2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/drivers/media/dvb-frontends/ts2020.c
Igor M. Liplianin b858c331cd [media] m88rs2000: make use ts2020
Tuner part of Montage rs2000 chip is similar to ts2020 tuner.
Patch to use ts2020 code.

[mchehab@redhat.com: a few CodingStyle fixes]
Signed-off-by: Igor M. Liplianin <liplianin@me.by>

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-12-28 21:37:36 -02:00

375 lines
8.4 KiB
C

/*
Montage Technology TS2020 - Silicon Tuner driver
Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com>
Copyright (C) 2009-2012 TurboSight.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "dvb_frontend.h"
#include "ts2020.h"
#define TS2020_XTAL_FREQ 27000 /* in kHz */
#define FREQ_OFFSET_LOW_SYM_RATE 3000
struct ts2020_priv {
/* i2c details */
int i2c_address;
struct i2c_adapter *i2c;
u8 clk_out_div;
u32 frequency;
};
static int ts2020_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data)
{
struct ts2020_priv *priv = fe->tuner_priv;
u8 buf[] = { reg, data };
struct i2c_msg msg[] = {
{
.addr = priv->i2c_address,
.flags = 0,
.buf = buf,
.len = 2
}
};
int err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
err = i2c_transfer(priv->i2c, msg, 1);
if (err != 1) {
printk(KERN_ERR
"%s: writereg error(err == %i, reg == 0x%02x, value == 0x%02x)\n",
__func__, err, reg, data);
return -EREMOTEIO;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
}
static int ts2020_readreg(struct dvb_frontend *fe, u8 reg)
{
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {
{
.addr = priv->i2c_address,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = priv->i2c_address,
.flags = I2C_M_RD,
.buf = b1,
.len = 1
}
};
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(priv->i2c, msg, 2);
if (ret != 2) {
printk(KERN_ERR "%s: reg=0x%x(error=%d)\n",
__func__, reg, ret);
return ret;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return b1[0];
}
static int ts2020_sleep(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
u8 buf[] = { 10, 0 };
struct i2c_msg msg = {
.addr = priv->i2c_address,
.flags = 0,
.buf = buf,
.len = 2
};
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(priv->i2c, &msg, 1);
if (ret != 1)
printk(KERN_ERR "%s: i2c error\n", __func__);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return (ret == 1) ? 0 : ret;
}
static int ts2020_init(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
ts2020_writereg(fe, 0x42, 0x73);
ts2020_writereg(fe, 0x05, priv->clk_out_div);
ts2020_writereg(fe, 0x20, 0x27);
ts2020_writereg(fe, 0x07, 0x02);
ts2020_writereg(fe, 0x11, 0xff);
ts2020_writereg(fe, 0x60, 0xf9);
ts2020_writereg(fe, 0x08, 0x01);
ts2020_writereg(fe, 0x00, 0x41);
return 0;
}
static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset)
{
int ret;
ret = ts2020_writereg(fe, 0x51, 0x1f - offset);
ret |= ts2020_writereg(fe, 0x51, 0x1f);
ret |= ts2020_writereg(fe, 0x50, offset);
ret |= ts2020_writereg(fe, 0x50, 0x00);
msleep(20);
return ret;
}
static int ts2020_set_tuner_rf(struct dvb_frontend *fe)
{
int reg;
reg = ts2020_readreg(fe, 0x3d);
reg &= 0x7f;
if (reg < 0x16)
reg = 0xa1;
else if (reg == 0x16)
reg = 0x99;
else
reg = 0xf9;
ts2020_writereg(fe, 0x60, reg);
reg = ts2020_tuner_gate_ctrl(fe, 0x08);
return reg;
}
static int ts2020_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->demodulator_priv;
int ret;
u32 frequency = c->frequency;
s32 offset_khz;
u32 symbol_rate = (c->symbol_rate / 1000);
u32 f3db, gdiv28;
u16 value, ndiv, lpf_coeff;
u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
u8 lo = 0x01, div4 = 0x0;
/* Calculate frequency divider */
if (frequency < 1060000) {
lo |= 0x10;
div4 = 0x1;
ndiv = (frequency * 14 * 4) / TS2020_XTAL_FREQ;
} else
ndiv = (frequency * 14 * 2) / TS2020_XTAL_FREQ;
ndiv = ndiv + ndiv % 2;
ndiv = ndiv - 1024;
