2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/drivers/media/tuners/msi001.c
Antti Palosaari 5fa51cc36a [media] msi001: logging changes
Remove function name from debug logs. Logging system could add it
automatically.

Signed-off-by: Antti Palosaari <crope@iki.fi>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-09-21 16:42:34 -03:00

507 lines
12 KiB
C

/*
* Mirics MSi001 silicon tuner driver
*
* Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
* Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/gcd.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>
static const struct v4l2_frequency_band bands[] = {
{
.type = V4L2_TUNER_RF,
.index = 0,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 49000000,
.rangehigh = 263000000,
}, {
.type = V4L2_TUNER_RF,
.index = 1,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 390000000,
.rangehigh = 960000000,
},
};
struct msi001 {
struct spi_device *spi;
struct v4l2_subdev sd;
/* Controls */
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl *bandwidth_auto;
struct v4l2_ctrl *bandwidth;
struct v4l2_ctrl *lna_gain;
struct v4l2_ctrl *mixer_gain;
struct v4l2_ctrl *if_gain;
unsigned int f_tuner;
};
static inline struct msi001 *sd_to_msi001(struct v4l2_subdev *sd)
{
return container_of(sd, struct msi001, sd);
}
static int msi001_wreg(struct msi001 *s, u32 data)
{
/* Register format: 4 bits addr + 20 bits value */
return spi_write(s->spi, &data, 3);
};
static int msi001_set_gain(struct msi001 *s, int lna_gain, int mixer_gain,
int if_gain)
{
int ret;
u32 reg;
dev_dbg(&s->spi->dev, "lna=%d mixer=%d if=%d\n",
lna_gain, mixer_gain, if_gain);
reg = 1 << 0;
reg |= (59 - if_gain) << 4;
reg |= 0 << 10;
reg |= (1 - mixer_gain) << 12;
reg |= (1 - lna_gain) << 13;
reg |= 4 << 14;
reg |= 0 << 17;
ret = msi001_wreg(s, reg);
if (ret)
goto err;
return 0;
err:
dev_dbg(&s->spi->dev, "failed %d\n", ret);
return ret;
};
static int msi001_set_tuner(struct msi001 *s)
{
int ret, i;
unsigned int n, m, thresh, frac, vco_step, tmp, f_if1;
u32 reg;
u64 f_vco, tmp64;
u8 mode, filter_mode, lo_div;
static const struct {
u32 rf;
u8 mode;
u8 lo_div;
} band_lut[] = {
{ 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
{108000000, 0x42, 32}, /* VHF_MODE */
{330000000, 0x44, 16}, /* B3_MODE */
{960000000, 0x48, 4}, /* B45_MODE */
{ ~0U, 0x50, 2}, /* BL_MODE */
};
static const struct {
u32 freq;
u8 filter_mode;
} if_freq_lut[] = {
{ 0, 0x03}, /* Zero IF */
{ 450000, 0x02}, /* 450 kHz IF */
{1620000, 0x01}, /* 1.62 MHz IF */
{2048000, 0x00}, /* 2.048 MHz IF */
};
static const struct {
u32 freq;
u8 val;
} bandwidth_lut[] = {
{ 200000, 0x00}, /* 200 kHz */
{ 300000, 0x01}, /* 300 kHz */
{ 600000, 0x02}, /* 600 kHz */
{1536000, 0x03}, /* 1.536 MHz */
{5000000, 0x04}, /* 5 MHz */
{6000000, 0x05}, /* 6 MHz */
{7000000, 0x06}, /* 7 MHz */
{8000000, 0x07}, /* 8 MHz */
};
unsigned int f_rf = s->f_tuner;
/*
* bandwidth (Hz)
* 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
*/
unsigned int bandwidth;
/*
* intermediate frequency (Hz)
* 0, 450000, 1620000, 2048000
*/
unsigned int f_if = 0;
#define F_REF 24000000
#define R_REF 4
#define F_OUT_STEP 1
dev_dbg(&s->spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);
for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
if (f_rf <= band_lut[i].rf) {
mode = band_lut[i].mode;
lo_div = band_lut[i].lo_div;
break;
}
}
if (i == ARRAY_SIZE(band_lut)) {
ret = -EINVAL;
goto err;
}
/* AM_MODE is upconverted */
if ((mode >> 0) & 0x1)
f_if1 = 5 * F_REF;
else
f_if1 = 0;
for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
