2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 19:53:59 +08:00
linux-next/drivers/ieee1394/eth1394.c
Stefan Richter c64094684d ieee1394: constify device ID tables
Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
2009-03-24 20:56:53 +01:00

1749 lines
47 KiB
C

/*
* eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
*
* Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
* 2000 Bonin Franck <boninf@free.fr>
* 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
*
* Mainly based on work by Emanuel Pirker and Andreas E. Bombe
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* This driver intends to support RFC 2734, which describes a method for
* transporting IPv4 datagrams over IEEE-1394 serial busses.
*
* TODO:
* RFC 2734 related:
* - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
*
* Non-RFC 2734 related:
* - Handle fragmented skb's coming from the networking layer.
* - Move generic GASP reception to core 1394 code
* - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
* - Stability improvements
* - Performance enhancements
* - Consider garbage collecting old partial datagrams after X amount of time
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>
#include <linux/ethtool.h>
#include <asm/uaccess.h>
#include <asm/delay.h>
#include <asm/unaligned.h>
#include <net/arp.h>
#include "config_roms.h"
#include "csr1212.h"
#include "eth1394.h"
#include "highlevel.h"
#include "ieee1394.h"
#include "ieee1394_core.h"
#include "ieee1394_hotplug.h"
#include "ieee1394_transactions.h"
#include "ieee1394_types.h"
#include "iso.h"
#include "nodemgr.h"
#define ETH1394_PRINT_G(level, fmt, args...) \
printk(level "%s: " fmt, driver_name, ## args)
#define ETH1394_PRINT(level, dev_name, fmt, args...) \
printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
struct fragment_info {
struct list_head list;
int offset;
int len;
};
struct partial_datagram {
struct list_head list;
u16 dgl;
u16 dg_size;
__be16 ether_type;
struct sk_buff *skb;
char *pbuf;
struct list_head frag_info;
};
struct pdg_list {
struct list_head list; /* partial datagram list per node */
unsigned int sz; /* partial datagram list size per node */
spinlock_t lock; /* partial datagram lock */
};
struct eth1394_host_info {
struct hpsb_host *host;
struct net_device *dev;
};
struct eth1394_node_ref {
struct unit_directory *ud;
struct list_head list;
};
struct eth1394_node_info {
u16 maxpayload; /* max payload */
u8 sspd; /* max speed */
u64 fifo; /* FIFO address */
struct pdg_list pdg; /* partial RX datagram lists */
int dgl; /* outgoing datagram label */
};
static const char driver_name[] = "eth1394";
static struct kmem_cache *packet_task_cache;
static struct hpsb_highlevel eth1394_highlevel;
/* Use common.lf to determine header len */
static const int hdr_type_len[] = {
sizeof(struct eth1394_uf_hdr),
sizeof(struct eth1394_ff_hdr),
sizeof(struct eth1394_sf_hdr),
sizeof(struct eth1394_sf_hdr)
};
static const u16 eth1394_speedto_maxpayload[] = {
/* S100, S200, S400, S800, S1600, S3200 */
512, 1024, 2048, 4096, 4096, 4096
};
MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
MODULE_LICENSE("GPL");
/*
* The max_partial_datagrams parameter is the maximum number of fragmented
* datagrams per node that eth1394 will keep in memory. Providing an upper
* bound allows us to limit the amount of memory that partial datagrams
* consume in the event that some partial datagrams are never completed.
*/
static int max_partial_datagrams = 25;
module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_partial_datagrams,
"Maximum number of partially received fragmented datagrams "
"(default = 25).");
static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned len);
static int ether1394_rebuild_header(struct sk_buff *skb);
static int ether1394_header_parse(const struct sk_buff *skb,
unsigned char *haddr);
static int ether1394_header_cache(const struct neighbour *neigh,
struct hh_cache *hh);
static void ether1394_header_cache_update(struct hh_cache *hh,
const struct net_device *dev,
const unsigned char *haddr);
static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
static void ether1394_iso(struct hpsb_iso *iso);
static struct ethtool_ops ethtool_ops;
static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
quadlet_t *data, u64 addr, size_t len, u16 flags);
static void ether1394_add_host(struct hpsb_host *host);
static void ether1394_remove_host(struct hpsb_host *host);
static void ether1394_host_reset(struct hpsb_host *host);
/* Function for incoming 1394 packets */
static const struct hpsb_address_ops addr_ops = {
.write = ether1394_write,
};
/* Ieee1394 highlevel driver functions */
static struct hpsb_highlevel eth1394_highlevel = {
.name = driver_name,
.add_host = ether1394_add_host,
.remove_host = ether1394_remove_host,
.host_reset = ether1394_host_reset,
};
static int ether1394_recv_init(struct eth1394_priv *priv)
{
unsigned int iso_buf_size;
/* FIXME: rawiso limits us to PAGE_SIZE */
iso_buf_size = min((unsigned int)PAGE_SIZE,
2 * (1U << (priv->host->csr.max_rec + 1)));
priv->iso = hpsb_iso_recv_init(priv->host,
ETHER1394_GASP_BUFFERS * iso_buf_size,
ETHER1394_GASP_BUFFERS,
priv->broadcast_channel,
HPSB_ISO_DMA_PACKET_PER_BUFFER,
1, ether1394_iso);
if (priv->iso == NULL) {
ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
priv->bc_state = ETHER1394_BC_ERROR;
return -EAGAIN;
}
if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
priv->bc_state = ETHER1394_BC_STOPPED;
else
priv->bc_state = ETHER1394_BC_RUNNING;
return 0;
}
/* This is called after an "ifup" */
static int ether1394_open(struct net_device *dev)
