2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 17:43:56 +08:00
linux-next/drivers/isdn/hisax/hfc_2bds0.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1081 lines
27 KiB
C

/* $Id: hfc_2bds0.c,v 1.18.2.6 2004/02/11 13:21:33 keil Exp $
*
* specific routines for CCD's HFC 2BDS0
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include "hisax.h"
#include "hfc_2bds0.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
/*
#define KDEBUG_DEF
#include "kdebug.h"
*/
#define byteout(addr,val) outb(val,addr)
#define bytein(addr) inb(addr)
static void
dummyf(struct IsdnCardState *cs, u_char * data, int size)
{
printk(KERN_WARNING "HiSax: hfcd dummy fifo called\n");
}
static inline u_char
ReadReg(struct IsdnCardState *cs, int data, u_char reg)
{
register u_char ret;
if (data) {
if (cs->hw.hfcD.cip != reg) {
cs->hw.hfcD.cip = reg;
byteout(cs->hw.hfcD.addr | 1, reg);
}
ret = bytein(cs->hw.hfcD.addr);
#ifdef HFC_REG_DEBUG
if (cs->debug & L1_DEB_HSCX_FIFO && (data != 2))
debugl1(cs, "t3c RD %02x %02x", reg, ret);
#endif
} else
ret = bytein(cs->hw.hfcD.addr | 1);
return (ret);
}
static inline void
WriteReg(struct IsdnCardState *cs, int data, u_char reg, u_char value)
{
if (cs->hw.hfcD.cip != reg) {
cs->hw.hfcD.cip = reg;
byteout(cs->hw.hfcD.addr | 1, reg);
}
if (data)
byteout(cs->hw.hfcD.addr, value);
#ifdef HFC_REG_DEBUG
if (cs->debug & L1_DEB_HSCX_FIFO && (data != HFCD_DATA_NODEB))
debugl1(cs, "t3c W%c %02x %02x", data ? 'D' : 'C', reg, value);
#endif
}
/* Interface functions */
static u_char
readreghfcd(struct IsdnCardState *cs, u_char offset)
{
return(ReadReg(cs, HFCD_DATA, offset));
}
static void
writereghfcd(struct IsdnCardState *cs, u_char offset, u_char value)
{
WriteReg(cs, HFCD_DATA, offset, value);
}
static inline int
WaitForBusy(struct IsdnCardState *cs)
{
int to = 130;
while (!(ReadReg(cs, HFCD_DATA, HFCD_STAT) & HFCD_BUSY) && to) {
udelay(1);
to--;
}
if (!to)
printk(KERN_WARNING "HiSax: WaitForBusy timeout\n");
return (to);
}
static inline int
WaitNoBusy(struct IsdnCardState *cs)
{
int to = 130;
while ((ReadReg(cs, HFCD_STATUS, HFCD_STATUS) & HFCD_BUSY) && to) {
udelay(1);
to--;
}
if (!to)
printk(KERN_WARNING "HiSax: WaitNoBusy timeout\n");
return (to);
}
static int
SelFiFo(struct IsdnCardState *cs, u_char FiFo)
{
u_char cip;
if (cs->hw.hfcD.fifo == FiFo)
return(1);
switch(FiFo) {
case 0: cip = HFCB_FIFO | HFCB_Z1 | HFCB_SEND | HFCB_B1;
break;
case 1: cip = HFCB_FIFO | HFCB_Z1 | HFCB_REC | HFCB_B1;
break;
case 2: cip = HFCB_FIFO | HFCB_Z1 | HFCB_SEND | HFCB_B2;
break;
case 3: cip = HFCB_FIFO | HFCB_Z1 | HFCB_REC | HFCB_B2;
break;
case 4: cip = HFCD_FIFO | HFCD_Z1 | HFCD_SEND;
break;
case 5: cip = HFCD_FIFO | HFCD_Z1 | HFCD_REC;
break;
default:
debugl1(cs, "SelFiFo Error");
return(0);
}
cs->hw.hfcD.fifo = FiFo;
WaitNoBusy(cs);
cs->BC_Write_Reg(cs, HFCD_DATA, cip, 0);
WaitForBusy(cs);
return(2);
}
static int
GetFreeFifoBytes_B(struct BCState *bcs)
