2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-06 12:44:14 +08:00
linux-next/arch/powerpc/mm/slice.c
Aneesh Kumar K.V 82185222ff powerpc/mm/slice: Move slice_mask struct definition to slice.c
This structure definition need not be in a header since this is used only by
slice.c file. So move it to slice.c. This also allow us to use SLICE_NUM_HIGH
instead of 64.

I also switch the low_slices type to u64 from u16. This doesn't have an impact
on size of struct due to padding added with u16 type. This helps in using
bitmap printing function for printing slice mask.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-03-31 23:09:56 +11:00

756 lines
20 KiB
C

/*
* address space "slices" (meta-segments) support
*
* Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
*
* Based on hugetlb implementation
*
* Copyright (C) 2003 David Gibson, IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/export.h>
#include <linux/hugetlb.h>
#include <asm/mman.h>
#include <asm/mmu.h>
#include <asm/copro.h>
#include <asm/hugetlb.h>
static DEFINE_SPINLOCK(slice_convert_lock);
/*
* One bit per slice. We have lower slices which cover 256MB segments
* upto 4G range. That gets us 16 low slices. For the rest we track slices
* in 1TB size.
*/
struct slice_mask {
u64 low_slices;
DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
};
#ifdef DEBUG
int _slice_debug = 1;
static void slice_print_mask(const char *label, struct slice_mask mask)
{
char *p, buf[SLICE_NUM_LOW + 3 + SLICE_NUM_HIGH + 1];
int i;
if (!_slice_debug)
return;
p = buf;
for (i = 0; i < SLICE_NUM_LOW; i++)
*(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
*(p++) = ' ';
*(p++) = '-';
*(p++) = ' ';
for (i = 0; i < SLICE_NUM_HIGH; i++) {
if (test_bit(i, mask.high_slices))
*(p++) = '1';
else
*(p++) = '0';
}
*(p++) = 0;
printk(KERN_DEBUG "%s:%s\n", label, buf);
}
#define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
#else
static void slice_print_mask(const char *label, struct slice_mask mask) {}
#define slice_dbg(fmt...)
#endif
static void slice_range_to_mask(unsigned long start, unsigned long len,
struct slice_mask *ret)
{
unsigned long end = start + len - 1;
ret->low_slices = 0;
bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
if (start < SLICE_LOW_TOP) {
unsigned long mend = min(end, (SLICE_LOW_TOP - 1));
ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
- (1u << GET_LOW_SLICE_INDEX(start));
}
if ((start + len) > SLICE_LOW_TOP) {
unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
bitmap_set(ret->high_slices, start_index, count);
}
}
static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
unsigned long len)
{
struct vm_area_struct *vma;
if ((mm->task_size - len) < addr)
return 0;
vma = find_vma(mm, addr);
return (!vma || (addr + len) <= vma->vm_start);
}
static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
{
return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
1ul << SLICE_LOW_SHIFT);
}
static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
{
unsigned long start = slice << SLICE_HIGH_SHIFT;
unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
/* Hack, so that each addresses is controlled by exactly one
* of the high or low area bitmaps, the first high area starts
* at 4GB, not 0 */
if (start == 0)
start = SLICE_LOW_TOP;
return !slice_area_is_free(mm, start, end - start);
}
static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret)
{
unsigned long i;
ret->low_slices = 0;
bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
for (i = 0; i < SLICE_NUM_LOW; i++)
if (!slice_low_has_vma(mm, i))
ret->low_slices |= 1u << i;
if (mm->task_size <= SLICE_LOW_TOP)
return;
for (i = 0; i < SLICE_NUM_HIGH; i++)
if (!slice_high_has_vma(mm, i))
__set_bit(i, ret->high_slices);
}
static void slice_mask_for_size(struct mm_struct *mm, int psize, struct slice_mask *ret)
{
unsigned char *hpsizes;
int index, mask_index;
unsigned long i;
u64 lpsizes;
ret->low_slices = 0;
bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
lpsizes = mm->context.low_slices_psize;
for (i = 0; i < SLICE_NUM_LOW; i++)
if (((lpsizes >> (i * 4)) & 0xf) == psize)
ret->low_slices |= 1u << i;
hpsizes = mm->context.high_slices_psize;
for (i = 0; i < SLICE_NUM_HIGH; i++) {
mask_index = i & 0x1;
index = i >> 1;
if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize)
__set_bit(i, ret->high_slices);
}
}
static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
{
DECLARE_BITMAP(result, SLICE_NUM_HIGH);
bitmap_and(result, mask.high_slices,
available.high_slices, SLICE_NUM_HIGH);
return (mask.low_slices & available.low_slices) == mask.low_slices &&
bitmap_equal(result, mask.high_slices, SLICE_NUM_HIGH);
}
static void slice_flush_segments(void *parm)
{
struct mm_struct *mm = parm;
unsigned long flags;
if (mm != current->active_mm)
return;