{
struct eth1394_priv *priv = netdev_priv(dev);
int ret;
if (priv->bc_state == ETHER1394_BC_ERROR) {
ret = ether1394_recv_init(priv);
if (ret)
return ret;
}
netif_start_queue(dev);
return 0;
}
/* This is called after an "ifdown" */
static int ether1394_stop(struct net_device *dev)
{
/* flush priv->wake */
flush_scheduled_work();
netif_stop_queue(dev);
return 0;
}
/* FIXME: What to do if we timeout? I think a host reset is probably in order,
* so that's what we do. Should we increment the stat counters too? */
static void ether1394_tx_timeout(struct net_device *dev)
{
struct hpsb_host *host =
((struct eth1394_priv *)netdev_priv(dev))->host;
ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
ether1394_host_reset(host);
}
static inline int ether1394_max_mtu(struct hpsb_host* host)
{
return (1 << (host->csr.max_rec + 1))
- sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
}
static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
{
int max_mtu;
if (new_mtu < 68)
return -EINVAL;
max_mtu = ether1394_max_mtu(
((struct eth1394_priv *)netdev_priv(dev))->host);
if (new_mtu > max_mtu) {
ETH1394_PRINT(KERN_INFO, dev->name,
"Local node constrains MTU to %d\n", max_mtu);
return -ERANGE;
}
dev->mtu = new_mtu;
return 0;
}
static void purge_partial_datagram(struct list_head *old)
{
struct partial_datagram *pd;
struct list_head *lh, *n;
struct fragment_info *fi;
pd = list_entry(old, struct partial_datagram, list);
list_for_each_safe(lh, n, &pd->frag_info) {
fi = list_entry(lh, struct fragment_info, list);
list_del(lh);
kfree(fi);
}
list_del(old);
kfree_skb(pd->skb);
kfree(pd);
}
/******************************************
* 1394 bus activity functions
******************************************/
static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
struct unit_directory *ud)
{
struct eth1394_node_ref *node;
list_for_each_entry(node, inl, list)
if (node->ud == ud)
return node;
return NULL;
}
static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
u64 guid)
{
struct eth1394_node_ref *node;
list_for_each_entry(node, inl, list)
if (node->ud->ne->guid == guid)
return node;
return NULL;
}
static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
nodeid_t nodeid)
{
struct eth1394_node_ref *node;
list_for_each_entry(node, inl, list)
if (node->ud->ne->nodeid == nodeid)
return node;
return NULL;
}
static int eth1394_new_node(struct eth1394_host_info *hi,
struct unit_directory *ud)
{
struct eth1394_priv *priv;
struct eth1394_node_ref *new_node;
struct eth1394_node_info *node_info;
new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
if (!new_node)
return -ENOMEM;
node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
if (!node_info) {
kfree(new_node);
return -ENOMEM;
}
spin_lock_init(&node_info->pdg.lock);
INIT_LIST_HEAD(&node_info->pdg.list);
node_info->pdg.sz = 0;
node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
ud->device.driver_data = node_info;
new_node->ud = ud;
priv = netdev_priv(hi->dev);
list_add_tail(&new_node->list, &priv->ip_node_list);
return 0;
}
static int eth1394_probe(struct device *dev)
{
struct unit_directory *ud;
struct eth1394_host_info *hi;
ud = container_of(dev, struct unit_directory, device);
hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
if (!hi)
return -ENOENT;
return eth1394_new_node(hi, ud);
}
static int eth1394_remove(struct device *dev)
{
struct unit_directory *ud;
struct eth1394_host_info *hi;
struct eth1394_priv *priv;
struct eth1394_node_ref *old_node;
struct eth1394_node_info *node_info;
struct list_head *lh, *n;
unsigned long flags;
ud = container_of(dev, struct unit_directory, device);
hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
if (!hi)
return -ENOENT;
priv = netdev_priv(hi->dev);
old_node = eth1394_find_node(&priv->ip_node_list, ud);
if (!old_node)
return 0;
list_del(&old_node->list);
kfree(old_node);
node_info = (struct eth1394_node_info*)ud->device.driver_data;
spin_lock_irqsave(&node_info->pdg.lock, flags);
/* The partial datagram list should be empty, but we'll just
* make sure anyway... */
list_for_each_safe(lh, n, &node_info->pdg.list)
purge_partial_datagram(lh);
spin_unlock_irqrestore(&node_info->pdg.lock, flags);
kfree(node_info);
ud->device.driver_data = NULL;
return 0;
}
static int eth1394_update(struct unit_directory *ud)
{
struct eth1394_host_info *hi;
struct eth1394_priv *priv;
struct eth1394_node_ref *node;
hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
if (!hi)
return -ENOENT;
priv = netdev_priv(hi->dev);
node = eth1394_find_node(&priv->ip_node_list, ud);
if (node)
return 0;
return eth1394_new_node(hi, ud);
}
static const struct ieee1394_device_id eth1394_id_table[] = {
{
.match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION),
.specifier_id = ETHER1394_GASP_SPECIFIER_ID,
.version = ETHER1394_GASP_VERSION,
},
{}
};
MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
static struct hpsb_protocol_driver eth1394_proto_driver = {
.name = driver_name,
.id_table = eth1394_id_table,
.update = eth1394_update,
.driver = {
.probe = eth1394_probe,
.remove = eth1394_remove,
},
};
static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
{
unsigned long flags;
int i;
struct eth1394_priv *priv = netdev_priv(dev);
struct hpsb_host *host = priv->host;
u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
int max_speed = IEEE1394_SPEED_MAX;
spin_lock_irqsave(&priv->lock, flags);
memset(priv->ud_list, 0, sizeof(priv->ud_list));
priv->bc_maxpayload = 512;
/* Determine speed limit */
/* FIXME: This is broken for nodes with link speed < PHY speed,
* and it is suboptimal for S200B...S800B hardware.
