2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/sound/oss/vidc.c
Russell King a09e64fbc0 [ARM] Move include/asm-arm/arch-* to arch/arm/*/include/mach
This just leaves include/asm-arm/plat-* to deal with.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-08-07 09:55:48 +01:00

561 lines
12 KiB
C

/*
* linux/drivers/sound/vidc.c
*
* Copyright (C) 1997-2000 by Russell King <rmk@arm.linux.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* VIDC20 audio driver.
*
* The VIDC20 sound hardware consists of the VIDC20 itself, a DAC and a DMA
* engine. The DMA transfers fixed-format (16-bit little-endian linear)
* samples to the VIDC20, which then transfers this data serially to the
* DACs. The samplerate is controlled by the VIDC.
*
* We currently support a mixer device, but it is currently non-functional.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <mach/hardware.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/hardware/iomd.h>
#include <asm/irq.h>
#include <asm/system.h>
#include "sound_config.h"
#include "vidc.h"
#ifndef _SIOC_TYPE
#define _SIOC_TYPE(x) _IOC_TYPE(x)
#endif
#ifndef _SIOC_NR
#define _SIOC_NR(x) _IOC_NR(x)
#endif
#define VIDC_SOUND_CLOCK (250000)
#define VIDC_SOUND_CLOCK_EXT (176400)
/*
* When using SERIAL SOUND mode (external DAC), the number of physical
* channels is fixed at 2.
*/
static int vidc_busy;
static int vidc_adev;
static int vidc_audio_rate;
static char vidc_audio_format;
static char vidc_audio_channels;
static unsigned char vidc_level_l[SOUND_MIXER_NRDEVICES] = {
85, /* master */
50, /* bass */
50, /* treble */
0, /* synth */
75, /* pcm */
0, /* speaker */
100, /* ext line */
0, /* mic */
100, /* CD */
0,
};
static unsigned char vidc_level_r[SOUND_MIXER_NRDEVICES] = {
85, /* master */
50, /* bass */
50, /* treble */
0, /* synth */
75, /* pcm */
0, /* speaker */
100, /* ext line */
0, /* mic */
100, /* CD */
0,
};
static unsigned int vidc_audio_volume_l; /* left PCM vol, 0 - 65536 */
static unsigned int vidc_audio_volume_r; /* right PCM vol, 0 - 65536 */
extern void vidc_update_filler(int bits, int channels);
extern int softoss_dev;
static void
vidc_mixer_set(int mdev, unsigned int level)
{
unsigned int lev_l = level & 0x007f;
unsigned int lev_r = (level & 0x7f00) >> 8;
unsigned int mlev_l, mlev_r;
if (lev_l > 100)
lev_l = 100;
if (lev_r > 100)
lev_r = 100;
#define SCALE(lev,master) ((lev) * (master) * 65536 / 10000)
mlev_l = vidc_level_l[SOUND_MIXER_VOLUME];
mlev_r = vidc_level_r[SOUND_MIXER_VOLUME];
switch (mdev) {
case SOUND_MIXER_VOLUME:
case SOUND_MIXER_PCM:
vidc_level_l[mdev] = lev_l;
vidc_level_r[mdev] = lev_r;
vidc_audio_volume_l = SCALE(lev_l, mlev_l);
vidc_audio_volume_r = SCALE(lev_r, mlev_r);
/*printk("VIDC: PCM vol %05X %05X\n", vidc_audio_volume_l, vidc_audio_volume_r);*/
break;
}
#undef SCALE
}
static int vidc_mixer_ioctl(int dev, unsigned int cmd, void __user *arg)
{
unsigned int val;
unsigned int mdev;
if (_SIOC_TYPE(cmd) != 'M')
return -EINVAL;
mdev = _SIOC_NR(cmd);
if (_SIOC_DIR(cmd) & _SIOC_WRITE) {
if (get_user(val, (unsigned int __user *)arg))
return -EFAULT;
if (mdev < SOUND_MIXER_NRDEVICES)
vidc_mixer_set(mdev, val);
else
