYNC);
}
}
/* If PagePrivate() is set, then the page is not freeable */
if (PagePrivate(page))
return 0;
return nfs_fscache_release_page(page, gfp);
}
static void nfs_check_dirty_writeback(struct page *page,
bool *dirty, bool *writeback)
{
struct nfs_inode *nfsi;
struct address_space *mapping = page_file_mapping(page);
if (!mapping || PageSwapCache(page))
return;
/*
* Check if an unstable page is currently being committed and
* if so, have the VM treat it as if the page is under writeback
* so it will not block due to pages that will shortly be freeable.
*/
nfsi = NFS_I(mapping->host);
if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
*writeback = true;
return;
}
/*
* If PagePrivate() is set, then the page is not freeable and as the
* inode is not being committed, it's not going to be cleaned in the
* near future so treat it as dirty
*/
if (PagePrivate(page))
*dirty = true;
}
/*
* Attempt to clear the private state associated with a page when an error
* occurs that requires the cached contents of an inode to be written back or
* destroyed
* - Called if either PG_private or fscache is set on the page
* - Caller holds page lock
* - Return 0 if successful, -error otherwise
*/
static int nfs_launder_page(struct page *page)
{
struct inode *inode = page_file_mapping(page)->host;
struct nfs_inode *nfsi = NFS_I(inode);
dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
inode->i_ino, (long long)page_offset(page));
nfs_fscache_wait_on_page_write(nfsi, page);
return nfs_wb_page(inode, page);
}
static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
sector_t *span)
{
struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
*span = sis->pages;
return rpc_clnt_swap_activate(clnt);
}
static void nfs_swap_deactivate(struct file *file)
{
struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
rpc_clnt_swap_deactivate(clnt);
}
const struct address_space_operations nfs_file_aops = {
.readpage = nfs_readpage,
.readpages = nfs_readpages,
.set_page_dirty = __set_page_dirty_nobuffers,
.writepage = nfs_writepage,
.writepages = nfs_writepages,
.write_begin = nfs_write_begin,
.write_end = nfs_write_end,
.invalidatepage = nfs_invalidate_page,
.releasepage = nfs_release_page,
.direct_IO = nfs_direct_IO,
.migratepage = nfs_migrate_page,
.launder_page = nfs_launder_page,
.is_dirty_writeback = nfs_check_dirty_writeback,
.error_remove_page = generic_error_remove_page,
.swap_activate = nfs_swap_activate,
.swap_deactivate = nfs_swap_deactivate,
};
/*
* Notification that a PTE pointing to an NFS page is about to be made
* writable, implying that someone is about to modify the page through a
* shared-writable mapping
*/
static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct file *filp = vma->vm_file;
struct inode *inode = file_inode(filp);
unsigned pagelen;
int ret = VM_FAULT_NOPAGE;
struct address_space *mapping;
dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
filp, filp->f_mapping->host->i_ino,
(long long)page_offset(page));
/* make sure the cache has finished storing the page */
nfs_fscache_wait_on_page_write(NFS_I(inode), page);
wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
nfs_wait_bit_killable, TASK_KILLABLE);
lock_page(page);
mapping = page_file_mapping(page);
if (mapping != inode->i_mapping)
goto out_unlock;
wait_on_page_writeback(page);
pagelen = nfs_page_length(page);
if (pagelen == 0)
goto out_unlock;
ret = VM_FAULT_LOCKED;
if (nfs_flush_incompatible(filp, page) == 0 &&
nfs_updatepage(filp, page, 0, pagelen) == 0)
goto out;
ret = VM_FAULT_SIGBUS;
out_unlock:
unlock_page(page);
out:
return ret;
}
static const struct vm_operations_struct nfs_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = nfs_vm_page_mkwrite,
};
static int nfs_need_sync_write(struct file *filp, struct inode *inode)
{
struct nfs_open_context *ctx;
if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
return 1;
ctx = nfs_file_open_context(filp);
if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
nfs_ctx_key_to_expire(ctx))
return 1;
return 0;
}
ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
unsigned long written = 0;
ssize_t result;
size_t count = iov_iter_count(from);
result = nfs_key_timeout_notify(file, inode);
if (result)
return result;
if (iocb->ki_flags & IOCB_DIRECT) {
result = generic_write_checks(iocb, from);
if (result <= 0)
return result;
return nfs_file_direct_write(iocb, from);
}
dprintk("NFS: write(%pD2, %zu@%Ld)\n",
file, count, (long long) iocb->ki_pos);
result = -EBUSY;
if (IS_SWAPFILE(inode))
goto out_swapfile;
/*
* O_APPEND implies that we must revalidate the file length.