* The result of nodemgr's speed probe should be used somehow. */
for (i = 0; i < host->node_count; i++) {
/* take care of S100B...S400B PHY ports */
if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
max_speed = IEEE1394_SPEED_100;
break;
}
if (max_speed > host->speed[i])
max_speed = host->speed[i];
}
priv->bc_sspd = max_speed;
if (set_mtu) {
/* Use the RFC 2734 default 1500 octets or the maximum payload
* as initial MTU */
dev->mtu = min(1500, ether1394_max_mtu(host));
/* Set our hardware address while we're at it */
memcpy(dev->dev_addr, &guid, sizeof(u64));
memset(dev->broadcast, 0xff, sizeof(u64));
}
spin_unlock_irqrestore(&priv->lock, flags);
}
static const struct header_ops ether1394_header_ops = {
.create = ether1394_header,
.rebuild = ether1394_rebuild_header,
.cache = ether1394_header_cache,
.cache_update = ether1394_header_cache_update,
.parse = ether1394_header_parse,
};
static const struct net_device_ops ether1394_netdev_ops = {
.ndo_open = ether1394_open,
.ndo_stop = ether1394_stop,
.ndo_start_xmit = ether1394_tx,
.ndo_tx_timeout = ether1394_tx_timeout,
.ndo_change_mtu = ether1394_change_mtu,
};
static void ether1394_init_dev(struct net_device *dev)
{
dev->header_ops = &ether1394_header_ops;
dev->netdev_ops = &ether1394_netdev_ops;
SET_ETHTOOL_OPS(dev, &ethtool_ops);
dev->watchdog_timeo = ETHER1394_TIMEOUT;
dev->flags = IFF_BROADCAST | IFF_MULTICAST;
dev->features = NETIF_F_HIGHDMA;
dev->addr_len = ETH1394_ALEN;
dev->hard_header_len = ETH1394_HLEN;
dev->type = ARPHRD_IEEE1394;
/* FIXME: This value was copied from ether_setup(). Is it too much? */
dev->tx_queue_len = 1000;
}
/*
* Wake the queue up after commonly encountered transmit failure conditions are
* hopefully over. Currently only tlabel exhaustion is accounted for.
*/
static void ether1394_wake_queue(struct work_struct *work)
{
struct eth1394_priv *priv;
struct hpsb_packet *packet;
priv = container_of(work, struct eth1394_priv, wake);
packet = hpsb_alloc_packet(0);
/* This is really bad, but unjam the queue anyway. */
if (!packet)
goto out;
packet->host = priv->host;
packet->node_id = priv->wake_node;
/*
* A transaction label is all we really want. If we get one, it almost
* always means we can get a lot more because the ieee1394 core recycled
* a whole batch of tlabels, at last.
*/
if (hpsb_get_tlabel(packet) == 0)
hpsb_free_tlabel(packet);
hpsb_free_packet(packet);
out:
netif_wake_queue(priv->wake_dev);
}
/*
* This function is called every time a card is found. It is generally called
* when the module is installed. This is where we add all of our ethernet
* devices. One for each host.
*/
static void ether1394_add_host(struct hpsb_host *host)
{
struct eth1394_host_info *hi = NULL;
struct net_device *dev = NULL;
struct eth1394_priv *priv;
u64 fifo_addr;
if (hpsb_config_rom_ip1394_add(host) != 0) {
ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
return;
}
fifo_addr = hpsb_allocate_and_register_addrspace(
&eth1394_highlevel, host, &addr_ops,
ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
hpsb_config_rom_ip1394_remove(host);
return;
}
dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
if (dev == NULL) {
ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
goto out;
}
SET_NETDEV_DEV(dev, &host->device);
priv = netdev_priv(dev);
INIT_LIST_HEAD(&priv->ip_node_list);
spin_lock_init(&priv->lock);
priv->host = host;
priv->local_fifo = fifo_addr;
INIT_WORK(&priv->wake, ether1394_wake_queue);
priv->wake_dev = dev;
hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
if (hi == NULL) {
ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
goto out;
}
ether1394_reset_priv(dev, 1);
if (register_netdev(dev)) {
ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
goto out;
}
ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
host->id);
hi->host = host;
hi->dev = dev;
/* Ignore validity in hopes that it will be set in the future. It'll
* be checked when the eth device is opened. */
priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
ether1394_recv_init(priv);
return;
out:
if (dev)
free_netdev(dev);
if (hi)
hpsb_destroy_hostinfo(&eth1394_highlevel, host);
hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
hpsb_config_rom_ip1394_remove(host);
}
/* Remove a card from our list */
static void ether1394_remove_host(struct hpsb_host *host)
{
struct eth1394_host_info *hi;
struct eth1394_priv *priv;
hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
if (!hi)
return;
priv = netdev_priv(hi->dev);
hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
hpsb_config_rom_ip1394_remove(host);
if (priv->iso)
hpsb_iso_shutdown(priv->iso);
unregister_netdev(hi->dev);
free_netdev(hi->dev);
}
/* A bus reset happened */
static void ether1394_host_reset(struct hpsb_host *host)
{
struct eth1394_host_info *hi;
struct eth1394_priv *priv;
struct net_device *dev;
struct list_head *lh, *n;
struct eth1394_node_ref *node;
struct eth1394_node_info *node_info;
unsigned long flags;
hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
/* This can happen for hosts that we don't use */
if (!hi)
return;
dev = hi->dev;
priv = netdev_priv(dev);
/* Reset our private host data, but not our MTU */
netif_stop_queue(dev);
ether1394_reset_priv(dev, 0);
list_for_each_entry(node, &priv->ip_node_list, list) {
node_info = node->ud->device.driver_data;
spin_lock_irqsave(&node_info->pdg.lock, flags);
list_for_each_safe(lh, n, &node_info->pdg.list)
purge_partial_datagram(lh);
INIT_LIST_HEAD(&(node_info->pdg.list));
node_info->pdg.sz = 0;
spin_unlock_irqrestore(&node_info->pdg.lock, flags);
}
netif_wake_queue(dev);
}
/******************************************
* HW Header net device functions
******************************************/
/* These functions have been adapted from net/ethernet/eth.c */
/* Create a fake MAC header for an arbitrary protocol layer.
