2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/arch/arm/nwfpe/single_cpdo.c
Thomas Gleixner 74ba9207e1 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 61
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not write to the free software foundation inc
  675 mass ave cambridge ma 02139 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 441 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520071858.739733335@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:36:45 +02:00

113 lines
2.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
NetWinder Floating Point Emulator
(c) Rebel.COM, 1998,1999
(c) Philip Blundell, 2001
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
*/
#include "fpa11.h"
#include "softfloat.h"
#include "fpopcode.h"
float32 float32_exp(float32 Fm);
float32 float32_ln(float32 Fm);
float32 float32_sin(float32 rFm);
float32 float32_cos(float32 rFm);
float32 float32_arcsin(float32 rFm);
float32 float32_arctan(float32 rFm);
float32 float32_log(float32 rFm);
float32 float32_tan(float32 rFm);
float32 float32_arccos(float32 rFm);
float32 float32_pow(float32 rFn, float32 rFm);
float32 float32_pol(float32 rFn, float32 rFm);
static float32 float32_rsf(struct roundingData *roundData, float32 rFn, float32 rFm)
{
return float32_sub(roundData, rFm, rFn);
}
static float32 float32_rdv(struct roundingData *roundData, float32 rFn, float32 rFm)
{
return float32_div(roundData, rFm, rFn);
}
static float32 (*const dyadic_single[16])(struct roundingData *, float32 rFn, float32 rFm) = {
[ADF_CODE >> 20] = float32_add,
[MUF_CODE >> 20] = float32_mul,
[SUF_CODE >> 20] = float32_sub,
[RSF_CODE >> 20] = float32_rsf,
[DVF_CODE >> 20] = float32_div,
[RDF_CODE >> 20] = float32_rdv,
[RMF_CODE >> 20] = float32_rem,
[FML_CODE >> 20] = float32_mul,
[FDV_CODE >> 20] = float32_div,
[FRD_CODE >> 20] = float32_rdv,
};
static float32 float32_mvf(struct roundingData *roundData, float32 rFm)
{
return rFm;
}
static float32 float32_mnf(struct roundingData *roundData, float32 rFm)
{
return rFm ^ 0x80000000;
}
static float32 float32_abs(struct roundingData *roundData, float32 rFm)
{
return rFm & 0x7fffffff;
}
static float32 (*const monadic_single[16])(struct roundingData*, float32 rFm) = {
[MVF_CODE >> 20] = float32_mvf,
[MNF_CODE >> 20] = float32_mnf,
[ABS_CODE >> 20] = float32_abs,
[RND_CODE >> 20] = float32_round_to_int,
[URD_CODE >> 20] = float32_round_to_int,
[SQT_CODE >> 20] = float32_sqrt,
[NRM_CODE >> 20] = float32_mvf,
};
unsigned int SingleCPDO(struct roundingData *roundData, const unsigned int opcode, FPREG * rFd)
{
FPA11 *fpa11 = GET_FPA11();
float32 rFm;
unsigned int Fm, opc_mask_shift;
Fm = getFm(opcode);
if (CONSTANT_FM(opcode)) {
rFm = getSingleConstant(Fm);
} else if (fpa11->fType[Fm] == typeSingle) {
rFm = fpa11->fpreg[Fm].fSingle;
} else {
return 0;
}
opc_mask_shift = (opcode & MASK_ARITHMETIC_OPCODE) >> 20;
if (!MONADIC_INSTRUCTION(opcode)) {
unsigned int Fn = getFn(opcode);
float32 rFn;
if (fpa11->fType[Fn] == typeSingle &&
dyadic_single[opc_mask_shift]) {
rFn = fpa11->fpreg[Fn].fSingle;
rFd->fSingle = dyadic_single[opc_mask_shift](roundData, rFn, rFm);
} else {
return 0;
}
} else {
if (monadic_single[opc_mask_shift]) {
rFd->fSingle = monadic_single[opc_mask_shift](roundData, rFm);
} else {
return 0;
}
}
return 1;
}