2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/arch/powerpc/kvm/e500_mmu_host.c
Thomas Meyer 4bdcb7016f KVM: PPC: BookE: Use vma_pages function
Use vma_pages function on vma object instead of explicit computation.
Found by coccinelle spatch "api/vma_pages.cocci"

Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-10-14 13:39:49 +11:00

814 lines
21 KiB
C

/*
* Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, yu.liu@freescale.com
* Scott Wood, scottwood@freescale.com
* Ashish Kalra, ashish.kalra@freescale.com
* Varun Sethi, varun.sethi@freescale.com
* Alexander Graf, agraf@suse.de
*
* Description:
* This file is based on arch/powerpc/kvm/44x_tlb.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/uaccess.h>
#include <linux/sched/mm.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <asm/kvm_ppc.h>
#include <asm/pte-walk.h>
#include "e500.h"
#include "timing.h"
#include "e500_mmu_host.h"
#include "trace_booke.h"
#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
static inline unsigned int tlb1_max_shadow_size(void)
{
/* reserve one entry for magic page */
return host_tlb_params[1].entries - tlbcam_index - 1;
}
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
{
/* Mask off reserved bits. */
mas3 &= MAS3_ATTRIB_MASK;
#ifndef CONFIG_KVM_BOOKE_HV
if (!usermode) {
/* Guest is in supervisor mode,
* so we need to translate guest
* supervisor permissions into user permissions. */
mas3 &= ~E500_TLB_USER_PERM_MASK;
mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
}
mas3 |= E500_TLB_SUPER_PERM_MASK;
#endif
return mas3;
}
/*
* writing shadow tlb entry to host TLB
*/
static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
uint32_t mas0,
uint32_t lpid)
{
unsigned long flags;
local_irq_save(flags);
mtspr(SPRN_MAS0, mas0);
mtspr(SPRN_MAS1, stlbe->mas1);
mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
#endif
asm volatile("isync; tlbwe" : : : "memory");
#ifdef CONFIG_KVM_BOOKE_HV
/* Must clear mas8 for other host tlbwe's */
mtspr(SPRN_MAS8, 0);
isync();
#endif
local_irq_restore(flags);
trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
stlbe->mas2, stlbe->mas7_3);
}
/*
* Acquire a mas0 with victim hint, as if we just took a TLB miss.
*
* We don't care about the address we're searching for, other than that it's
* in the right set and is not present in the TLB. Using a zero PID and a
* userspace address means we don't have to set and then restore MAS5, or
* calculate a proper MAS6 value.
*/
static u32 get_host_mas0(unsigned long eaddr)
{
unsigned long flags;
u32 mas0;
u32 mas4;
local_irq_save(flags);
mtspr(SPRN_MAS6, 0);
mas4 = mfspr(SPRN_MAS4);
mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
mas0 = mfspr(SPRN_MAS0);
mtspr(SPRN_MAS4, mas4);
local_irq_restore(flags);
return mas0;
}
/* sesel is for tlb1 only */
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
{
u32 mas0;
if (tlbsel == 0) {
mas0 = get_host_mas0(stlbe->mas2);
__write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
} else {
__write_host_tlbe(stlbe,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(sesel)),
vcpu_e500->vcpu.kvm->arch.lpid);
}
}
/* sesel is for tlb1 only */
static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe,
int stlbsel, int sesel)
{
int stid;
preempt_disable();
stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
stlbe->mas1 |= MAS1_TID(stid);
write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
preempt_enable();
}
#ifdef CONFIG_KVM_E500V2
/* XXX should be a hook in the gva2hpa translation */
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry magic;
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
unsigned int stid;
kvm_pfn_t pfn;
pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
preempt_disable();
stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
MAS1_TSIZE(BOOK3E_PAGESZ_4K);
magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
magic.mas8 = 0;
__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
preempt_enable();
}
#endif
void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
/* Don't bother with unmapped entries */
if (!(ref->flags & E500_TLB_VALID)) {
WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
"%s: flags %x\n", __func__, ref->flags);
WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
}
if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
int hw_tlb_indx;
unsigned long flags;
local_irq_save(flags);
while (tmp) {
hw_tlb_indx = __ilog2_u64(tmp & -tmp);
mtspr(SPRN_MAS0,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
mtspr(SPRN_MAS1, 0);
asm volatile("tlbwe");
vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
tmp &= tmp - 1;
}
mb();
vcpu_e500->g2h_tlb1_map[esel] = 0;
ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
local_irq_restore(flags);
}
if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
/*
* TLB1 entry is backed by 4k pages. This should happen
* rarely and is not worth optimizing. Invalidate everything.
