2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 13:13:57 +08:00
linux-next/fs/f2fs/inline.c
Chao Yu 10f966bbf5 f2fs: use generic EFSBADCRC/EFSCORRUPTED
f2fs uses EFAULT as error number to indicate filesystem is corrupted
all the time, but generic filesystems use EUCLEAN for such condition,
we need to change to follow others.

This patch adds two new macros as below to wrap more generic error
code macros, and spread them in code.

EFSBADCRC	EBADMSG		/* Bad CRC detected */
EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */

Reported-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-02 15:40:41 -07:00

731 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/inline.c
* Copyright (c) 2013, Intel Corporation
* Authors: Huajun Li <huajun.li@intel.com>
* Haicheng Li <haicheng.li@intel.com>
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
bool f2fs_may_inline_data(struct inode *inode)
{
if (f2fs_is_atomic_file(inode))
return false;
if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
return false;
if (i_size_read(inode) > MAX_INLINE_DATA(inode))
return false;
if (f2fs_post_read_required(inode))
return false;
return true;
}
bool f2fs_may_inline_dentry(struct inode *inode)
{
if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
return false;
if (!S_ISDIR(inode->i_mode))
return false;
return true;
}
void f2fs_do_read_inline_data(struct page *page, struct page *ipage)
{
struct inode *inode = page->mapping->host;
void *src_addr, *dst_addr;
if (PageUptodate(page))
return;
f2fs_bug_on(F2FS_P_SB(page), page->index);
zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
/* Copy the whole inline data block */
src_addr = inline_data_addr(inode, ipage);
dst_addr = kmap_atomic(page);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
flush_dcache_page(page);
kunmap_atomic(dst_addr);
if (!PageUptodate(page))
SetPageUptodate(page);
}
void f2fs_truncate_inline_inode(struct inode *inode,
struct page *ipage, u64 from)
{
void *addr;
if (from >= MAX_INLINE_DATA(inode))
return;
addr = inline_data_addr(inode, ipage);
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
set_page_dirty(ipage);
if (from == 0)
clear_inode_flag(inode, FI_DATA_EXIST);
}
int f2fs_read_inline_data(struct inode *inode, struct page *page)
{
struct page *ipage;
ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage)) {
unlock_page(page);
return PTR_ERR(ipage);
}
if (!f2fs_has_inline_data(inode)) {
f2fs_put_page(ipage, 1);
return -EAGAIN;
}
if (page->index)
zero_user_segment(page, 0, PAGE_SIZE);
else
f2fs_do_read_inline_data(page, ipage);
if (!PageUptodate(page))
SetPageUptodate(page);
f2fs_put_page(ipage, 1);
unlock_page(page);
return 0;
}
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
{
struct f2fs_io_info fio = {
.sbi = F2FS_I_SB(dn->inode),
.ino = dn->inode->i_ino,
.type = DATA,
.op = REQ_OP_WRITE,
.op_flags = REQ_SYNC | REQ_PRIO,
.page = page,
.encrypted_page = NULL,
.io_type = FS_DATA_IO,
};
struct node_info ni;
int dirty, err;
if (!f2fs_exist_data(dn->inode))
goto clear_out;
err = f2fs_reserve_block(dn, 0);
if (err)
return err;
err = f2fs_get_node_info(fio.sbi, dn->nid, &ni);
if (err) {
f2fs_put_dnode(dn);
return err;
}
fio.version = ni.version;
if (unlikely(dn->data_blkaddr != NEW_ADDR)) {
f2fs_put_dnode(dn);
set_sbi_flag(fio.sbi, SBI_NEED_FSCK);
f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
__func__, dn->inode->i_ino, dn->data_blkaddr);
return -EFSCORRUPTED;
}
f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
f2fs_do_read_inline_data(page, dn->inode_page);
set_page_dirty(page);
/* clear dirty state */
dirty = clear_page_dirty_for_io(page);
/* write data page to try to make data consistent */
set_page_writeback(page);
ClearPageError(page);
fio.old_blkaddr = dn->data_blkaddr;
set_inode_flag(dn->inode, FI_HOT_DATA);
f2fs_outplace_write_data(dn, &fio);
f2fs_wait_on_page_writeback(page, DATA, true, true);
if (dirty) {
inode_dec_dirty_pages(dn->inode);
f2fs_remove_dirty_inode(dn->inode);
}
/* this converted inline_data should be recovered. */
set_inode_flag(dn->inode, FI_APPEND_WRITE);
/* clear inline data and flag after data writeback */