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp). */
static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned len)
{
struct eth1394hdr *eth =
(struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
eth->h_proto = htons(type);
if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
memset(eth->h_dest, 0, dev->addr_len);
return dev->hard_header_len;
}
if (daddr) {
memcpy(eth->h_dest, daddr, dev->addr_len);
return dev->hard_header_len;
}
return -dev->hard_header_len;
}
/* Rebuild the faked MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
*
* This routine CANNOT use cached dst->neigh!
* Really, it is used only when dst->neigh is wrong.
*/
static int ether1394_rebuild_header(struct sk_buff *skb)
{
struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
if (eth->h_proto == htons(ETH_P_IP))
return arp_find((unsigned char *)&eth->h_dest, skb);
ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
"unable to resolve type %04x addresses\n",
ntohs(eth->h_proto));
return 0;
}
static int ether1394_header_parse(const struct sk_buff *skb,
unsigned char *haddr)
{
memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
return ETH1394_ALEN;
}
static int ether1394_header_cache(const struct neighbour *neigh,
struct hh_cache *hh)
{
__be16 type = hh->hh_type;
struct net_device *dev = neigh->dev;
struct eth1394hdr *eth =
(struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
if (type == htons(ETH_P_802_3))
return -1;
eth->h_proto = type;
memcpy(eth->h_dest, neigh->ha, dev->addr_len);
hh->hh_len = ETH1394_HLEN;
return 0;
}
/* Called by Address Resolution module to notify changes in address. */
static void ether1394_header_cache_update(struct hh_cache *hh,
const struct net_device *dev,
const unsigned char * haddr)
{
memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
}
/******************************************
* Datagram reception code
******************************************/
/* Copied from net/ethernet/eth.c */
static __be16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
{
struct eth1394hdr *eth;
unsigned char *rawp;
skb_reset_mac_header(skb);
skb_pull(skb, ETH1394_HLEN);
eth = eth1394_hdr(skb);
if (*eth->h_dest & 1) {
if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
skb->pkt_type = PACKET_BROADCAST;
#if 0
else
skb->pkt_type = PACKET_MULTICAST;
#endif
} else {
if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
skb->pkt_type = PACKET_OTHERHOST;
}
if (ntohs(eth->h_proto) >= 1536)
return eth->h_proto;
rawp = skb->data;
if (*(unsigned short *)rawp == 0xFFFF)
return htons(ETH_P_802_3);
return htons(ETH_P_802_2);
}
/* Parse an encapsulated IP1394 header into an ethernet frame packet.
* We also perform ARP translation here, if need be. */
static __be16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
nodeid_t srcid, nodeid_t destid,
__be16 ether_type)
{
struct eth1394_priv *priv = netdev_priv(dev);
__be64 dest_hw;
__be16 ret = 0;
/* Setup our hw addresses. We use these to build the ethernet header. */
if (destid == (LOCAL_BUS | ALL_NODES))
dest_hw = ~cpu_to_be64(0); /* broadcast */
else
dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
priv->host->csr.guid_lo);
/* If this is an ARP packet, convert it. First, we want to make
* use of some of the fields, since they tell us a little bit
* about the sending machine. */
if (ether_type == htons(ETH_P_ARP)) {
struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
struct arphdr *arp = (struct arphdr *)skb->data;
unsigned char *arp_ptr = (unsigned char *)(arp + 1);
u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
ntohl(arp1394->fifo_lo);
u8 max_rec = min(priv->host->csr.max_rec,
(u8)(arp1394->max_rec));
int sspd = arp1394->sspd;
u16 maxpayload;
struct eth1394_node_ref *node;
struct eth1394_node_info *node_info;
__be64 guid;
/* Sanity check. MacOSX seems to be sending us 131 in this
* field (atleast on my Panther G5). Not sure why. */
if (sspd > 5 || sspd < 0)
sspd = 0;
maxpayload = min(eth1394_speedto_maxpayload[sspd],
(u16)(1 << (max_rec + 1)));
guid = get_unaligned(&arp1394->s_uniq_id);
node = eth1394_find_node_guid(&priv->ip_node_list,
be64_to_cpu(guid));
if (!node)
return cpu_to_be16(0);
node_info =
(struct eth1394_node_info *)node->ud->device.driver_data;
/* Update our speed/payload/fifo_offset table */
node_info->maxpayload = maxpayload;
node_info->sspd = sspd;
node_info->fifo = fifo_addr;
/* Now that we're done with the 1394 specific stuff, we'll
* need to alter some of the data. Believe it or not, all
* that needs to be done is sender_IP_address needs to be
* moved, the destination hardware address get stuffed
* in and the hardware address length set to 8.