*/
kvmppc_e500_tlbil_all(vcpu_e500);
ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
}
/*
* If TLB entry is still valid then it's a TLB0 entry, and thus
* backed by at most one host tlbe per shadow pid
*/
if (ref->flags & E500_TLB_VALID)
kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
/* Mark the TLB as not backed by the host anymore */
ref->flags = 0;
}
static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
{
return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
}
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
struct kvm_book3e_206_tlb_entry *gtlbe,
kvm_pfn_t pfn, unsigned int wimg)
{
ref->pfn = pfn;
ref->flags = E500_TLB_VALID;
/* Use guest supplied MAS2_G and MAS2_E */
ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
/* Mark the page accessed */
kvm_set_pfn_accessed(pfn);
if (tlbe_is_writable(gtlbe))
kvm_set_pfn_dirty(pfn);
}
static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
{
if (ref->flags & E500_TLB_VALID) {
/* FIXME: don't log bogus pfn for TLB1 */
trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
ref->flags = 0;
}
}
static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
{
if (vcpu_e500->g2h_tlb1_map)
memset(vcpu_e500->g2h_tlb1_map, 0,
sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
if (vcpu_e500->h2g_tlb1_rmap)
memset(vcpu_e500->h2g_tlb1_rmap, 0,
sizeof(unsigned int) * host_tlb_params[1].entries);
}
static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int tlbsel;
int i;
for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->gtlb_priv[tlbsel][i].ref;
kvmppc_e500_ref_release(ref);
}
}
}
void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
kvmppc_e500_tlbil_all(vcpu_e500);
clear_tlb_privs(vcpu_e500);
clear_tlb1_bitmap(vcpu_e500);
}
/* TID must be supplied by the caller */
static void kvmppc_e500_setup_stlbe(
struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe,
int tsize, struct tlbe_ref *ref, u64 gvaddr,
struct kvm_book3e_206_tlb_entry *stlbe)
{
kvm_pfn_t pfn = ref->pfn;
u32 pr = vcpu->arch.shared->msr & MSR_PR;
BUG_ON(!(ref->flags & E500_TLB_VALID));
/* Force IPROT=0 for all guest mappings. */
stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
}
static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
struct tlbe_ref *ref)
{
struct kvm_memory_slot *slot;
unsigned long pfn = 0; /* silence GCC warning */
unsigned long hva;
int pfnmap = 0;
int tsize = BOOK3E_PAGESZ_4K;
int ret = 0;
unsigned long mmu_seq;
struct kvm *kvm = vcpu_e500->vcpu.kvm;
unsigned long tsize_pages = 0;
pte_t *ptep;
unsigned int wimg = 0;
pgd_t *pgdir;
unsigned long flags;
/* used to check for invalidations in progress */
mmu_seq = kvm->mmu_notifier_seq;
smp_rmb();
/*
* Translate guest physical to true physical, acquiring
* a page reference if it is normal, non-reserved memory.
*
* gfn_to_memslot() must succeed because otherwise we wouldn't
* have gotten this far. Eventually we should just pass the slot
* pointer through from the first lookup.
*/
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
hva = gfn_to_hva_memslot(slot, gfn);
if (tlbsel == 1) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_PFNMAP)) {
/*
* This VMA is a physically contiguous region (e.g.
* /dev/mem) that bypasses normal Linux page
* management. Find the overlap between the
* vma and the memslot.
*/
unsigned long start, end;
unsigned long slot_start, slot_end;
pfnmap = 1;
start = vma->vm_pgoff;
end = start +
vma_pages(vma);
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
slot_start = pfn - (gfn - slot->base_gfn);
slot_end = slot_start + slot->npages;
if (start < slot_start)
start = slot_start;
if (end > slot_end)
end = slot_end;
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
/*
* Now find the largest tsize (up to what the guest
* requested) that will cover gfn, stay within the
* range, and for which gfn and pfn are mutually
* aligned.