{
int s;
if (bcs->hw.hfc.f1 == bcs->hw.hfc.f2)
return (bcs->cs->hw.hfcD.bfifosize);
s = bcs->hw.hfc.send[bcs->hw.hfc.f1] - bcs->hw.hfc.send[bcs->hw.hfc.f2];
if (s <= 0)
s += bcs->cs->hw.hfcD.bfifosize;
s = bcs->cs->hw.hfcD.bfifosize - s;
return (s);
}
static int
GetFreeFifoBytes_D(struct IsdnCardState *cs)
{
int s;
if (cs->hw.hfcD.f1 == cs->hw.hfcD.f2)
return (cs->hw.hfcD.dfifosize);
s = cs->hw.hfcD.send[cs->hw.hfcD.f1] - cs->hw.hfcD.send[cs->hw.hfcD.f2];
if (s <= 0)
s += cs->hw.hfcD.dfifosize;
s = cs->hw.hfcD.dfifosize - s;
return (s);
}
static int
ReadZReg(struct IsdnCardState *cs, u_char reg)
{
int val;
WaitNoBusy(cs);
val = 256 * ReadReg(cs, HFCD_DATA, reg | HFCB_Z_HIGH);
WaitNoBusy(cs);
val += ReadReg(cs, HFCD_DATA, reg | HFCB_Z_LOW);
return (val);
}
static struct sk_buff
*hfc_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr;
struct sk_buff *skb;
struct IsdnCardState *cs = bcs->cs;
int idx;
int chksum;
u_char stat, cip;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hfc_empty_fifo");
idx = 0;
if (count > HSCX_BUFMAX + 3) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfc_empty_fifo: incoming packet too large");
cip = HFCB_FIFO | HFCB_FIFO_OUT | HFCB_REC | HFCB_CHANNEL(bcs->channel);
while (idx++ < count) {
WaitNoBusy(cs);
ReadReg(cs, HFCD_DATA_NODEB, cip);
}
skb = NULL;
} else if (count < 4) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfc_empty_fifo: incoming packet too small");
cip = HFCB_FIFO | HFCB_FIFO_OUT | HFCB_REC | HFCB_CHANNEL(bcs->channel);
#ifdef ERROR_STATISTIC
bcs->err_inv++;
#endif
while ((idx++ < count) && WaitNoBusy(cs))
ReadReg(cs, HFCD_DATA_NODEB, cip);
skb = NULL;
} else if (!(skb = dev_alloc_skb(count - 3)))
printk(KERN_WARNING "HFC: receive out of memory\n");
else {
ptr = skb_put(skb, count - 3);
idx = 0;
cip = HFCB_FIFO | HFCB_FIFO_OUT | HFCB_REC | HFCB_CHANNEL(bcs->channel);
while (idx < (count - 3)) {
if (!WaitNoBusy(cs))
break;
*ptr = ReadReg(cs, HFCD_DATA_NODEB, cip);
ptr++;
idx++;
}
if (idx != count - 3) {
debugl1(cs, "RFIFO BUSY error");
printk(KERN_WARNING "HFC FIFO channel %d BUSY Error\n", bcs->channel);
dev_kfree_skb_irq(skb);
skb = NULL;
} else {
WaitNoBusy(cs);
chksum = (ReadReg(cs, HFCD_DATA, cip) << 8);
WaitNoBusy(cs);
chksum += ReadReg(cs, HFCD_DATA, cip);
WaitNoBusy(cs);
stat = ReadReg(cs, HFCD_DATA, cip);
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_empty_fifo %d chksum %x stat %x",
bcs->channel, chksum, stat);
if (stat) {
debugl1(cs, "FIFO CRC error");
dev_kfree_skb_irq(skb);
skb = NULL;
#ifdef ERROR_STATISTIC
bcs->err_crc++;
#endif
}
}
}
WaitForBusy(cs);
WaitNoBusy(cs);
stat = ReadReg(cs, HFCD_DATA, HFCB_FIFO | HFCB_F2_INC |
HFCB_REC | HFCB_CHANNEL(bcs->channel));
WaitForBusy(cs);
return (skb);
}
static void
hfc_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int idx, fcnt;
int count;
u_char cip;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