ret = ts2020_writereg(fe, 0x10, 0x80 | lo);
/* Set frequency divider */
ret |= ts2020_writereg(fe, 0x01, (ndiv >> 8) & 0xf);
ret |= ts2020_writereg(fe, 0x02, ndiv & 0xff);
ret |= ts2020_writereg(fe, 0x03, 0x06);
ret |= ts2020_tuner_gate_ctrl(fe, 0x10);
if (ret < 0)
return -ENODEV;
/* Tuner Frequency Range */
ret = ts2020_writereg(fe, 0x10, lo);
ret |= ts2020_tuner_gate_ctrl(fe, 0x08);
/* Tuner RF */
ret |= ts2020_set_tuner_rf(fe);
gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000;
ret |= ts2020_writereg(fe, 0x04, gdiv28 & 0xff);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
if (ret < 0)
return -ENODEV;
value = ts2020_readreg(fe, 0x26);
f3db = (symbol_rate * 135) / 200 + 2000;
f3db += FREQ_OFFSET_LOW_SYM_RATE;
if (f3db < 7000)
f3db = 7000;
if (f3db > 40000)
f3db = 40000;
gdiv28 = gdiv28 * 207 / (value * 2 + 151);
mlpf_max = gdiv28 * 135 / 100;
mlpf_min = gdiv28 * 78 / 100;
if (mlpf_max > 63)
mlpf_max = 63;
lpf_coeff = 2766;
nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
(TS2020_XTAL_FREQ / 1000) + 1) / 2;
if (nlpf > 23)
nlpf = 23;
if (nlpf < 1)
nlpf = 1;
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
if (lpf_mxdiv < mlpf_min) {
nlpf++;
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
}
if (lpf_mxdiv > mlpf_max)
lpf_mxdiv = mlpf_max;
ret = ts2020_writereg(fe, 0x04, lpf_mxdiv);
ret |= ts2020_writereg(fe, 0x06, nlpf);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
ret |= ts2020_tuner_gate_ctrl(fe, 0x01);
msleep(80);
/* calculate offset assuming 96000kHz*/
offset_khz = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ
/ (6 + 8) / (div4 + 1) / 2;
priv->frequency = offset_khz;
return (ret < 0) ? -EINVAL : 0;
}
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct ts2020_priv *priv = fe->tuner_priv;
*frequency = priv->frequency;
return 0;
}
/* read TS2020 signal strength */
static int ts2020_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
u16 sig_reading, sig_strength;
u8 rfgain, bbgain;
rfgain = ts2020_readreg(fe, 0x3d) & 0x1f;
bbgain = ts2020_readreg(fe, 0x21) & 0x1f;
if (rfgain > 15)
rfgain = 15;
if (bbgain > 13)
bbgain = 13;
sig_reading = rfgain * 2 + bbgain * 3;
sig_strength = 40 + (64 - sig_reading) * 50 / 64 ;
/* cook the value to be suitable for szap-s2 human readable output */
*signal_strength = sig_strength * 1000;
return 0;
}
static struct dvb_tuner_ops ts2020_tuner_ops = {
.info = {
.name = "TS2020",
.frequency_min = 950000,
.frequency_max = 2150000
},
.init = ts2020_init,
.release = ts2020_release,
.sleep = ts2020_sleep,
.set_params = ts2020_set_params,
.get_frequency = ts2020_get_frequency,
.get_rf_strength = ts2020_read_signal_strength,
};
struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe,
const struct ts2020_config *config,
struct i2c_adapter *i2c)
{
struct ts2020_priv *priv = NULL;
u8 buf;
priv = kzalloc(sizeof(struct ts2020_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
priv->i2c_address = config->tuner_address;
priv->i2c = i2c;
priv->clk_out_div = config->clk_out_div;
fe->tuner_priv = priv;
/* Wake Up the tuner */
if ((0x03 & ts2020_readreg(fe, 0x00)) == 0x00) {
ts2020_writereg(fe, 0x00, 0x01);
msleep(2);
}
ts2020_writereg(fe, 0x00, 0x03);
msleep(2);
/* Check the tuner version */
buf = ts2020_readreg(fe, 0x00);
if ((buf == 0x01) || (buf == 0x41) || (buf == 0x81))
printk(KERN_INFO "%s: Find tuner TS2020!\n", __func__);
else {
printk(KERN_ERR "%s: Read tuner reg[0] = %d\n", __func__, buf);
kfree(priv);
return NULL;
}
memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops,
sizeof(struct dvb_tuner_ops));
fe->ops.read_signal_strength = fe->ops.tuner_ops.get_rf_strength;
return fe;
}
EXPORT_SYMBOL(ts2020_attach);
MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>");
MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module");
MODULE_LICENSE("GPL");