2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-24 06:35:44 +08:00
linux-next/include/linux/elf-em.h
Haavard Skinnemoen 5f97f7f940 [PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.

AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density.  The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.

The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from

http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf

The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture.  It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit.  It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.

Full data sheet is available from

http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf

while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from

http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf

Information about the AT32STK1000 development board can be found at

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918

including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.

Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.

This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.

[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:54 -07:00

51 lines
1.6 KiB
C

#ifndef _LINUX_ELF_EM_H
#define _LINUX_ELF_EM_H
/* These constants define the various ELF target machines */
#define EM_NONE 0
#define EM_M32 1
#define EM_SPARC 2
#define EM_386 3
#define EM_68K 4
#define EM_88K 5
#define EM_486 6 /* Perhaps disused */
#define EM_860 7
#define EM_MIPS 8 /* MIPS R3000 (officially, big-endian only) */
/* Next two are historical and binaries and
modules of these types will be rejected by
Linux. */
#define EM_MIPS_RS3_LE 10 /* MIPS R3000 little-endian */
#define EM_MIPS_RS4_BE 10 /* MIPS R4000 big-endian */
#define EM_PARISC 15 /* HPPA */
#define EM_SPARC32PLUS 18 /* Sun's "v8plus" */
#define EM_PPC 20 /* PowerPC */
#define EM_PPC64 21 /* PowerPC64 */
#define EM_SH 42 /* SuperH */
#define EM_SPARCV9 43 /* SPARC v9 64-bit */
#define EM_IA_64 50 /* HP/Intel IA-64 */
#define EM_X86_64 62 /* AMD x86-64 */
#define EM_S390 22 /* IBM S/390 */
#define EM_CRIS 76 /* Axis Communications 32-bit embedded processor */
#define EM_V850 87 /* NEC v850 */
#define EM_M32R 88 /* Renesas M32R */
#define EM_H8_300 46 /* Renesas H8/300,300H,H8S */
#define EM_FRV 0x5441 /* Fujitsu FR-V */
#define EM_AVR32 0x18ad /* Atmel AVR32 */
/*
* This is an interim value that we will use until the committee comes
* up with a final number.
*/
#define EM_ALPHA 0x9026
/* Bogus old v850 magic number, used by old tools. */
#define EM_CYGNUS_V850 0x9080
/* Bogus old m32r magic number, used by old tools. */
#define EM_CYGNUS_M32R 0x9041
/* This is the old interim value for S/390 architecture */
#define EM_S390_OLD 0xA390
#endif /* _LINUX_ELF_EM_H */