SelFiFo(cs, HFCB_SEND | HFCB_CHANNEL(bcs->channel));
cip = HFCB_FIFO | HFCB_F1 | HFCB_SEND | HFCB_CHANNEL(bcs->channel);
WaitNoBusy(cs);
bcs->hw.hfc.f1 = ReadReg(cs, HFCD_DATA, cip);
WaitNoBusy(cs);
cip = HFCB_FIFO | HFCB_F2 | HFCB_SEND | HFCB_CHANNEL(bcs->channel);
WaitNoBusy(cs);
bcs->hw.hfc.f2 = ReadReg(cs, HFCD_DATA, cip);
bcs->hw.hfc.send[bcs->hw.hfc.f1] = ReadZReg(cs, HFCB_FIFO | HFCB_Z1 | HFCB_SEND | HFCB_CHANNEL(bcs->channel));
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo %d f1(%d) f2(%d) z1(%x)",
bcs->channel, bcs->hw.hfc.f1, bcs->hw.hfc.f2,
bcs->hw.hfc.send[bcs->hw.hfc.f1]);
fcnt = bcs->hw.hfc.f1 - bcs->hw.hfc.f2;
if (fcnt < 0)
fcnt += 32;
if (fcnt > 30) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo more as 30 frames");
return;
}
count = GetFreeFifoBytes_B(bcs);
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo %d count(%ld/%d),%lx",
bcs->channel, bcs->tx_skb->len,
count, current->state);
if (count < bcs->tx_skb->len) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo no fifo mem");
return;
}
cip = HFCB_FIFO | HFCB_FIFO_IN | HFCB_SEND | HFCB_CHANNEL(bcs->channel);
idx = 0;
WaitForBusy(cs);
WaitNoBusy(cs);
WriteReg(cs, HFCD_DATA_NODEB, cip, bcs->tx_skb->data[idx++]);
while (idx < bcs->tx_skb->len) {
if (!WaitNoBusy(cs))
break;
WriteReg(cs, HFCD_DATA_NODEB, cip, bcs->tx_skb->data[idx]);
idx++;
}
if (idx != bcs->tx_skb->len) {
debugl1(cs, "FIFO Send BUSY error");
printk(KERN_WARNING "HFC S FIFO channel %d BUSY Error\n", bcs->channel);
} else {
bcs->tx_cnt -= bcs->tx_skb->len;
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->tx_skb->len;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
}
WaitForBusy(cs);
WaitNoBusy(cs);
ReadReg(cs, HFCD_DATA, HFCB_FIFO | HFCB_F1_INC | HFCB_SEND | HFCB_CHANNEL(bcs->channel));
WaitForBusy(cs);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
return;
}
static void
hfc_send_data(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"send_data %d blocked", bcs->channel);
}
static void
main_rec_2bds0(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int z1, z2, rcnt;
u_char f1, f2, cip;
int receive, count = 5;
struct sk_buff *skb;
Begin:
count--;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs,"rec_data %d blocked", bcs->channel);
return;
}
SelFiFo(cs, HFCB_REC | HFCB_CHANNEL(bcs->channel));
cip = HFCB_FIFO | HFCB_F1 | HFCB_REC | HFCB_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f1 = ReadReg(cs, HFCD_DATA, cip);
cip = HFCB_FIFO | HFCB_F2 | HFCB_REC | HFCB_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f2 = ReadReg(cs, HFCD_DATA, cip);
if (f1 != f2) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc rec %d f1(%d) f2(%d)",
bcs->channel, f1, f2);
z1 = ReadZReg(cs, HFCB_FIFO | HFCB_Z1 | HFCB_REC | HFCB_CHANNEL(bcs->channel));
z2 = ReadZReg(cs, HFCB_FIFO | HFCB_Z2 | HFCB_REC | HFCB_CHANNEL(bcs->channel));
rcnt = z1 - z2;
if (rcnt < 0)
rcnt += cs->hw.hfcD.bfifosize;