*/
if (iocb->ki_flags & IOCB_APPEND) {
result = nfs_revalidate_file_size(inode, file);
if (result)
goto out;
}
result = count;
if (!count)
goto out;
result = generic_file_write_iter(iocb, from);
if (result > 0)
written = result;
/* Return error values for O_DSYNC and IS_SYNC() */
if (result >= 0 && nfs_need_sync_write(file, inode)) {
int err = vfs_fsync(file, 0);
if (err < 0)
result = err;
}
if (result > 0)
nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
out:
return result;
out_swapfile:
printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
goto out;
}
EXPORT_SYMBOL_GPL(nfs_file_write);
static int
do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
{
struct inode *inode = filp->f_mapping->host;
int status = 0;
unsigned int saved_type = fl->fl_type;
/* Try local locking first */
posix_test_lock(filp, fl);
if (fl->fl_type != F_UNLCK) {
/* found a conflict */
goto out;
}
fl->fl_type = saved_type;
if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
goto out_noconflict;
if (is_local)
goto out_noconflict;
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
out:
return status;
out_noconflict:
fl->fl_type = F_UNLCK;
goto out;
}
static int do_vfs_lock(struct file *file, struct file_lock *fl)
{
int res = 0;
switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
case FL_POSIX:
res = posix_lock_file_wait(file, fl);
break;
case FL_FLOCK:
res = flock_lock_file_wait(file, fl);
break;
default:
BUG();
}
return res;
}
static int
do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
{
struct inode *inode = filp->f_mapping->host;
struct nfs_lock_context *l_ctx;
int status;
/*
* Flush all pending writes before doing anything
* with locks..
*/
vfs_fsync(filp, 0);
l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
if (!IS_ERR(l_ctx)) {
status = nfs_iocounter_wait(&l_ctx->io_count);
nfs_put_lock_context(l_ctx);
if (status < 0)
return status;
}
/* NOTE: special case
* If we're signalled while cleaning up locks on process exit, we
* still need to complete the unlock.
*/
/*
* Use local locking if mounted with "-onolock" or with appropriate
* "-olocal_lock="
*/
if (!is_local)
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
else
status = do_vfs_lock(filp, fl);
return status;
}
static int
is_time_granular(struct timespec *ts) {
return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
}
static int
do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
{
struct inode *inode = filp->f_mapping->host;
int status;
/*
* Flush all pending writes before doing anything
* with locks..
*/
status = nfs_sync_mapping(filp->f_mapping);
if (status != 0)
goto out;
/*
* Use local locking if mounted with "-onolock" or with appropriate
* "-olocal_lock="
*/
if (!is_local)
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
else
status = do_vfs_lock(filp, fl);
if (status < 0)
goto out;
/*
* Revalidate the cache if the server has time stamps granular
* enough to detect subsecond changes. Otherwise, clear the
* cache to prevent missing any changes.
*
* This makes locking act as a cache coherency point.
*/
nfs_sync_mapping(filp->f_mapping);
if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
if (is_time_granular(&NFS_SERVER(inode)->time_delta))
__nfs_revalidate_inode(NFS_SERVER(inode), inode);
else
nfs_zap_caches(inode);
}
out:
return status;
}
/*
* Lock a (portion of) a file
*/
int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
{
struct inode *inode = filp->f_mapping->host;
int ret = -ENOLCK;
int is_local = 0;
dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
filp, fl->fl_type, fl->fl_flags,
(long long)fl->fl_start, (long long)fl->fl_end);
nfs_inc_stats(inode, NFSIOS_VFSLOCK);
/* No mandatory locks over NFS */
if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
goto out_err;
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
is_local = 1;
if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
ret = NFS_PROTO(inode)->lock_check_bounds(fl);
if (ret < 0)
goto out_err;
}
if (IS_GETLK(cmd))
ret = do_getlk(filp, cmd, fl, is_local);
else if (fl->fl_type == F_UNLCK)
ret = do_unlk(filp, cmd, fl, is_local);
else
ret = do_setlk(filp, cmd, fl, is_local);
out_err:
return ret;
}
EXPORT_SYMBOL_GPL(nfs_lock);
/*
* Lock a (portion of) a file
*/
int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
{
struct inode *inode = filp->f_mapping->host;
int is_local = 0;
dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
filp, fl->fl_type, fl->fl_flags);
if (!(fl->fl_flags & FL_FLOCK))
return -ENOLCK;
/*
* The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
* any standard. In principle we might be able to support LOCK_MAND
* on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
* NFS code is not set up for it.
*/
if (fl->fl_type & LOCK_MAND)
return -EINVAL;
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
is_local = 1;
/* We're simulating flock() locks using posix locks on the server */
if (fl->fl_type == F_UNLCK)
return do_unlk(filp, cmd, fl, is_local);
return do_setlk(filp, cmd, fl, is_local);
}
EXPORT_SYMBOL_GPL(nfs_flock);
const struct file_operations nfs_file_operations = {
.llseek = nfs_file_llseek,
.read_iter = nfs_file_read,
.write_iter = nfs_file_write,
.mmap = nfs_file_mmap,
.open = nfs_file_open,
.flush = nfs_file_flush,
.release = nfs_file_release,
.fsync = nfs_file_fsync,
.lock = nfs_lock,
.flock = nfs_flock,
.splice_read = nfs_file_splice_read,
.splice_write = iter_file_splice_write,
.check_flags = nfs_check_flags,
.setlease = simple_nosetlease,
};
EXPORT_SYMBOL_GPL(nfs_file_operations);