if (f_if == if_freq_lut[i].freq) {
filter_mode = if_freq_lut[i].filter_mode;
break;
}
}
if (i == ARRAY_SIZE(if_freq_lut)) {
ret = -EINVAL;
goto err;
}
/* filters */
bandwidth = s->bandwidth->val;
bandwidth = clamp(bandwidth, 200000U, 8000000U);
for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
if (bandwidth <= bandwidth_lut[i].freq) {
bandwidth = bandwidth_lut[i].val;
break;
}
}
if (i == ARRAY_SIZE(bandwidth_lut)) {
ret = -EINVAL;
goto err;
}
s->bandwidth->val = bandwidth_lut[i].freq;
dev_dbg(&s->spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);
f_vco = (u64) (f_rf + f_if + f_if1) * lo_div;
tmp64 = f_vco;
m = do_div(tmp64, F_REF * R_REF);
n = (unsigned int) tmp64;
vco_step = F_OUT_STEP * lo_div;
thresh = (F_REF * R_REF) / vco_step;
frac = 1ul * thresh * m / (F_REF * R_REF);
/* Find out greatest common divisor and divide to smaller. */
tmp = gcd(thresh, frac);
thresh /= tmp;
frac /= tmp;
/* Force divide to reg max. Resolution will be reduced. */
tmp = DIV_ROUND_UP(thresh, 4095);
thresh = DIV_ROUND_CLOSEST(thresh, tmp);
frac = DIV_ROUND_CLOSEST(frac, tmp);
/* calc real RF set */
tmp = 1ul * F_REF * R_REF * n;
tmp += 1ul * F_REF * R_REF * frac / thresh;
tmp /= lo_div;
dev_dbg(&s->spi->dev, "rf=%u:%u n=%d thresh=%d frac=%d\n",
f_rf, tmp, n, thresh, frac);
ret = msi001_wreg(s, 0x00000e);
if (ret)
goto err;
ret = msi001_wreg(s, 0x000003);
if (ret)
goto err;
reg = 0 << 0;
reg |= mode << 4;
reg |= filter_mode << 12;
reg |= bandwidth << 14;
reg |= 0x02 << 17;
reg |= 0x00 << 20;
ret = msi001_wreg(s, reg);
if (ret)
goto err;
reg = 5 << 0;
reg |= thresh << 4;
reg |= 1 << 19;
reg |= 1 << 21;
ret = msi001_wreg(s, reg);
if (ret)
goto err;
reg = 2 << 0;
reg |= frac << 4;
reg |= n << 16;
ret = msi001_wreg(s, reg);
if (ret)
goto err;
ret = msi001_set_gain(s, s->lna_gain->cur.val, s->mixer_gain->cur.val,
s->if_gain->cur.val);
if (ret)
goto err;
reg = 6 << 0;
reg |= 63 << 4;
reg |= 4095 << 10;
ret = msi001_wreg(s, reg);
if (ret)
goto err;
return 0;
err:
dev_dbg(&s->spi->dev, "failed %d\n", ret);
return ret;
};
static int msi001_s_power(struct v4l2_subdev *sd, int on)
{
struct msi001 *s = sd_to_msi001(sd);
int ret;
dev_dbg(&s->spi->dev, "on=%d\n", on);
if (on)
ret = 0;
else
ret = msi001_wreg(s, 0x000000);
return ret;
}
static const struct v4l2_subdev_core_ops msi001_core_ops = {
.s_power = msi001_s_power,
};
static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
{
struct msi001 *s = sd_to_msi001(sd);
dev_dbg(&s->spi->dev, "index=%d\n", v->index);
strlcpy(v->name, "Mirics MSi001", sizeof(v->name));
v->type = V4L2_TUNER_RF;
v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
v->rangelow = 49000000;
v->rangehigh = 960000000;
return 0;
}
static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
{
struct msi001 *s = sd_to_msi001(sd);
dev_dbg(&s->spi->dev, "index=%d\n", v->index);
return 0;
}
static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
{
struct msi001 *s = sd_to_msi001(sd);
dev_dbg(&s->spi->dev, "tuner=%d\n", f->tuner);
f->frequency = s->f_tuner;
return 0;
}
static int msi001_s_frequency(struct v4l2_subdev *sd,
const struct v4l2_frequency *f)
{
struct msi001 *s = sd_to_msi001(sd);
unsigned int band;
dev_dbg(&s->spi->dev, "tuner=%d type=%d frequency=%u\n",
f->tuner, f->type, f->frequency);
if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
band = 0;
else
band = 1;
s->f_tuner = clamp_t(unsigned int, f->frequency,
bands[band].rangelow, bands[band].rangehigh);
return msi001_set_tuner(s);
}
static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
struct v4l2_frequency_band *band)
{