*
* IMPORTANT: The code below overwrites 1394 specific data
* needed above so keep the munging of the data for the
* higher level IP stack last. */
arp->ar_hln = 8;
arp_ptr += arp->ar_hln; /* skip over sender unique id */
*(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
arp_ptr += arp->ar_pln; /* skip over sender IP addr */
if (arp->ar_op == htons(ARPOP_REQUEST))
memset(arp_ptr, 0, sizeof(u64));
else
memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
}
/* Now add the ethernet header. */
if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
skb->len) >= 0)
ret = ether1394_type_trans(skb, dev);
return ret;
}
static int fragment_overlap(struct list_head *frag_list, int offset, int len)
{
struct fragment_info *fi;
int end = offset + len;
list_for_each_entry(fi, frag_list, list)
if (offset < fi->offset + fi->len && end > fi->offset)
return 1;
return 0;
}
static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
{
struct partial_datagram *pd;
list_for_each_entry(pd, pdgl, list)
if (pd->dgl == dgl)
return &pd->list;
return NULL;
}
/* Assumes that new fragment does not overlap any existing fragments */
static int new_fragment(struct list_head *frag_info, int offset, int len)
{
struct list_head *lh;
struct fragment_info *fi, *fi2, *new;
list_for_each(lh, frag_info) {
fi = list_entry(lh, struct fragment_info, list);
if (fi->offset + fi->len == offset) {
/* The new fragment can be tacked on to the end */
fi->len += len;
/* Did the new fragment plug a hole? */
fi2 = list_entry(lh->next, struct fragment_info, list);
if (fi->offset + fi->len == fi2->offset) {
/* glue fragments together */
fi->len += fi2->len;
list_del(lh->next);
kfree(fi2);
}
return 0;
} else if (offset + len == fi->offset) {
/* The new fragment can be tacked on to the beginning */
fi->offset = offset;
fi->len += len;
/* Did the new fragment plug a hole? */
fi2 = list_entry(lh->prev, struct fragment_info, list);
if (fi2->offset + fi2->len == fi->offset) {
/* glue fragments together */
fi2->len += fi->len;
list_del(lh);
kfree(fi);
}
return 0;
} else if (offset > fi->offset + fi->len) {
break;
} else if (offset + len < fi->offset) {
lh = lh->prev;
break;
}
}
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
return -ENOMEM;
new->offset = offset;
new->len = len;
list_add(&new->list, lh);
return 0;
}
static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
int dgl, int dg_size, char *frag_buf,
int frag_off, int frag_len)
{
struct partial_datagram *new;
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
return -ENOMEM;
INIT_LIST_HEAD(&new->frag_info);
if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
kfree(new);
return -ENOMEM;
}
new->dgl = dgl;
new->dg_size = dg_size;
new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
if (!new->skb) {
struct fragment_info *fi = list_entry(new->frag_info.next,
struct fragment_info,
list);
kfree(fi);
kfree(new);
return -ENOMEM;
}
skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
new->pbuf = skb_put(new->skb, dg_size);
memcpy(new->pbuf + frag_off, frag_buf, frag_len);
list_add(&new->list, pdgl);
return 0;
}
static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
char *frag_buf, int frag_off, int frag_len)
{
struct partial_datagram *pd =
list_entry(lh, struct partial_datagram, list);
if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
return -ENOMEM;
memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
/* Move list entry to beginnig of list so that oldest partial
* datagrams percolate to the end of the list */
list_move(lh, pdgl);
return 0;
}
static int is_datagram_complete(struct list_head *lh, int dg_size)
{
struct partial_datagram *pd;
struct fragment_info *fi;
pd = list_entry(lh, struct partial_datagram, list);
fi = list_entry(pd->frag_info.next, struct fragment_info, list);
return (fi->len == dg_size);
}
/* Packet reception. We convert the IP1394 encapsulation header to an
* ethernet header, and fill it with some of our other fields. This is
* an incoming packet from the 1394 bus. */
static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
char *buf, int len)
{
struct sk_buff *skb;
unsigned long flags;
struct eth1394_priv *priv = netdev_priv(dev);
union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
__be16 ether_type = cpu_to_be16(0); /* initialized to clear warning */
int hdr_len;
struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
struct eth1394_node_info *node_info;
if (!ud) {
struct eth1394_node_ref *node;
node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
if (unlikely(!node)) {
HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
"lookup failure: " NODE_BUS_FMT,
NODE_BUS_ARGS(priv->host, srcid));
dev->stats.rx_dropped++;
return -1;
}
ud = node->ud;
priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
}
node_info = (struct eth1394_node_info *)ud->device.driver_data;
/* First, did we receive a fragmented or unfragmented datagram? */
hdr->words.word1 = ntohs(hdr->words.word1);
hdr_len = hdr_type_len[hdr->common.lf];
if (hdr->common.lf == ETH1394_HDR_LF_UF) {
/* An unfragmented datagram has been received by the ieee1394
* bus. Build an skbuff around it so we can pass it to the
* high level network layer. */
skb = dev_alloc_skb(len + dev->hard_header_len + 15);
if (unlikely(!skb)) {
ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
dev->stats.rx_dropped++;
return -1;
}
skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