f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0);
clear_inline_node(dn->inode_page);
clear_out:
stat_dec_inline_inode(dn->inode);
clear_inode_flag(dn->inode, FI_INLINE_DATA);
f2fs_put_dnode(dn);
return 0;
}
int f2fs_convert_inline_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
struct page *ipage, *page;
int err = 0;
if (!f2fs_has_inline_data(inode))
return 0;
page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
if (!page)
return -ENOMEM;
f2fs_lock_op(sbi);
ipage = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto out;
}
set_new_dnode(&dn, inode, ipage, ipage, 0);
if (f2fs_has_inline_data(inode))
err = f2fs_convert_inline_page(&dn, page);
f2fs_put_dnode(&dn);
out:
f2fs_unlock_op(sbi);
f2fs_put_page(page, 1);
f2fs_balance_fs(sbi, dn.node_changed);
return err;
}
int f2fs_write_inline_data(struct inode *inode, struct page *page)
{
void *src_addr, *dst_addr;
struct dnode_of_data dn;
int err;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
if (err)
return err;
if (!f2fs_has_inline_data(inode)) {
f2fs_put_dnode(&dn);
return -EAGAIN;
}
f2fs_bug_on(F2FS_I_SB(inode), page->index);
f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true);
src_addr = kmap_atomic(page);
dst_addr = inline_data_addr(inode, dn.inode_page);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
kunmap_atomic(src_addr);
set_page_dirty(dn.inode_page);
f2fs_clear_page_cache_dirty_tag(page);
set_inode_flag(inode, FI_APPEND_WRITE);
set_inode_flag(inode, FI_DATA_EXIST);
clear_inline_node(dn.inode_page);
f2fs_put_dnode(&dn);
return 0;
}
bool f2fs_recover_inline_data(struct inode *inode, struct page *npage)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode *ri = NULL;
void *src_addr, *dst_addr;
struct page *ipage;
/*
* The inline_data recovery policy is as follows.
* [prev.] [next] of inline_data flag
* o o -> recover inline_data
* o x -> remove inline_data, and then recover data blocks
* x o -> remove inline_data, and then recover inline_data
* x x -> recover data blocks
*/
if (IS_INODE(npage))
ri = F2FS_INODE(npage);
if (f2fs_has_inline_data(inode) &&
ri && (ri->i_inline & F2FS_INLINE_DATA)) {
process_inline:
ipage = f2fs_get_node_page(sbi, inode->i_ino);
f2fs_bug_on(sbi, IS_ERR(ipage));
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
src_addr = inline_data_addr(inode, npage);
dst_addr = inline_data_addr(inode, ipage);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
set_inode_flag(inode, FI_INLINE_DATA);
set_inode_flag(inode, FI_DATA_EXIST);
set_page_dirty(ipage);
f2fs_put_page(ipage, 1);
return true;
}
if (f2fs_has_inline_data(inode)) {
ipage = f2fs_get_node_page(sbi, inode->i_ino);
f2fs_bug_on(sbi, IS_ERR(ipage));
f2fs_truncate_inline_inode(inode, ipage, 0);
clear_inode_flag(inode, FI_INLINE_DATA);
f2fs_put_page(ipage, 1);
} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
if (f2fs_truncate_blocks(inode, 0, false))
return false;
goto process_inline;
}
return false;
}
struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
struct fscrypt_name *fname, struct page **res_page)
{
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
struct f2fs_dir_entry *de;
struct f2fs_dentry_ptr d;
struct page *ipage;
void *inline_dentry;
f2fs_hash_t namehash;
ipage = f2fs_get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage)) {
*res_page = ipage;
return NULL;
}
namehash = f2fs_dentry_hash(&name, fname);
inline_dentry = inline_data_addr(dir, ipage);
make_dentry_ptr_inline(dir, &d, inline_dentry);
de = f2fs_find_target_dentry(fname, namehash, NULL, &d);
unlock_page(ipage);
if (de)
*res_page = ipage;
else
f2fs_put_page(ipage, 0);
return de;
}
int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
struct page *ipage)
{
struct f2fs_dentry_ptr d;
void *inline_dentry;
inline_dentry = inline_data_addr(inode, ipage);
make_dentry_ptr_inline(inode, &d, inline_dentry);
f2fs_do_make_empty_dir(inode, parent, &d);
set_page_dirty(ipage);
/* update i_size to MAX_INLINE_DATA */
if (i_size_read(inode) < MAX_INLINE_DATA(inode))
f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
return 0;
}
/*
* NOTE: ipage is grabbed by caller, but if any error occurs, we should
* release ipage in this function.
