mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-20 19:23:57 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
215 lines
7.2 KiB
C
215 lines
7.2 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_MEMREMAP_H_
|
|
#define _LINUX_MEMREMAP_H_
|
|
#include <linux/mm.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/percpu-refcount.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
struct resource;
|
|
struct device;
|
|
|
|
/**
|
|
* struct vmem_altmap - pre-allocated storage for vmemmap_populate
|
|
* @base_pfn: base of the entire dev_pagemap mapping
|
|
* @reserve: pages mapped, but reserved for driver use (relative to @base)
|
|
* @free: free pages set aside in the mapping for memmap storage
|
|
* @align: pages reserved to meet allocation alignments
|
|
* @alloc: track pages consumed, private to vmemmap_populate()
|
|
*/
|
|
struct vmem_altmap {
|
|
const unsigned long base_pfn;
|
|
const unsigned long reserve;
|
|
unsigned long free;
|
|
unsigned long align;
|
|
unsigned long alloc;
|
|
};
|
|
|
|
unsigned long vmem_altmap_offset(struct vmem_altmap *altmap);
|
|
void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns);
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start);
|
|
#else
|
|
static inline struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Specialize ZONE_DEVICE memory into multiple types each having differents
|
|
* usage.
|
|
*
|
|
* MEMORY_DEVICE_HOST:
|
|
* Persistent device memory (pmem): struct page might be allocated in different
|
|
* memory and architecture might want to perform special actions. It is similar
|
|
* to regular memory, in that the CPU can access it transparently. However,
|
|
* it is likely to have different bandwidth and latency than regular memory.
|
|
* See Documentation/nvdimm/nvdimm.txt for more information.
|
|
*
|
|
* MEMORY_DEVICE_PRIVATE:
|
|
* Device memory that is not directly addressable by the CPU: CPU can neither
|
|
* read nor write private memory. In this case, we do still have struct pages
|
|
* backing the device memory. Doing so simplifies the implementation, but it is
|
|
* important to remember that there are certain points at which the struct page
|
|
* must be treated as an opaque object, rather than a "normal" struct page.
|
|
*
|
|
* A more complete discussion of unaddressable memory may be found in
|
|
* include/linux/hmm.h and Documentation/vm/hmm.txt.
|
|
*
|
|
* MEMORY_DEVICE_PUBLIC:
|
|
* Device memory that is cache coherent from device and CPU point of view. This
|
|
* is use on platform that have an advance system bus (like CAPI or CCIX). A
|
|
* driver can hotplug the device memory using ZONE_DEVICE and with that memory
|
|
* type. Any page of a process can be migrated to such memory. However no one
|
|
* should be allow to pin such memory so that it can always be evicted.
|
|
*/
|
|
enum memory_type {
|
|
MEMORY_DEVICE_HOST = 0,
|
|
MEMORY_DEVICE_PRIVATE,
|
|
MEMORY_DEVICE_PUBLIC,
|
|
};
|
|
|
|
/*
|
|
* For MEMORY_DEVICE_PRIVATE we use ZONE_DEVICE and extend it with two
|
|
* callbacks:
|
|
* page_fault()
|
|
* page_free()
|
|
*
|
|
* Additional notes about MEMORY_DEVICE_PRIVATE may be found in
|
|
* include/linux/hmm.h and Documentation/vm/hmm.txt. There is also a brief
|
|
* explanation in include/linux/memory_hotplug.h.
|
|
*
|
|
* The page_fault() callback must migrate page back, from device memory to
|
|
* system memory, so that the CPU can access it. This might fail for various
|
|
* reasons (device issues, device have been unplugged, ...). When such error
|
|
* conditions happen, the page_fault() callback must return VM_FAULT_SIGBUS and
|
|
* set the CPU page table entry to "poisoned".
|
|
*
|
|
* Note that because memory cgroup charges are transferred to the device memory,
|
|
* this should never fail due to memory restrictions. However, allocation
|
|
* of a regular system page might still fail because we are out of memory. If
|
|
* that happens, the page_fault() callback must return VM_FAULT_OOM.
|
|
*
|
|
* The page_fault() callback can also try to migrate back multiple pages in one
|
|
* chunk, as an optimization. It must, however, prioritize the faulting address
|
|
* over all the others.