rcnt++;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc rec %d z1(%x) z2(%x) cnt(%d)",
bcs->channel, z1, z2, rcnt);
if ((skb = hfc_empty_fifo(bcs, rcnt))) {
skb_queue_tail(&bcs->rqueue, skb);
schedule_event(bcs, B_RCVBUFREADY);
}
rcnt = f1 -f2;
if (rcnt<0)
rcnt += 32;
if (rcnt>1)
receive = 1;
else
receive = 0;
} else
receive = 0;
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
if (count && receive)
goto Begin;
return;
}
static void
mode_2bs0(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HFCD bchannel mode %d bchan %d/%d",
mode, bc, bcs->channel);
bcs->mode = mode;
bcs->channel = bc;
switch (mode) {
case (L1_MODE_NULL):
if (bc) {
cs->hw.hfcD.conn |= 0x18;
cs->hw.hfcD.sctrl &= ~SCTRL_B2_ENA;
} else {
cs->hw.hfcD.conn |= 0x3;
cs->hw.hfcD.sctrl &= ~SCTRL_B1_ENA;
}
break;
case (L1_MODE_TRANS):
if (bc) {
cs->hw.hfcD.ctmt |= 2;
cs->hw.hfcD.conn &= ~0x18;
cs->hw.hfcD.sctrl |= SCTRL_B2_ENA;
} else {
cs->hw.hfcD.ctmt |= 1;
cs->hw.hfcD.conn &= ~0x3;
cs->hw.hfcD.sctrl |= SCTRL_B1_ENA;
}
break;
case (L1_MODE_HDLC):
if (bc) {
cs->hw.hfcD.ctmt &= ~2;
cs->hw.hfcD.conn &= ~0x18;
cs->hw.hfcD.sctrl |= SCTRL_B2_ENA;
} else {
cs->hw.hfcD.ctmt &= ~1;
cs->hw.hfcD.conn &= ~0x3;
cs->hw.hfcD.sctrl |= SCTRL_B1_ENA;
}
break;
}
WriteReg(cs, HFCD_DATA, HFCD_SCTRL, cs->hw.hfcD.sctrl);
WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcD.ctmt);
WriteReg(cs, HFCD_DATA, HFCD_CONN, cs->hw.hfcD.conn);
}
static void
hfc_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
} else {
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
mode_2bs0(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
mode_2bs0(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
static void
close_2bs0(struct BCState *bcs)
{
mode_2bs0(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
static int
open_hfcstate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->tx_cnt = 0;
return (0);
}
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hfcstate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hfc_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
static void
hfcd_bh(struct work_struct *work)
{
struct IsdnCardState *cs =
container_of(work, struct IsdnCardState, tqueue);
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
switch (cs->dc.hfcd.ph_state) {
case (0):
l1_msg(cs, HW_RESET | INDICATION, NULL);
break;
case (3):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (8):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (6):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (7):
l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
break;
default:
break;
}
}
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
}
static
int receive_dmsg(struct IsdnCardState *cs)
{
struct sk_buff *skb;
int idx;
int rcnt, z1, z2;
u_char stat, cip, f1, f2;
int chksum;
int count=5;
u_char *ptr;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_dmsg blocked");
return(1);
}
SelFiFo(cs, 4 | HFCD_REC);