return -EINVAL;
}
/*
* Return parameters
*/
switch (mdev) {
case SOUND_MIXER_RECSRC:
val = 0;
break;
case SOUND_MIXER_DEVMASK:
val = SOUND_MASK_VOLUME | SOUND_MASK_PCM | SOUND_MASK_SYNTH;
break;
case SOUND_MIXER_STEREODEVS:
val = SOUND_MASK_VOLUME | SOUND_MASK_PCM | SOUND_MASK_SYNTH;
break;
case SOUND_MIXER_RECMASK:
val = 0;
break;
case SOUND_MIXER_CAPS:
val = 0;
break;
default:
if (mdev < SOUND_MIXER_NRDEVICES)
val = vidc_level_l[mdev] | vidc_level_r[mdev] << 8;
else
return -EINVAL;
}
return put_user(val, (unsigned int __user *)arg) ? -EFAULT : 0;
}
static unsigned int vidc_audio_set_format(int dev, unsigned int fmt)
{
switch (fmt) {
default:
fmt = AFMT_S16_LE;
case AFMT_U8:
case AFMT_S8:
case AFMT_S16_LE:
vidc_audio_format = fmt;
vidc_update_filler(vidc_audio_format, vidc_audio_channels);
case AFMT_QUERY:
break;
}
return vidc_audio_format;
}
#define my_abs(i) ((i)<0 ? -(i) : (i))
static int vidc_audio_set_speed(int dev, int rate)
{
if (rate) {
unsigned int hwctrl, hwrate, hwrate_ext, rate_int, rate_ext;
unsigned int diff_int, diff_ext;
unsigned int newsize, new2size;
hwctrl = 0x00000003;
/* Using internal clock */
hwrate = (((VIDC_SOUND_CLOCK * 2) / rate) + 1) >> 1;
if (hwrate < 3)
hwrate = 3;
if (hwrate > 255)
hwrate = 255;
/* Using exernal clock */
hwrate_ext = (((VIDC_SOUND_CLOCK_EXT * 2) / rate) + 1) >> 1;
if (hwrate_ext < 3)
hwrate_ext = 3;
if (hwrate_ext > 255)
hwrate_ext = 255;
rate_int = VIDC_SOUND_CLOCK / hwrate;
rate_ext = VIDC_SOUND_CLOCK_EXT / hwrate_ext;
/* Chose between external and internal clock */
diff_int = my_abs(rate_ext-rate);
diff_ext = my_abs(rate_int-rate);
if (diff_ext < diff_int) {
/*printk("VIDC: external %d %d %d\n", rate, rate_ext, hwrate_ext);*/
hwrate=hwrate_ext;
hwctrl=0x00000002;
/* Allow roughly 0.4% tolerance */
if (diff_ext > (rate/256))
rate=rate_ext;
} else {
/*printk("VIDC: internal %d %d %d\n", rate, rate_int, hwrate);*/
hwctrl=0x00000003;
/* Allow rougly 0.4% tolerance */
if (diff_int > (rate/256))
rate=rate_int;
}
vidc_writel(0xb0000000 | (hwrate - 2));
vidc_writel(0xb1000000 | hwctrl);
newsize = (10000 / hwrate) & ~3;
if (newsize < 208)
newsize = 208;
if (newsize > 4096)
newsize = 4096;
for (new2size = 128; new2size < newsize; new2size <<= 1);
if (new2size - newsize > newsize - (new2size >> 1))
new2size >>= 1;
if (new2size > 4096) {
printk(KERN_ERR "VIDC: error: dma buffer (%d) %d > 4K\n",
newsize, new2size);
new2size = 4096;
}
/*printk("VIDC: dma size %d\n", new2size);*/
dma_bufsize = new2size;
vidc_audio_rate = rate;
}
return vidc_audio_rate;
}
static short vidc_audio_set_channels(int dev, short channels)
{
switch (channels) {
default:
channels = 2;
case 1:
case 2:
vidc_audio_channels = channels;
vidc_update_filler(vidc_audio_format, vidc_audio_channels);
case 0:
break;
}
return vidc_audio_channels;
}
/*
* Open the device
*/
static int vidc_audio_open(int dev, int mode)
{
/* This audio device does not have recording capability */
if (mode == OPEN_READ)
return -EPERM;
if (vidc_busy)
return -EBUSY;
vidc_busy = 1;
return 0;
}
/*
* Close the device
*/
static void vidc_audio_close(int dev)
{
vidc_busy = 0;
}
/*
* Output a block via DMA to sound device.