|
|
*
|
|
*
|
|
* The page_free() callback is called once the page refcount reaches 1
|
|
* (ZONE_DEVICE pages never reach 0 refcount unless there is a refcount bug.
|
|
* This allows the device driver to implement its own memory management.)
|
|
*
|
|
* For MEMORY_DEVICE_PUBLIC only the page_free() callback matter.
|
|
*/
|
|
typedef int (*dev_page_fault_t)(struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
const struct page *page,
|
|
unsigned int flags,
|
|
pmd_t *pmdp);
|
|
typedef void (*dev_page_free_t)(struct page *page, void *data);
|
|
|
|
/**
|
|
* struct dev_pagemap - metadata for ZONE_DEVICE mappings
|
|
* @page_fault: callback when CPU fault on an unaddressable device page
|
|
* @page_free: free page callback when page refcount reaches 1
|
|
* @altmap: pre-allocated/reserved memory for vmemmap allocations
|
|
* @res: physical address range covered by @ref
|
|
* @ref: reference count that pins the devm_memremap_pages() mapping
|
|
* @dev: host device of the mapping for debug
|
|
* @data: private data pointer for page_free()
|
|
* @type: memory type: see MEMORY_* in memory_hotplug.h
|
|
*/
|
|
struct dev_pagemap {
|
|
dev_page_fault_t page_fault;
|
|
dev_page_free_t page_free;
|
|
struct vmem_altmap *altmap;
|
|
const struct resource *res;
|
|
struct percpu_ref *ref;
|
|
struct device *dev;
|
|
void *data;
|
|
enum memory_type type;
|
|
};
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
void *devm_memremap_pages(struct device *dev, struct resource *res,
|
|
struct percpu_ref *ref, struct vmem_altmap *altmap);
|
|
struct dev_pagemap *find_dev_pagemap(resource_size_t phys);
|
|
|
|
static inline bool is_zone_device_page(const struct page *page);
|
|
#else
|
|
static inline void *devm_memremap_pages(struct device *dev,
|
|
struct resource *res, struct percpu_ref *ref,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
/*
|
|
* Fail attempts to call devm_memremap_pages() without
|
|
* ZONE_DEVICE support enabled, this requires callers to fall
|
|
* back to plain devm_memremap() based on config
|
|
*/
|
|
WARN_ON_ONCE(1);
|
|
return ERR_PTR(-ENXIO);
|
|
}
|
|
|
|
static inline struct dev_pagemap *find_dev_pagemap(resource_size_t phys)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
|
|
static inline bool is_device_private_page(const struct page *page)
|
|
{
|
|
return is_zone_device_page(page) &&
|
|
page->pgmap->type == MEMORY_DEVICE_PRIVATE;
|
|
}
|
|
|
|
static inline bool is_device_public_page(const struct page *page)
|
|
{
|
|
return is_zone_device_page(page) &&
|
|
page->pgmap->type == MEMORY_DEVICE_PUBLIC;
|
|
}
|
|
#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
|
|
|
|
/**
|
|
* get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn
|
|
* @pfn: page frame number to lookup page_map
|
|
* @pgmap: optional known pgmap that already has a reference
|
|
*
|
|
* @pgmap allows the overhead of a lookup to be bypassed when @pfn lands in the
|
|
* same mapping.
|
|
*/
|
|
static inline struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
const struct resource *res = pgmap ? pgmap->res : NULL;
|
|
resource_size_t phys = PFN_PHYS(pfn);
|
|
|
|
/*
|
|
* In the cached case we're already holding a live reference so
|
|
* we can simply do a blind increment
|
|
*/
|
|
if (res && phys >= res->start && phys <= res->end) {
|
|
percpu_ref_get(pgmap->ref);
|
|
return pgmap;
|
|
}
|
|
|
|
/* fall back to slow path lookup */
|
|
rcu_read_lock();
|
|
pgmap = find_dev_pagemap(phys);
|
|
if (pgmap && !percpu_ref_tryget_live(pgmap->ref))
|
|
pgmap = NULL;
|
|
rcu_read_unlock();
|
|
|
|
return pgmap;
|
|
}
|
|
|
|
static inline void put_dev_pagemap(struct dev_pagemap *pgmap)
|
|
{
|
|
if (pgmap)
|
|
percpu_ref_put(pgmap->ref);
|
|
}
|
|
#endif /* _LINUX_MEMREMAP_H_ */
|