struct msi001 *s = sd_to_msi001(sd);
dev_dbg(&s->spi->dev, "tuner=%d type=%d index=%d\n",
band->tuner, band->type, band->index);
if (band->index >= ARRAY_SIZE(bands))
return -EINVAL;
band->capability = bands[band->index].capability;
band->rangelow = bands[band->index].rangelow;
band->rangehigh = bands[band->index].rangehigh;
return 0;
}
static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
.g_tuner = msi001_g_tuner,
.s_tuner = msi001_s_tuner,
.g_frequency = msi001_g_frequency,
.s_frequency = msi001_s_frequency,
.enum_freq_bands = msi001_enum_freq_bands,
};
static const struct v4l2_subdev_ops msi001_ops = {
.core = &msi001_core_ops,
.tuner = &msi001_tuner_ops,
};
static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct msi001 *s = container_of(ctrl->handler, struct msi001, hdl);
int ret;
dev_dbg(&s->spi->dev,
"id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
ctrl->id, ctrl->name, ctrl->val,
ctrl->minimum, ctrl->maximum, ctrl->step);
switch (ctrl->id) {
case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
case V4L2_CID_RF_TUNER_BANDWIDTH:
ret = msi001_set_tuner(s);
break;
case V4L2_CID_RF_TUNER_LNA_GAIN:
ret = msi001_set_gain(s, s->lna_gain->val,
s->mixer_gain->cur.val, s->if_gain->cur.val);
break;
case V4L2_CID_RF_TUNER_MIXER_GAIN:
ret = msi001_set_gain(s, s->lna_gain->cur.val,
s->mixer_gain->val, s->if_gain->cur.val);
break;
case V4L2_CID_RF_TUNER_IF_GAIN:
ret = msi001_set_gain(s, s->lna_gain->cur.val,
s->mixer_gain->cur.val, s->if_gain->val);
break;
default:
dev_dbg(&s->spi->dev, "unkown control %d\n", ctrl->id);
ret = -EINVAL;
}
return ret;
}
static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
.s_ctrl = msi001_s_ctrl,
};
static int msi001_probe(struct spi_device *spi)
{
struct msi001 *s;
int ret;
dev_dbg(&spi->dev, "\n");
s = kzalloc(sizeof(struct msi001), GFP_KERNEL);
if (s == NULL) {
ret = -ENOMEM;
dev_dbg(&spi->dev, "Could not allocate memory for msi001\n");
goto err_kfree;
}
s->spi = spi;
s->f_tuner = bands[0].rangelow;
v4l2_spi_subdev_init(&s->sd, spi, &msi001_ops);
/* Register controls */
v4l2_ctrl_handler_init(&s->hdl, 5);
s->bandwidth_auto = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
s->bandwidth = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
v4l2_ctrl_auto_cluster(2, &s->bandwidth_auto, 0, false);
s->lna_gain = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
s->mixer_gain = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
s->if_gain = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
if (s->hdl.error) {
ret = s->hdl.error;
dev_err(&s->spi->dev, "Could not initialize controls\n");
/* control init failed, free handler */
goto err_ctrl_handler_free;
}
s->sd.ctrl_handler = &s->hdl;
return 0;
err_ctrl_handler_free:
v4l2_ctrl_handler_free(&s->hdl);
err_kfree:
kfree(s);
return ret;
}
static int msi001_remove(struct spi_device *spi)
{
struct v4l2_subdev *sd = spi_get_drvdata(spi);
struct msi001 *s = sd_to_msi001(sd);
dev_dbg(&spi->dev, "\n");
/*
* Registered by v4l2_spi_new_subdev() from master driver, but we must
* unregister it from here. Weird.
*/
v4l2_device_unregister_subdev(&s->sd);
v4l2_ctrl_handler_free(&s->hdl);
kfree(s);
return 0;
}
static const struct spi_device_id msi001_id[] = {
{"msi001", 0},
{}
};
MODULE_DEVICE_TABLE(spi, msi001_id);
static struct spi_driver msi001_driver = {
.driver = {
.name = "msi001",
.owner = THIS_MODULE,
},
.probe = msi001_probe,
.remove = msi001_remove,
.id_table = msi001_id,
};
module_spi_driver(msi001_driver);
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Mirics MSi001");
MODULE_LICENSE("GPL");