mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-16 17:43:56 +08:00
4471a34f9a
Initially ondemand governor was written and then using its code conservative governor is written. It used a lot of code from ondemand governor, but copy of code was created instead of using the same routines from both governors. Which increased code redundancy, which is difficult to manage. This patch is an attempt to move common part of both the governors to cpufreq_governor.c file to come over above mentioned issues. This shouldn't change anything from functionality point of view. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
364 lines
9.5 KiB
C
364 lines
9.5 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_conservative.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* Jun Nakajima <jun.nakajima@intel.com>
|
|
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/types.h>
|
|
|
|
#include "cpufreq_governor.h"
|
|
|
|
/* Conservative governor macors */
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
|
|
#define DEF_SAMPLING_DOWN_FACTOR (1)
|
|
#define MAX_SAMPLING_DOWN_FACTOR (10)
|
|
|
|
static struct dbs_data cs_dbs_data;
|
|
static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
|
|
|
|
static struct cs_dbs_tuners cs_tuners = {
|
|
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
|
|
.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
|
|
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
|
|
.ignore_nice = 0,
|
|
.freq_step = 5,
|
|
};
|
|
|
|
/*
|
|
* Every sampling_rate, we check, if current idle time is less than 20%
|
|
* (default), then we try to increase frequency Every sampling_rate *
|
|
* sampling_down_factor, we check, if current idle time is more than 80%, then
|
|
* we try to decrease frequency
|
|
*
|
|
* Any frequency increase takes it to the maximum frequency. Frequency reduction
|
|
* happens at minimum steps of 5% (default) of maximum frequency
|
|
*/
|
|
static void cs_check_cpu(int cpu, unsigned int load)
|
|
{
|
|
struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
|
|
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
|
|
unsigned int freq_target;
|
|
|
|
/*
|
|
* break out if we 'cannot' reduce the speed as the user might
|
|
* want freq_step to be zero
|
|
*/
|
|
if (cs_tuners.freq_step == 0)
|
|
return;
|
|
|
|
/* Check for frequency increase */
|
|
if (load > cs_tuners.up_threshold) {
|
|
dbs_info->down_skip = 0;
|
|
|
|
/* if we are already at full speed then break out early */
|
|
if (dbs_info->requested_freq == policy->max)
|
|
return;
|
|
|
|
freq_target = (cs_tuners.freq_step * policy->max) / 100;
|
|
|
|
/* max freq cannot be less than 100. But who knows.... */
|
|
if (unlikely(freq_target == 0))
|
|
freq_target = 5;
|
|
|
|
dbs_info->requested_freq += freq_target;
|
|
if (dbs_info->requested_freq > policy->max)
|
|
dbs_info->requested_freq = policy->max;
|
|
|
|
__cpufreq_driver_target(policy, dbs_info->requested_freq,
|
|
CPUFREQ_RELATION_H);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The optimal frequency is the frequency that is the lowest that can
|
|
* support the current CPU usage without triggering the up policy. To be
|
|
* safe, we focus 10 points under the threshold.
|
|
*/
|
|
if (load < (cs_tuners.down_threshold - 10)) {
|
|
freq_target = (cs_tuners.freq_step * policy->max) / 100;
|
|
|
|
dbs_info->requested_freq -= freq_target;
|
|
if (dbs_info->requested_freq < policy->min)
|
|
dbs_info->requested_freq = policy->min;
|
|
|
|
/*
|
|
* if we cannot reduce the frequency anymore, break out early
|
|
*/
|
|
if (policy->cur == policy->min)
|
|
return;
|
|
|
|
__cpufreq_driver_target(policy, dbs_info->requested_freq,
|
|
CPUFREQ_RELATION_H);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void cs_dbs_timer(struct work_struct *work)
|
|
{
|
|
struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
|
|
struct cs_cpu_dbs_info_s, cdbs.work.work);
|
|
unsigned int cpu = dbs_info->cdbs.cpu;
|
|
int delay = delay_for_sampling_rate(cs_tuners.sampling_rate);
|
|
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
dbs_check_cpu(&cs_dbs_data, cpu);
|
|
|
|
schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay);
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
}
|
|
|
|
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
struct cs_cpu_dbs_info_s *dbs_info =
|
|
&per_cpu(cs_cpu_dbs_info, freq->cpu);
|
|
struct cpufreq_policy *policy;
|
|
|
|
if (!dbs_info->enable)
|
|
return 0;
|
|
|
|
policy = dbs_info->cdbs.cur_policy;
|
|
|
|
/*
|
|
* we only care if our internally tracked freq moves outside the 'valid'