len - hdr_len);
ether_type = hdr->uf.ether_type;
} else {
/* A datagram fragment has been received, now the fun begins. */
struct list_head *pdgl, *lh;
struct partial_datagram *pd;
int fg_off;
int fg_len = len - hdr_len;
int dg_size;
int dgl;
int retval;
struct pdg_list *pdg = &(node_info->pdg);
hdr->words.word3 = ntohs(hdr->words.word3);
/* The 4th header word is reserved so no need to do ntohs() */
if (hdr->common.lf == ETH1394_HDR_LF_FF) {
ether_type = hdr->ff.ether_type;
dgl = hdr->ff.dgl;
dg_size = hdr->ff.dg_size + 1;
fg_off = 0;
} else {
hdr->words.word2 = ntohs(hdr->words.word2);
dgl = hdr->sf.dgl;
dg_size = hdr->sf.dg_size + 1;
fg_off = hdr->sf.fg_off;
}
spin_lock_irqsave(&pdg->lock, flags);
pdgl = &(pdg->list);
lh = find_partial_datagram(pdgl, dgl);
if (lh == NULL) {
while (pdg->sz >= max_partial_datagrams) {
/* remove the oldest */
purge_partial_datagram(pdgl->prev);
pdg->sz--;
}
retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
buf + hdr_len, fg_off,
fg_len);
if (retval < 0) {
spin_unlock_irqrestore(&pdg->lock, flags);
goto bad_proto;
}
pdg->sz++;
lh = find_partial_datagram(pdgl, dgl);
} else {
pd = list_entry(lh, struct partial_datagram, list);
if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
/* Overlapping fragments, obliterate old
* datagram and start new one. */
purge_partial_datagram(lh);
retval = new_partial_datagram(dev, pdgl, dgl,
dg_size,
buf + hdr_len,
fg_off, fg_len);
if (retval < 0) {
pdg->sz--;
spin_unlock_irqrestore(&pdg->lock, flags);
goto bad_proto;
}
} else {
retval = update_partial_datagram(pdgl, lh,
buf + hdr_len,
fg_off, fg_len);
if (retval < 0) {
/* Couldn't save off fragment anyway
* so might as well obliterate the
* datagram now. */
purge_partial_datagram(lh);
pdg->sz--;
spin_unlock_irqrestore(&pdg->lock, flags);
goto bad_proto;
}
} /* fragment overlap */
} /* new datagram or add to existing one */
pd = list_entry(lh, struct partial_datagram, list);
if (hdr->common.lf == ETH1394_HDR_LF_FF)
pd->ether_type = ether_type;
if (is_datagram_complete(lh, dg_size)) {
ether_type = pd->ether_type;
pdg->sz--;
skb = skb_get(pd->skb);
purge_partial_datagram(lh);
spin_unlock_irqrestore(&pdg->lock, flags);
} else {
/* Datagram is not complete, we're done for the
* moment. */
spin_unlock_irqrestore(&pdg->lock, flags);
return 0;
}
} /* unframgented datagram or fragmented one */
/* Write metadata, and then pass to the receive level */
skb->dev = dev;
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
/* Parse the encapsulation header. This actually does the job of
* converting to an ethernet frame header, aswell as arp
* conversion if needed. ARP conversion is easier in this
* direction, since we are using ethernet as our backend. */
skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
ether_type);
spin_lock_irqsave(&priv->lock, flags);
if (!skb->protocol) {
dev->stats.rx_errors++;
dev->stats.rx_dropped++;
dev_kfree_skb_any(skb);
} else if (netif_rx(skb) == NET_RX_DROP) {
dev->stats.rx_errors++;
dev->stats.rx_dropped++;
} else {
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
}
spin_unlock_irqrestore(&priv->lock, flags);
bad_proto:
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
return 0;
}
static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
quadlet_t *data, u64 addr, size_t len, u16 flags)
{
struct eth1394_host_info *hi;
hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
if (unlikely(!hi)) {
ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
host->id);
return RCODE_ADDRESS_ERROR;
}
if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
return RCODE_ADDRESS_ERROR;
else
return RCODE_COMPLETE;
}
static void ether1394_iso(struct hpsb_iso *iso)
{
__be32 *data;
char *buf;
struct eth1394_host_info *hi;
struct net_device *dev;
struct eth1394_priv *priv;
unsigned int len;
u32 specifier_id;
u16 source_id;
int i;
int nready;
hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
if (unlikely(!hi)) {
ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
iso->host->id);
return;
}
dev = hi->dev;
nready = hpsb_iso_n_ready(iso);
for (i = 0; i < nready; i++) {
struct hpsb_iso_packet_info *info =
&iso->infos[(iso->first_packet + i) % iso->buf_packets];
data = (__be32 *)(iso->data_buf.kvirt + info->offset);
/* skip over GASP header */
buf = (char *)data + 8;
len = info->len - 8;
specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
(be32_to_cpu(data[1]) & 0xff000000) >> 24;
source_id = be32_to_cpu(data[0]) >> 16;
priv = netdev_priv(dev);
if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
|| specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
/* This packet is not for us */
continue;
}
ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
buf, len);
}
hpsb_iso_recv_release_packets(iso, i);
dev->last_rx = jiffies;
}
/******************************************
* Datagram transmission code
******************************************/
/* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
* arphdr) is the same format as the ip1394 header, so they overlap. The rest
* needs to be munged a bit. The remainder of the arphdr is formatted based
* on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
* judge.
*
* Now that the EUI is used for the hardware address all we need to do to make
* this work for 1394 is to insert 2 quadlets that contain max_rec size,
* speed, and unicast FIFO address information between the sender_unique_id
* and the IP addresses.