*
* We just set the DMA start and count; the DMA interrupt routine
* will take care of formatting the samples (via the appropriate
* vidc_filler routine), and flag via vidc_audio_dma_interrupt when
* more data is required.
*/
static void
vidc_audio_output_block(int dev, unsigned long buf, int total_count, int one)
{
struct dma_buffparms *dmap = audio_devs[dev]->dmap_out;
unsigned long flags;
local_irq_save(flags);
dma_start = buf - (unsigned long)dmap->raw_buf_phys + (unsigned long)dmap->raw_buf;
dma_count = total_count;
local_irq_restore(flags);
}
static void
vidc_audio_start_input(int dev, unsigned long buf, int count, int intrflag)
{
}
static int vidc_audio_prepare_for_input(int dev, int bsize, int bcount)
{
return -EINVAL;
}
static irqreturn_t vidc_audio_dma_interrupt(void)
{
DMAbuf_outputintr(vidc_adev, 1);
return IRQ_HANDLED;
}
/*
* Prepare for outputting samples.
*
* Each buffer that will be passed will be `bsize' bytes long,
* with a total of `bcount' buffers.
*/
static int vidc_audio_prepare_for_output(int dev, int bsize, int bcount)
{
struct audio_operations *adev = audio_devs[dev];
dma_interrupt = NULL;
adev->dmap_out->flags |= DMA_NODMA;
return 0;
}
/*
* Stop our current operation.
*/
static void vidc_audio_reset(int dev)
{
dma_interrupt = NULL;
}
static int vidc_audio_local_qlen(int dev)
{
return /*dma_count !=*/ 0;
}
static void vidc_audio_trigger(int dev, int enable_bits)
{
struct audio_operations *adev = audio_devs[dev];
if (enable_bits & PCM_ENABLE_OUTPUT) {
if (!(adev->flags & DMA_ACTIVE)) {
unsigned long flags;
local_irq_save(flags);
/* prevent recusion */
adev->flags |= DMA_ACTIVE;
dma_interrupt = vidc_audio_dma_interrupt;
vidc_sound_dma_irq(0, NULL);
iomd_writeb(DMA_CR_E | 0x10, IOMD_SD0CR);
local_irq_restore(flags);
}
}
}
static struct audio_driver vidc_audio_driver =
{
.owner = THIS_MODULE,
.open = vidc_audio_open,
.close = vidc_audio_close,
.output_block = vidc_audio_output_block,
.start_input = vidc_audio_start_input,
.prepare_for_input = vidc_audio_prepare_for_input,
.prepare_for_output = vidc_audio_prepare_for_output,
.halt_io = vidc_audio_reset,
.local_qlen = vidc_audio_local_qlen,
.trigger = vidc_audio_trigger,
.set_speed = vidc_audio_set_speed,
.set_bits = vidc_audio_set_format,
.set_channels = vidc_audio_set_channels
};
static struct mixer_operations vidc_mixer_operations = {
.owner = THIS_MODULE,
.id = "VIDC",
.name = "VIDCsound",
.ioctl = vidc_mixer_ioctl
};
void vidc_update_filler(int format, int channels)
{
#define TYPE(fmt,ch) (((fmt)<<2) | ((ch)&3))
switch (TYPE(format, channels)) {
default:
case TYPE(AFMT_U8, 1):
vidc_filler = vidc_fill_1x8_u;
break;
case TYPE(AFMT_U8, 2):
vidc_filler = vidc_fill_2x8_u;
break;
case TYPE(AFMT_S8, 1):
vidc_filler = vidc_fill_1x8_s;
break;
case TYPE(AFMT_S8, 2):