cip = HFCD_FIFO | HFCD_F1 | HFCD_REC;
WaitNoBusy(cs);
f1 = cs->readisac(cs, cip) & 0xf;
cip = HFCD_FIFO | HFCD_F2 | HFCD_REC;
WaitNoBusy(cs);
f2 = cs->readisac(cs, cip) & 0xf;
while ((f1 != f2) && count--) {
z1 = ReadZReg(cs, HFCD_FIFO | HFCD_Z1 | HFCD_REC);
z2 = ReadZReg(cs, HFCD_FIFO | HFCD_Z2 | HFCD_REC);
rcnt = z1 - z2;
if (rcnt < 0)
rcnt += cs->hw.hfcD.dfifosize;
rcnt++;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcd recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
f1, f2, z1, z2, rcnt);
idx = 0;
cip = HFCD_FIFO | HFCD_FIFO_OUT | HFCD_REC;
if (rcnt > MAX_DFRAME_LEN + 3) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "empty_fifo d: incoming packet too large");
while (idx < rcnt) {
if (!(WaitNoBusy(cs)))
break;
ReadReg(cs, HFCD_DATA_NODEB, cip);
idx++;
}
} else if (rcnt < 4) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "empty_fifo d: incoming packet too small");
while ((idx++ < rcnt) && WaitNoBusy(cs))
ReadReg(cs, HFCD_DATA_NODEB, cip);
} else if ((skb = dev_alloc_skb(rcnt - 3))) {
ptr = skb_put(skb, rcnt - 3);
while (idx < (rcnt - 3)) {
if (!(WaitNoBusy(cs)))
break;
*ptr = ReadReg(cs, HFCD_DATA_NODEB, cip);
idx++;
ptr++;
}
if (idx != (rcnt - 3)) {
debugl1(cs, "RFIFO D BUSY error");
printk(KERN_WARNING "HFC DFIFO channel BUSY Error\n");
dev_kfree_skb_irq(skb);
skb = NULL;
#ifdef ERROR_STATISTIC
cs->err_rx++;
#endif
} else {
WaitNoBusy(cs);
chksum = (ReadReg(cs, HFCD_DATA, cip) << 8);
WaitNoBusy(cs);
chksum += ReadReg(cs, HFCD_DATA, cip);
WaitNoBusy(cs);
stat = ReadReg(cs, HFCD_DATA, cip);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "empty_dfifo chksum %x stat %x",
chksum, stat);
if (stat) {
debugl1(cs, "FIFO CRC error");
dev_kfree_skb_irq(skb);
skb = NULL;
#ifdef ERROR_STATISTIC
cs->err_crc++;
#endif
} else {
skb_queue_tail(&cs->rq, skb);
schedule_event(cs, D_RCVBUFREADY);
}
}
} else
printk(KERN_WARNING "HFC: D receive out of memory\n");
WaitForBusy(cs);
cip = HFCD_FIFO | HFCD_F2_INC | HFCD_REC;
WaitNoBusy(cs);
stat = ReadReg(cs, HFCD_DATA, cip);
WaitForBusy(cs);
cip = HFCD_FIFO | HFCD_F2 | HFCD_REC;
WaitNoBusy(cs);
f2 = cs->readisac(cs, cip) & 0xf;
}
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
return(1);
}
static void
hfc_fill_dfifo(struct IsdnCardState *cs)
{
int idx, fcnt;
int count;
u_char cip;
if (!cs->tx_skb)
return;
if (cs->tx_skb->len <= 0)
return;
SelFiFo(cs, 4 | HFCD_SEND);
cip = HFCD_FIFO | HFCD_F1 | HFCD_SEND;
WaitNoBusy(cs);
cs->hw.hfcD.f1 = ReadReg(cs, HFCD_DATA, cip) & 0xf;
WaitNoBusy(cs);
cip = HFCD_FIFO | HFCD_F2 | HFCD_SEND;
cs->hw.hfcD.f2 = ReadReg(cs, HFCD_DATA, cip) & 0xf;
cs->hw.hfcD.send[cs->hw.hfcD.f1] = ReadZReg(cs, HFCD_FIFO | HFCD_Z1 | HFCD_SEND);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfc_fill_Dfifo f1(%d) f2(%d) z1(%x)",
cs->hw.hfcD.f1, cs->hw.hfcD.f2,
cs->hw.hfcD.send[cs->hw.hfcD.f1]);
fcnt = cs->hw.hfcD.f1 - cs->hw.hfcD.f2;
if (fcnt < 0)
fcnt += 16;