*/
static void ether1394_arp_to_1394arp(struct sk_buff *skb,
struct net_device *dev)
{
struct eth1394_priv *priv = netdev_priv(dev);
struct arphdr *arp = (struct arphdr *)skb->data;
unsigned char *arp_ptr = (unsigned char *)(arp + 1);
struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
arp1394->hw_addr_len = 16;
arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
arp1394->max_rec = priv->host->csr.max_rec;
arp1394->sspd = priv->host->csr.lnk_spd;
arp1394->fifo_hi = htons(priv->local_fifo >> 32);
arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
}
/* We need to encapsulate the standard header with our own. We use the
* ethernet header's proto for our own. */
static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
__be16 proto,
union eth1394_hdr *hdr,
u16 dg_size, u16 dgl)
{
unsigned int adj_max_payload =
max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
/* Does it all fit in one packet? */
if (dg_size <= adj_max_payload) {
hdr->uf.lf = ETH1394_HDR_LF_UF;
hdr->uf.ether_type = proto;
} else {
hdr->ff.lf = ETH1394_HDR_LF_FF;
hdr->ff.ether_type = proto;
hdr->ff.dg_size = dg_size - 1;
hdr->ff.dgl = dgl;
adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
}
return DIV_ROUND_UP(dg_size, adj_max_payload);
}
static unsigned int ether1394_encapsulate(struct sk_buff *skb,
unsigned int max_payload,
union eth1394_hdr *hdr)
{
union eth1394_hdr *bufhdr;
int ftype = hdr->common.lf;
int hdrsz = hdr_type_len[ftype];
unsigned int adj_max_payload = max_payload - hdrsz;
switch (ftype) {
case ETH1394_HDR_LF_UF:
bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
bufhdr->words.word1 = htons(hdr->words.word1);
bufhdr->words.word2 = hdr->words.word2;
break;
case ETH1394_HDR_LF_FF:
bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
bufhdr->words.word1 = htons(hdr->words.word1);
bufhdr->words.word2 = hdr->words.word2;
bufhdr->words.word3 = htons(hdr->words.word3);
bufhdr->words.word4 = 0;
/* Set frag type here for future interior fragments */
hdr->common.lf = ETH1394_HDR_LF_IF;
hdr->sf.fg_off = 0;
break;
default:
hdr->sf.fg_off += adj_max_payload;
bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
if (max_payload >= skb->len)
hdr->common.lf = ETH1394_HDR_LF_LF;
bufhdr->words.word1 = htons(hdr->words.word1);
bufhdr->words.word2 = htons(hdr->words.word2);
bufhdr->words.word3 = htons(hdr->words.word3);
bufhdr->words.word4 = 0;
}
return min(max_payload, skb->len);
}
static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
{
struct hpsb_packet *p;
p = hpsb_alloc_packet(0);
if (p) {
p->host = host;
p->generation = get_hpsb_generation(host);
p->type = hpsb_async;
}
return p;
}
static int ether1394_prep_write_packet(struct hpsb_packet *p,
struct hpsb_host *host, nodeid_t node,
u64 addr, void *data, int tx_len)
{
p->node_id = node;
if (hpsb_get_tlabel(p))
return -EAGAIN;
p->tcode = TCODE_WRITEB;
p->header_size = 16;
p->expect_response = 1;
p->header[0] =
p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
p->header[1] = host->node_id << 16 | addr >> 32;
p->header[2] = addr & 0xffffffff;
p->header[3] = tx_len << 16;
p->data_size = (tx_len + 3) & ~3;
p->data = data;
return 0;
}
static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
struct eth1394_priv *priv,
struct sk_buff *skb, int length)
{
p->header_size = 4;
p->tcode = TCODE_STREAM_DATA;
p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
TCODE_STREAM_DATA << 4;
p->data_size = length;
p->data = (quadlet_t *)skb->data - 2;
p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
ETHER1394_GASP_SPECIFIER_ID_HI);
p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
ETHER1394_GASP_VERSION);
p->speed_code = priv->bc_sspd;
/* prevent hpsb_send_packet() from overriding our speed code */
p->node_id = LOCAL_BUS | ALL_NODES;
}
static void ether1394_free_packet(struct hpsb_packet *packet)
{
if (packet->tcode != TCODE_STREAM_DATA)
hpsb_free_tlabel(packet);
hpsb_free_packet(packet);
}
static void ether1394_complete_cb(void *__ptask);
static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
{
struct eth1394_priv *priv = ptask->priv;
struct hpsb_packet *packet = NULL;
packet = ether1394_alloc_common_packet(priv->host);
if (!packet)
return -ENOMEM;
if (ptask->tx_type == ETH1394_GASP) {
int length = tx_len + 2 * sizeof(quadlet_t);
ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
} else if (ether1394_prep_write_packet(packet, priv->host,
ptask->dest_node,
ptask->addr, ptask->skb->data,
tx_len)) {
hpsb_free_packet(packet);
return -EAGAIN;
}
ptask->packet = packet;
hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
ptask);
if (hpsb_send_packet(packet) < 0) {
ether1394_free_packet(packet);
return -EIO;
}
return 0;
}
/* Task function to be run when a datagram transmission is completed */
static void ether1394_dg_complete(struct packet_task *ptask, int fail)
{
struct sk_buff *skb = ptask->skb;
struct net_device *dev = skb->dev;
struct eth1394_priv *priv = netdev_priv(dev);
unsigned long flags;
/* Statistics */
spin_lock_irqsave(&priv->lock, flags);
if (fail) {
dev->stats.tx_dropped++;
dev->stats.tx_errors++;
} else {
dev->stats.tx_bytes += skb->len;
dev->stats.tx_packets++;
}
spin_unlock_irqrestore(&priv->lock, flags);
dev_kfree_skb_any(skb);
kmem_cache_free(packet_task_cache, ptask);
}
/* Callback for when a packet has been sent and the status of that packet is
* known */
static void ether1394_complete_cb(void *__ptask)
{
struct packet_task *ptask = (struct packet_task *)__ptask;
struct hpsb_packet *packet = ptask->packet;
int fail = 0;
if (packet->tcode != TCODE_STREAM_DATA)
fail = hpsb_packet_success(packet);
ether1394_free_packet(packet);
ptask->outstanding_pkts--;
if (ptask->outstanding_pkts > 0 && !fail) {
int tx_len, err;
/* Add the encapsulation header to the fragment */
tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
&ptask->hdr);
err = ether1394_send_packet(ptask, tx_len);
if (err) {
if (err == -EAGAIN)
ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
ether1394_dg_complete(ptask, 1);
}
} else {
ether1394_dg_complete(ptask, fail);
}
}
/* Transmit a packet (called by kernel) */
static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
{
struct eth1394hdr hdr_buf;
struct eth1394_priv *priv = netdev_priv(dev);
__be16 proto;
unsigned long flags;
nodeid_t dest_node;
eth1394_tx_type tx_type;
unsigned int tx_len;
unsigned int max_payload;
u16 dg_size;
u16 dgl;
struct packet_task *ptask;
struct eth1394_node_ref *node;
struct eth1394_node_info *node_info = NULL;
ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
if (ptask == NULL)
goto fail;
/* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
* it does not set our validity bit. We need to compensate for
* that somewhere else, but not in eth1394. */
#if 0
if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
goto fail;
#endif
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
goto fail;
/* Get rid of the fake eth1394 header, but first make a copy.