|
|
* ranges of freqency available to us otherwise we do not change it
|
|
*/
|
|
if (dbs_info->requested_freq > policy->max
|
|
|| dbs_info->requested_freq < policy->min)
|
|
dbs_info->requested_freq = freq->new;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/************************** sysfs interface ************************/
|
|
static ssize_t show_sampling_rate_min(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate);
|
|
}
|
|
|
|
static ssize_t store_sampling_down_factor(struct kobject *a,
|
|
struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
|
|
return -EINVAL;
|
|
|
|
cs_tuners.sampling_down_factor = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold)
|
|
return -EINVAL;
|
|
|
|
cs_tuners.up_threshold = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
/* cannot be lower than 11 otherwise freq will not fall */
|
|
if (ret != 1 || input < 11 || input > 100 ||
|
|
input >= cs_tuners.up_threshold)
|
|
return -EINVAL;
|
|
|
|
cs_tuners.down_threshold = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input, j;
|
|
int ret;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1)
|
|
input = 1;
|
|
|
|
if (input == cs_tuners.ignore_nice) /* nothing to do */
|
|
return count;
|
|
|
|
cs_tuners.ignore_nice = input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle */
|
|
for_each_online_cpu(j) {
|
|
struct cs_cpu_dbs_info_s *dbs_info;
|
|
dbs_info = &per_cpu(cs_cpu_dbs_info, j);
|
|
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
|
|
&dbs_info->cdbs.prev_cpu_wall);
|
|
if (cs_tuners.ignore_nice)
|
|
dbs_info->cdbs.prev_cpu_nice =
|
|
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 100)
|
|
input = 100;
|
|
|
|
/*
|
|
* no need to test here if freq_step is zero as the user might actually
|
|
* want this, they would be crazy though :)
|
|
*/
|
|
cs_tuners.freq_step = input;
|
|
return count;
|
|
}
|
|
|
|
show_one(cs, sampling_rate, sampling_rate);
|
|
show_one(cs, sampling_down_factor, sampling_down_factor);
|
|
show_one(cs, up_threshold, up_threshold);
|
|
show_one(cs, down_threshold, down_threshold);
|
|
show_one(cs, ignore_nice_load, ignore_nice);
|
|
show_one(cs, freq_step, freq_step);
|
|
|
|
define_one_global_rw(sampling_rate);
|
|
define_one_global_rw(sampling_down_factor);
|
|
define_one_global_rw(up_threshold);
|
|
define_one_global_rw(down_threshold);
|
|
define_one_global_rw(ignore_nice_load);
|
|
define_one_global_rw(freq_step);
|
|
define_one_global_ro(sampling_rate_min);
|
|
|
|
static struct attribute *dbs_attributes[] = {
|
|
&sampling_rate_min.attr,
|
|
&sampling_rate.attr,
|
|
&sampling_down_factor.attr,
|
|
&up_threshold.attr,
|
|
&down_threshold.attr,
|
|
&ignore_nice_load.attr,
|
|
&freq_step.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group cs_attr_group = {
|
|
.attrs = dbs_attributes,
|
|
.name = "conservative",
|
|
};
|
|
|
|
/************************** sysfs end ************************/
|
|
|
|
define_get_cpu_dbs_routines(cs_cpu_dbs_info);
|
|
|
|
static struct notifier_block cs_cpufreq_notifier_block = {
|
|
.notifier_call = dbs_cpufreq_notifier,
|
|
};
|
|
|
|
static struct cs_ops cs_ops = {
|
|
.notifier_block = &cs_cpufreq_notifier_block,
|
|
};
|
|
|
|
static struct dbs_data cs_dbs_data = {
|
|
.governor = GOV_CONSERVATIVE,
|
|
.attr_group = &cs_attr_group,
|
|
.tuners = &cs_tuners,
|
|
.get_cpu_cdbs = get_cpu_cdbs,
|
|
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
|
|
.gov_dbs_timer = cs_dbs_timer,
|
|
.gov_check_cpu = cs_check_cpu,
|
|
.gov_ops = &cs_ops,
|
|
};
|
|
|
|
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
return cpufreq_governor_dbs(&cs_dbs_data, policy, event);
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_conservative = {
|
|
.name = "conservative",
|
|
.governor = cs_cpufreq_governor_dbs,
|
|
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cpufreq_gov_dbs_init(void)
|
|
{
|
|
mutex_init(&cs_dbs_data.mutex);
|
|
return cpufreq_register_governor(&cpufreq_gov_conservative);
|
|
}
|
|
|
|
static void __exit cpufreq_gov_dbs_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_conservative);
|
|
}
|
|
|
|
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
|
|
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
|
|
"Low Latency Frequency Transition capable processors "
|
|
"optimised for use in a battery environment");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
|
|
fs_initcall(cpufreq_gov_dbs_init);
|
|
#else
|
|
module_init(cpufreq_gov_dbs_init);
|
|
#endif
|
|
module_exit(cpufreq_gov_dbs_exit);
|