*/
static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
void *inline_dentry)
{
struct page *page;
struct dnode_of_data dn;
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dentry_ptr src, dst;
int err;
page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
if (!page) {
f2fs_put_page(ipage, 1);
return -ENOMEM;
}
set_new_dnode(&dn, dir, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, 0);
if (err)
goto out;
if (unlikely(dn.data_blkaddr != NEW_ADDR)) {
f2fs_put_dnode(&dn);
set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
__func__, dir->i_ino, dn.data_blkaddr);
err = -EFSCORRUPTED;
goto out;
}
f2fs_wait_on_page_writeback(page, DATA, true, true);
dentry_blk = page_address(page);
make_dentry_ptr_inline(dir, &src, inline_dentry);
make_dentry_ptr_block(dir, &dst, dentry_blk);
/* copy data from inline dentry block to new dentry block */
memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
/*
* we do not need to zero out remainder part of dentry and filename
* field, since we have used bitmap for marking the usage status of
* them, besides, we can also ignore copying/zeroing reserved space
* of dentry block, because them haven't been used so far.
*/
memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
if (!PageUptodate(page))
SetPageUptodate(page);
set_page_dirty(page);
/* clear inline dir and flag after data writeback */
f2fs_truncate_inline_inode(dir, ipage, 0);
stat_dec_inline_dir(dir);
clear_inode_flag(dir, FI_INLINE_DENTRY);
/*
* should retrieve reserved space which was used to keep
* inline_dentry's structure for backward compatibility.
*/
if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
!f2fs_has_inline_xattr(dir))
F2FS_I(dir)->i_inline_xattr_size = 0;
f2fs_i_depth_write(dir, 1);
if (i_size_read(dir) < PAGE_SIZE)
f2fs_i_size_write(dir, PAGE_SIZE);
out:
f2fs_put_page(page, 1);
return err;
}
static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
{
struct f2fs_dentry_ptr d;
unsigned long bit_pos = 0;
int err = 0;
make_dentry_ptr_inline(dir, &d, inline_dentry);
while (bit_pos < d.max) {
struct f2fs_dir_entry *de;
struct qstr new_name;
nid_t ino;
umode_t fake_mode;
if (!test_bit_le(bit_pos, d.bitmap)) {
bit_pos++;
continue;
}
de = &d.dentry[bit_pos];
if (unlikely(!de->name_len)) {
bit_pos++;
continue;
}
new_name.name = d.filename[bit_pos];
new_name.len = le16_to_cpu(de->name_len);
ino = le32_to_cpu(de->ino);
fake_mode = f2fs_get_de_type(de) << S_SHIFT;
err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
ino, fake_mode);
if (err)
goto punch_dentry_pages;
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
}
return 0;
punch_dentry_pages:
truncate_inode_pages(&dir->i_data, 0);
f2fs_truncate_blocks(dir, 0, false);
f2fs_remove_dirty_inode(dir);
return err;
}
static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
void *inline_dentry)
{
void *backup_dentry;
int err;
backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
if (!backup_dentry) {
f2fs_put_page(ipage, 1);
return -ENOMEM;
}
memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
f2fs_truncate_inline_inode(dir, ipage, 0);
unlock_page(ipage);
err = f2fs_add_inline_entries(dir, backup_dentry);
if (err)
goto recover;
lock_page(ipage);
stat_dec_inline_dir(dir);
clear_inode_flag(dir, FI_INLINE_DENTRY);
/*
* should retrieve reserved space which was used to keep
* inline_dentry's structure for backward compatibility.