* We might need to rebuild the header on tx failure. */
memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
skb_pull(skb, ETH1394_HLEN);
proto = hdr_buf.h_proto;
dg_size = skb->len;
/* Set the transmission type for the packet. ARP packets and IP
* broadcast packets are sent via GASP. */
if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
proto == htons(ETH_P_ARP) ||
(proto == htons(ETH_P_IP) &&
IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
tx_type = ETH1394_GASP;
dest_node = LOCAL_BUS | ALL_NODES;
max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
dgl = priv->bc_dgl;
if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
priv->bc_dgl++;
} else {
__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
node = eth1394_find_node_guid(&priv->ip_node_list,
be64_to_cpu(guid));
if (!node)
goto fail;
node_info =
(struct eth1394_node_info *)node->ud->device.driver_data;
if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
goto fail;
dest_node = node->ud->ne->nodeid;
max_payload = node_info->maxpayload;
BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
dgl = node_info->dgl;
if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
node_info->dgl++;
tx_type = ETH1394_WRREQ;
}
/* If this is an ARP packet, convert it */
if (proto == htons(ETH_P_ARP))
ether1394_arp_to_1394arp(skb, dev);
ptask->hdr.words.word1 = 0;
ptask->hdr.words.word2 = 0;
ptask->hdr.words.word3 = 0;
ptask->hdr.words.word4 = 0;
ptask->skb = skb;
ptask->priv = priv;
ptask->tx_type = tx_type;
if (tx_type != ETH1394_GASP) {
u64 addr;
spin_lock_irqsave(&priv->lock, flags);
addr = node_info->fifo;
spin_unlock_irqrestore(&priv->lock, flags);
ptask->addr = addr;
ptask->dest_node = dest_node;
}
ptask->tx_type = tx_type;
ptask->max_payload = max_payload;
ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
proto, &ptask->hdr, dg_size, dgl);
/* Add the encapsulation header to the fragment */
tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
dev->trans_start = jiffies;
if (ether1394_send_packet(ptask, tx_len)) {
if (dest_node == (LOCAL_BUS | ALL_NODES))
goto fail;
/* At this point we want to restore the packet. When we return
* here with NETDEV_TX_BUSY we will get another entrance in this
* routine with the same skb and we need it to look the same.
* So we pull 4 more bytes, then build the header again. */
skb_pull(skb, 4);
ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
hdr_buf.h_dest, NULL, 0);
/* Most failures of ether1394_send_packet are recoverable. */
netif_stop_queue(dev);
priv->wake_node = dest_node;
schedule_work(&priv->wake);
kmem_cache_free(packet_task_cache, ptask);
return NETDEV_TX_BUSY;
}
return NETDEV_TX_OK;
fail:
if (ptask)
kmem_cache_free(packet_task_cache, ptask);
if (skb != NULL)
dev_kfree_skb(skb);
spin_lock_irqsave(&priv->lock, flags);
dev->stats.tx_dropped++;
dev->stats.tx_errors++;
spin_unlock_irqrestore(&priv->lock, flags);
/*
* FIXME: According to a patch from 2003-02-26, "returning non-zero
* causes serious problems" here, allegedly. Before that patch,
* -ERRNO was returned which is not appropriate under Linux 2.6.
* Perhaps more needs to be done? Stop the queue in serious
* conditions and restart it elsewhere?
*/
/* return NETDEV_TX_BUSY; */
return NETDEV_TX_OK;
}
static void ether1394_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, driver_name);
strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
}
static struct ethtool_ops ethtool_ops = {
.get_drvinfo = ether1394_get_drvinfo
};
static int __init ether1394_init_module(void)
{
int err;
packet_task_cache = kmem_cache_create("packet_task",
sizeof(struct packet_task),
0, 0, NULL);
if (!packet_task_cache)
return -ENOMEM;
hpsb_register_highlevel(&eth1394_highlevel);
err = hpsb_register_protocol(&eth1394_proto_driver);
if (err) {
hpsb_unregister_highlevel(&eth1394_highlevel);
kmem_cache_destroy(packet_task_cache);
}
return err;
}
static void __exit ether1394_exit_module(void)
{
hpsb_unregister_protocol(&eth1394_proto_driver);
hpsb_unregister_highlevel(&eth1394_highlevel);
kmem_cache_destroy(packet_task_cache);
}
module_init(ether1394_init_module);
module_exit(ether1394_exit_module);