if (fcnt > 14) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_Dfifo more as 14 frames");
return;
}
count = GetFreeFifoBytes_D(cs);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfc_fill_Dfifo count(%ld/%d)",
cs->tx_skb->len, count);
if (count < cs->tx_skb->len) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfc_fill_Dfifo no fifo mem");
return;
}
cip = HFCD_FIFO | HFCD_FIFO_IN | HFCD_SEND;
idx = 0;
WaitForBusy(cs);
WaitNoBusy(cs);
WriteReg(cs, HFCD_DATA_NODEB, cip, cs->tx_skb->data[idx++]);
while (idx < cs->tx_skb->len) {
if (!(WaitNoBusy(cs)))
break;
WriteReg(cs, HFCD_DATA_NODEB, cip, cs->tx_skb->data[idx]);
idx++;
}
if (idx != cs->tx_skb->len) {
debugl1(cs, "DFIFO Send BUSY error");
printk(KERN_WARNING "HFC S DFIFO channel BUSY Error\n");
}
WaitForBusy(cs);
WaitNoBusy(cs);
ReadReg(cs, HFCD_DATA, HFCD_FIFO | HFCD_F1_INC | HFCD_SEND);
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
WaitForBusy(cs);
return;
}
static
struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
{
if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
return(&cs->bcs[0]);
else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
return(&cs->bcs[1]);
else
return(NULL);
}
void
hfc2bds0_interrupt(struct IsdnCardState *cs, u_char val)
{
u_char exval;
struct BCState *bcs;
int count=15;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFCD irq %x %s", val,
test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
"locked" : "unlocked");
val &= cs->hw.hfcD.int_m1;
if (val & 0x40) { /* TE state machine irq */
exval = cs->readisac(cs, HFCD_STATES) & 0xf;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcd.ph_state,
exval);
cs->dc.hfcd.ph_state = exval;
schedule_event(cs, D_L1STATECHANGE);
val &= ~0x40;
}
while (val) {
if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
cs->hw.hfcD.int_s1 |= val;
return;
}
if (cs->hw.hfcD.int_s1 & 0x18) {
exval = val;
val = cs->hw.hfcD.int_s1;
cs->hw.hfcD.int_s1 = exval;
}
if (val & 0x08) {
if (!(bcs=Sel_BCS(cs, 0))) {
if (cs->debug)
debugl1(cs, "hfcd spurious 0x08 IRQ");
} else
main_rec_2bds0(bcs);
}
if (val & 0x10) {
if (!(bcs=Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcd spurious 0x10 IRQ");
} else
main_rec_2bds0(bcs);
}
if (val & 0x01) {
if (!(bcs=Sel_BCS(cs, 0))) {
if (cs->debug)
debugl1(cs, "hfcd spurious 0x01 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"fill_data %d blocked", bcs->channel);
} else {
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x02) {
if (!(bcs=Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcd spurious 0x02 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"fill_data %d blocked", bcs->channel);
} else {
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x20) { /* receive dframe */
receive_dmsg(cs);
}
if (val & 0x04) { /* dframe transmitted */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfc_fill_dfifo irq blocked");
}
goto afterXPR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfc_fill_dfifo irq blocked");