*/
for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
unsigned long gfn_start, gfn_end;
tsize_pages = 1UL << (tsize - 2);
gfn_start = gfn & ~(tsize_pages - 1);
gfn_end = gfn_start + tsize_pages;
if (gfn_start + pfn - gfn < start)
continue;
if (gfn_end + pfn - gfn > end)
continue;
if ((gfn & (tsize_pages - 1)) !=
(pfn & (tsize_pages - 1)))
continue;
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
pfn &= ~(tsize_pages - 1);
break;
}
} else if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_HUGETLB)) {
unsigned long psize = vma_kernel_pagesize(vma);
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* Take the largest page size that satisfies both host
* and guest mapping
*/
tsize = min(__ilog2(psize) - 10, tsize);
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
}
up_read(&current->mm->mmap_sem);
}
if (likely(!pfnmap)) {
tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
pfn = gfn_to_pfn_memslot(slot, gfn);
if (is_error_noslot_pfn(pfn)) {
if (printk_ratelimit())
pr_err("%s: real page not found for gfn %lx\n",
__func__, (long)gfn);
return -EINVAL;
}
/* Align guest and physical address to page map boundaries */
pfn &= ~(tsize_pages - 1);
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
}
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq)) {
ret = -EAGAIN;
goto out;
}
pgdir = vcpu_e500->vcpu.arch.pgdir;
/*
* We are just looking at the wimg bits, so we don't
* care much about the trans splitting bit.
* We are holding kvm->mmu_lock so a notifier invalidate
* can't run hence pfn won't change.
*/
local_irq_save(flags);
ptep = find_linux_pte(pgdir, hva, NULL, NULL);
if (ptep) {
pte_t pte = READ_ONCE(*ptep);
if (pte_present(pte)) {
wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
MAS2_WIMGE_MASK;
local_irq_restore(flags);
} else {
local_irq_restore(flags);
pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
__func__, (long)gfn, pfn);
ret = -EINVAL;
goto out;
}
}
kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
ref, gvaddr, stlbe);
/* Clear i-cache for new pages */
kvmppc_mmu_flush_icache(pfn);
out:
spin_unlock(&kvm->mmu_lock);
/* Drop refcount on page, so that mmu notifiers can clear it */
kvm_release_pfn_clean(pfn);
return ret;
}
/* XXX only map the one-one case, for now use TLB0 */
static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
struct kvm_book3e_206_tlb_entry *stlbe)
{
struct kvm_book3e_206_tlb_entry *gtlbe;
struct tlbe_ref *ref;
int stlbsel = 0;
int sesel = 0;
int r;
gtlbe = get_entry(vcpu_e500, 0, esel);
ref = &vcpu_e500->gtlb_priv[0][esel].ref;
r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
gtlbe, 0, stlbe, ref);
if (r)
return r;
write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
return 0;
}
static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
struct tlbe_ref *ref,
int esel)
{
unsigned int sesel = vcpu_e500->host_tlb1_nv++;
if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
vcpu_e500->host_tlb1_nv = 0;
if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
}
vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
WARN_ON(!(ref->flags & E500_TLB_VALID));
return sesel;
}
/* Caller must ensure that the specified guest TLB entry is safe to insert into
* the shadow TLB. */
/* For both one-one and one-to-many */
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe, int esel)
{
struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
int sesel;
int r;
r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
ref);
if (r)
return r;
/* Use TLB0 when we can only map a page with 4k */
if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
return 0;
}
/* Otherwise map into TLB1 */
sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
return 0;
}
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
unsigned int index)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe_priv *priv;
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
int tlbsel = tlbsel_of(index);
int esel = esel_of(index);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
switch (tlbsel) {
case 0:
priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
/* Triggers after clear_tlb_privs or on initial mapping */
if (!(priv->ref.flags & E500_TLB_VALID)) {
kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
} else {
kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
&priv->ref, eaddr, &stlbe);
write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
}
break;
case 1: {
gfn_t gfn = gpaddr >> PAGE_SHIFT;
kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
esel);
break;
}
default:
BUG();
break;
}
}
#ifdef CONFIG_KVM_BOOKE_HV
int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
u32 *instr)
{
gva_t geaddr;
hpa_t addr;
hfn_t pfn;
hva_t eaddr;
u32 mas1, mas2, mas3;
u64 mas7_mas3;
struct page *page;
unsigned int addr_space, psize_shift;
bool pr;
unsigned long flags;
/* Search TLB for guest pc to get the real address */
geaddr = kvmppc_get_pc(vcpu);
addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
local_irq_save(flags);
mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
asm volatile("tlbsx 0, %[geaddr]\n" : :
[geaddr] "r" (geaddr));
mtspr(SPRN_MAS5, 0);
mtspr(SPRN_MAS8, 0);
mas1 = mfspr(SPRN_MAS1);
mas2 = mfspr(SPRN_MAS2);
mas3 = mfspr(SPRN_MAS3);
#ifdef CONFIG_64BIT
mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
#else
mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
#endif
local_irq_restore(flags);
/*
* If the TLB entry for guest pc was evicted, return to the guest.