*/
if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
!f2fs_has_inline_xattr(dir))
F2FS_I(dir)->i_inline_xattr_size = 0;
kvfree(backup_dentry);
return 0;
recover:
lock_page(ipage);
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
f2fs_i_depth_write(dir, 0);
f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
set_page_dirty(ipage);
f2fs_put_page(ipage, 1);
kvfree(backup_dentry);
return err;
}
static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
void *inline_dentry)
{
if (!F2FS_I(dir)->i_dir_level)
return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
else
return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
}
int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
const struct qstr *orig_name,
struct inode *inode, nid_t ino, umode_t mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct page *ipage;
unsigned int bit_pos;
f2fs_hash_t name_hash;
void *inline_dentry = NULL;
struct f2fs_dentry_ptr d;
int slots = GET_DENTRY_SLOTS(new_name->len);
struct page *page = NULL;
int err = 0;
ipage = f2fs_get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
inline_dentry = inline_data_addr(dir, ipage);
make_dentry_ptr_inline(dir, &d, inline_dentry);
bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
if (bit_pos >= d.max) {
err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
if (err)
return err;
err = -EAGAIN;
goto out;
}
if (inode) {
down_write(&F2FS_I(inode)->i_sem);
page = f2fs_init_inode_metadata(inode, dir, new_name,
orig_name, ipage);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
}
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
name_hash = f2fs_dentry_hash(new_name, NULL);
f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
set_page_dirty(ipage);
/* we don't need to mark_inode_dirty now */
if (inode) {
f2fs_i_pino_write(inode, dir->i_ino);
f2fs_put_page(page, 1);
}
f2fs_update_parent_metadata(dir, inode, 0);
fail:
if (inode)
up_write(&F2FS_I(inode)->i_sem);
out:
f2fs_put_page(ipage, 1);
return err;
}
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode)
{
struct f2fs_dentry_ptr d;
void *inline_dentry;
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
unsigned int bit_pos;
int i;
lock_page(page);
f2fs_wait_on_page_writeback(page, NODE, true, true);
inline_dentry = inline_data_addr(dir, page);
make_dentry_ptr_inline(dir, &d, inline_dentry);
bit_pos = dentry - d.dentry;
for (i = 0; i < slots; i++)
__clear_bit_le(bit_pos + i, d.bitmap);
set_page_dirty(page);
f2fs_put_page(page, 1);
dir->i_ctime = dir->i_mtime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
if (inode)
f2fs_drop_nlink(dir, inode);
}
bool f2fs_empty_inline_dir(struct inode *dir)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct page *ipage;
unsigned int bit_pos = 2;
void *inline_dentry;
struct f2fs_dentry_ptr d;
ipage = f2fs_get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage))
return false;
inline_dentry = inline_data_addr(dir, ipage);
make_dentry_ptr_inline(dir, &d, inline_dentry);
bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
f2fs_put_page(ipage, 1);
if (bit_pos < d.max)
return false;
return true;
}
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
struct fscrypt_str *fstr)
{
struct inode *inode = file_inode(file);
struct page *ipage = NULL;
struct f2fs_dentry_ptr d;
void *inline_dentry = NULL;
int err;
make_dentry_ptr_inline(inode, &d, inline_dentry);
if (ctx->pos == d.max)
return 0;
ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
/*
* f2fs_readdir was protected by inode.i_rwsem, it is safe to access
* ipage without page's lock held.
*/
unlock_page(ipage);
inline_dentry = inline_data_addr(inode, ipage);
make_dentry_ptr_inline(inode, &d, inline_dentry);
err = f2fs_fill_dentries(ctx, &d, 0, fstr);
if (!err)
ctx->pos = d.max;
f2fs_put_page(ipage, 0);
return err < 0 ? err : 0;
}
int f2fs_inline_data_fiemap(struct inode *inode,
struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
{
__u64 byteaddr, ilen;
__u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
FIEMAP_EXTENT_LAST;
struct node_info ni;
struct page *ipage;
int err = 0;
ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
if (!f2fs_has_inline_data(inode)) {
err = -EAGAIN;
goto out;
}
ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
if (start >= ilen)
goto out;
if (start + len < ilen)
ilen = start + len;
ilen -= start;
err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
if (err)
goto out;
byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
byteaddr += (char *)inline_data_addr(inode, ipage) -
(char *)F2FS_INODE(ipage);
err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
out:
f2fs_put_page(ipage, 1);
return err;
}