}
} else
schedule_event(cs, D_XMTBUFREADY);
}
afterXPR:
if (cs->hw.hfcD.int_s1 && count--) {
val = cs->hw.hfcD.int_s1;
cs->hw.hfcD.int_s1 = 0;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFCD irq %x loop %d", val, 15-count);
} else
val = 0;
}
}
static void
HFCD_l1hw(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfc_fill_dfifo blocked");
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
spin_unlock_irqrestore(&cs->lock, flags);
break;
}
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfc_fill_dfifo blocked");
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->writeisac(cs, HFCD_STATES, HFCD_LOAD_STATE | 3); /* HFC ST 3 */
udelay(6);
cs->writeisac(cs, HFCD_STATES, 3); /* HFC ST 2 */
cs->hw.hfcD.mst_m |= HFCD_MASTER;
cs->writeisac(cs, HFCD_MST_MODE, cs->hw.hfcD.mst_m);
cs->writeisac(cs, HFCD_STATES, HFCD_ACTIVATE | HFCD_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->writeisac(cs, HFCD_STATES, HFCD_ACTIVATE | HFCD_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_DEACTIVATE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcD.mst_m &= ~HFCD_MASTER;
cs->writeisac(cs, HFCD_MST_MODE, cs->hw.hfcD.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcD.mst_m |= HFCD_MASTER;
cs->writeisac(cs, HFCD_MST_MODE, cs->hw.hfcD.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcd_l1hw unknown pr %4x", pr);
break;
}
}
static void
setstack_hfcd(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = HFCD_l1hw;
}
static void
hfc_dbusy_timer(struct IsdnCardState *cs)
{
}
static unsigned int
*init_send_hfcd(int cnt)
{
int i;
unsigned *send;
if (!(send = kmalloc(cnt * sizeof(unsigned int), GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for hfcd.send\n");
return(NULL);
}
for (i = 0; i < cnt; i++)
send[i] = 0x1fff;
return(send);
}
void
init2bds0(struct IsdnCardState *cs)
{
cs->setstack_d = setstack_hfcd;
if (!cs->hw.hfcD.send)
cs->hw.hfcD.send = init_send_hfcd(16);
if (!cs->bcs[0].hw.hfc.send)
cs->bcs[0].hw.hfc.send = init_send_hfcd(32);
if (!cs->bcs[1].hw.hfc.send)
cs->bcs[1].hw.hfc.send = init_send_hfcd(32);
cs->BC_Send_Data = &hfc_send_data;
cs->bcs[0].BC_SetStack = setstack_2b;
cs->bcs[1].BC_SetStack = setstack_2b;
cs->bcs[0].BC_Close = close_2bs0;
cs->bcs[1].BC_Close = close_2bs0;
mode_2bs0(cs->bcs, 0, 0);
mode_2bs0(cs->bcs + 1, 0, 1);
}
void
release2bds0(struct IsdnCardState *cs)
{
kfree(cs->bcs[0].hw.hfc.send);
cs->bcs[0].hw.hfc.send = NULL;
kfree(cs->bcs[1].hw.hfc.send);
cs->bcs[1].hw.hfc.send = NULL;
kfree(cs->hw.hfcD.send);
cs->hw.hfcD.send = NULL;
}
void
set_cs_func(struct IsdnCardState *cs)
{
cs->readisac = &readreghfcd;
cs->writeisac = &writereghfcd;
cs->readisacfifo = &dummyf;
cs->writeisacfifo = &dummyf;
cs->BC_Read_Reg = &ReadReg;
cs->BC_Write_Reg = &WriteReg;
cs->dbusytimer.function = (void *) hfc_dbusy_timer;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
INIT_WORK(&cs->tqueue, hfcd_bh);
}