* There are high chances to find a valid TLB entry next time.
*/
if (!(mas1 & MAS1_VALID))
return EMULATE_AGAIN;
/*
* Another thread may rewrite the TLB entry in parallel, don't
* execute from the address if the execute permission is not set
*/
pr = vcpu->arch.shared->msr & MSR_PR;
if (unlikely((pr && !(mas3 & MAS3_UX)) ||
(!pr && !(mas3 & MAS3_SX)))) {
pr_err_ratelimited(
"%s: Instruction emulation from guest address %08lx without execute permission\n",
__func__, geaddr);
return EMULATE_AGAIN;
}
/*
* The real address will be mapped by a cacheable, memory coherent,
* write-back page. Check for mismatches when LRAT is used.
*/
if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
pr_err_ratelimited(
"%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
__func__, geaddr);
return EMULATE_AGAIN;
}
/* Get pfn */
psize_shift = MAS1_GET_TSIZE(mas1) + 10;
addr = (mas7_mas3 & (~0ULL << psize_shift)) |
(geaddr & ((1ULL << psize_shift) - 1ULL));
pfn = addr >> PAGE_SHIFT;
/* Guard against emulation from devices area */
if (unlikely(!page_is_ram(pfn))) {
pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
__func__, addr);
return EMULATE_AGAIN;
}
/* Map a page and get guest's instruction */
page = pfn_to_page(pfn);
eaddr = (unsigned long)kmap_atomic(page);
*instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
kunmap_atomic((u32 *)eaddr);
return EMULATE_DONE;
}
#else
int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
u32 *instr)
{
return EMULATE_AGAIN;
}
#endif
/************* MMU Notifiers *************/
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
trace_kvm_unmap_hva(hva);
/*
* Flush all shadow tlb entries everywhere. This is slow, but
* we are 100% sure that we catch the to be unmapped page
*/
kvm_flush_remote_tlbs(kvm);
return 0;
}
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
/* kvm_unmap_hva flushes everything anyways */
kvm_unmap_hva(kvm, start);
return 0;
}
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
/* XXX could be more clever ;) */
return 0;
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
/* XXX could be more clever ;) */
return 0;
}
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
/* The page will get remapped properly on its next fault */
kvm_unmap_hva(kvm, hva);
}
/*****************************************/
int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
/*
* This should never happen on real e500 hardware, but is
* architecturally possible -- e.g. in some weird nested
* virtualization case.
*/
if (host_tlb_params[0].entries == 0 ||
host_tlb_params[1].entries == 0) {
pr_err("%s: need to know host tlb size\n", __func__);
return -ENODEV;
}
host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
TLBnCFG_ASSOC_SHIFT;
host_tlb_params[1].ways = host_tlb_params[1].entries;
if (!is_power_of_2(host_tlb_params[0].entries) ||
!is_power_of_2(host_tlb_params[0].ways) ||
host_tlb_params[0].entries < host_tlb_params[0].ways ||
host_tlb_params[0].ways == 0) {
pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
__func__, host_tlb_params[0].entries,
host_tlb_params[0].ways);
return -ENODEV;
}
host_tlb_params[0].sets =
host_tlb_params[0].entries / host_tlb_params[0].ways;
host_tlb_params[1].sets = 1;
vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
sizeof(*vcpu_e500->h2g_tlb1_rmap),
GFP_KERNEL);
if (!vcpu_e500->h2g_tlb1_rmap)
return -EINVAL;
return 0;
}
void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
kfree(vcpu_e500->h2g_tlb1_rmap);
}