vidc_filler = vidc_fill_2x8_s;
break;
case TYPE(AFMT_S16_LE, 1):
vidc_filler = vidc_fill_1x16_s;
break;
case TYPE(AFMT_S16_LE, 2):
vidc_filler = vidc_fill_2x16_s;
break;
}
}
static void __init attach_vidc(struct address_info *hw_config)
{
char name[32];
int i, adev;
sprintf(name, "VIDC %d-bit sound", hw_config->card_subtype);
conf_printf(name, hw_config);
memset(dma_buf, 0, sizeof(dma_buf));
adev = sound_install_audiodrv(AUDIO_DRIVER_VERSION, name,
&vidc_audio_driver, sizeof(vidc_audio_driver),
DMA_AUTOMODE, AFMT_U8 | AFMT_S8 | AFMT_S16_LE,
NULL, hw_config->dma, hw_config->dma2);
if (adev < 0)
goto audio_failed;
/*
* 1024 bytes => 64 buffers
*/
audio_devs[adev]->min_fragment = 10;
audio_devs[adev]->mixer_dev = num_mixers;
audio_devs[adev]->mixer_dev =
sound_install_mixer(MIXER_DRIVER_VERSION,
name, &vidc_mixer_operations,
sizeof(vidc_mixer_operations), NULL);
if (audio_devs[adev]->mixer_dev < 0)
goto mixer_failed;
for (i = 0; i < 2; i++) {
dma_buf[i] = get_zeroed_page(GFP_KERNEL);
if (!dma_buf[i]) {
printk(KERN_ERR "%s: can't allocate required buffers\n",
name);
goto mem_failed;
}
dma_pbuf[i] = virt_to_phys((void *)dma_buf[i]);
}
if (sound_alloc_dma(hw_config->dma, hw_config->name)) {
printk(KERN_ERR "%s: DMA %d is in use\n", name, hw_config->dma);
goto dma_failed;
}
if (request_irq(hw_config->irq, vidc_sound_dma_irq, 0,
hw_config->name, &dma_start)) {
printk(KERN_ERR "%s: IRQ %d is in use\n", name, hw_config->irq);
goto irq_failed;
}
vidc_adev = adev;
vidc_mixer_set(SOUND_MIXER_VOLUME, (85 | 85 << 8));
#if defined(CONFIG_SOUND_SOFTOSS) || defined(CONFIG_SOUND_SOFTOSS_MODULE)
softoss_dev = adev;
#endif
return;
irq_failed:
sound_free_dma(hw_config->dma);
dma_failed:
mem_failed:
for (i = 0; i < 2; i++)
free_page(dma_buf[i]);
sound_unload_mixerdev(audio_devs[adev]->mixer_dev);
mixer_failed:
sound_unload_audiodev(adev);
audio_failed:
return;
}
static int __init probe_vidc(struct address_info *hw_config)
{
hw_config->irq = IRQ_DMAS0;
hw_config->dma = DMA_VIRTUAL_SOUND;
hw_config->dma2 = -1;
hw_config->card_subtype = 16;
hw_config->name = "VIDC20";
return 1;
}
static void __exit unload_vidc(struct address_info *hw_config)
{
int i, adev = vidc_adev;
vidc_adev = -1;
free_irq(hw_config->irq, &dma_start);
sound_free_dma(hw_config->dma);
if (adev >= 0) {
sound_unload_mixerdev(audio_devs[adev]->mixer_dev);
sound_unload_audiodev(adev);
for (i = 0; i < 2; i++)
free_page(dma_buf[i]);
}
}
static struct address_info cfg;
static int __init init_vidc(void)
{
if (probe_vidc(&cfg) == 0)
return -ENODEV;
attach_vidc(&cfg);
return 0;
}
static void __exit cleanup_vidc(void)
{
unload_vidc(&cfg);
}
module_init(init_vidc);
module_exit(cleanup_vidc);
MODULE_AUTHOR("Russell King");
MODULE_DESCRIPTION("VIDC20 audio driver");
MODULE_LICENSE("GPL");