copy_mm_to_paca(current->active_mm);
local_irq_save(flags);
slb_flush_and_rebolt();
local_irq_restore(flags);
}
static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
{
int index, mask_index;
/* Write the new slice psize bits */
unsigned char *hpsizes;
u64 lpsizes;
unsigned long i, flags;
slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
slice_print_mask(" mask", mask);
/* We need to use a spinlock here to protect against
* concurrent 64k -> 4k demotion ...
*/
spin_lock_irqsave(&slice_convert_lock, flags);
lpsizes = mm->context.low_slices_psize;
for (i = 0; i < SLICE_NUM_LOW; i++)
if (mask.low_slices & (1u << i))
lpsizes = (lpsizes & ~(0xful << (i * 4))) |
(((unsigned long)psize) << (i * 4));
/* Assign the value back */
mm->context.low_slices_psize = lpsizes;
hpsizes = mm->context.high_slices_psize;
for (i = 0; i < SLICE_NUM_HIGH; i++) {
mask_index = i & 0x1;
index = i >> 1;
if (test_bit(i, mask.high_slices))
hpsizes[index] = (hpsizes[index] &
~(0xf << (mask_index * 4))) |
(((unsigned long)psize) << (mask_index * 4));
}
slice_dbg(" lsps=%lx, hsps=%lx\n",
mm->context.low_slices_psize,
mm->context.high_slices_psize);
spin_unlock_irqrestore(&slice_convert_lock, flags);
copro_flush_all_slbs(mm);
}
/*
* Compute which slice addr is part of;
* set *boundary_addr to the start or end boundary of that slice
* (depending on 'end' parameter);
* return boolean indicating if the slice is marked as available in the
* 'available' slice_mark.
*/
static bool slice_scan_available(unsigned long addr,
struct slice_mask available,
int end,
unsigned long *boundary_addr)
{
unsigned long slice;
if (addr < SLICE_LOW_TOP) {
slice = GET_LOW_SLICE_INDEX(addr);
*boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
return !!(available.low_slices & (1u << slice));
} else {
slice = GET_HIGH_SLICE_INDEX(addr);
*boundary_addr = (slice + end) ?
((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
return !!test_bit(slice, available.high_slices);
}
}
static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
unsigned long len,
struct slice_mask available,
int psize)
{
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
unsigned long addr, found, next_end;
struct vm_unmapped_area_info info;
info.flags = 0;
info.length = len;
info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
info.align_offset = 0;
addr = TASK_UNMAPPED_BASE;
while (addr < TASK_SIZE) {
info.low_limit = addr;
if (!slice_scan_available(addr, available, 1, &addr))
continue;
next_slice:
/*
* At this point [info.low_limit; addr) covers
* available slices only and ends at a slice boundary.
* Check if we need to reduce the range, or if we can
* extend it to cover the next available slice.
*/
if (addr >= TASK_SIZE)
addr = TASK_SIZE;
else if (slice_scan_available(addr, available, 1, &next_end)) {
addr = next_end;
goto next_slice;
}
info.high_limit = addr;
found = vm_unmapped_area(&info);
if (!(found & ~PAGE_MASK))
return found;
}
return -ENOMEM;
}
static unsigned long slice_find_area_topdown(struct mm_struct *mm,
unsigned long len,
struct slice_mask available,
int psize)
{
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
unsigned long addr, found, prev;
struct vm_unmapped_area_info info;
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
info.align_offset = 0;
addr = mm->mmap_base;
while (addr > PAGE_SIZE) {
info.high_limit = addr;
if (!slice_scan_available(addr - 1, available, 0, &addr))
continue;
prev_slice:
/*
* At this point [addr; info.high_limit) covers
* available slices only and starts at a slice boundary.
* Check if we need to reduce the range, or if we can
* extend it to cover the previous available slice.
*/
if (addr < PAGE_SIZE)
addr = PAGE_SIZE;
else if (slice_scan_available(addr - 1, available, 0, &prev)) {
addr = prev;
goto prev_slice;
}
info.low_limit = addr;
found = vm_unmapped_area(&info);
if (!(found & ~PAGE_MASK))
return found;
}
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
return slice_find_area_bottomup(mm, len, available, psize);
}
static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
struct slice_mask mask, int psize,
int topdown)
{
if (topdown)
return slice_find_area_topdown(mm, len, mask, psize);
else
return slice_find_area_bottomup(mm, len, mask, psize);
}
static inline void slice_or_mask(struct slice_mask *dst, struct slice_mask *src)
{
DECLARE_BITMAP(result, SLICE_NUM_HIGH);
dst->low_slices |= src->low_slices;
bitmap_or(result, dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
bitmap_copy(dst->high_slices, result, SLICE_NUM_HIGH);
}
static inline void slice_andnot_mask(struct slice_mask *dst, struct slice_mask *src)
{
DECLARE_BITMAP(result, SLICE_NUM_HIGH);
dst->low_slices &= ~src->low_slices;
bitmap_andnot(result, dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
bitmap_copy(dst->high_slices, result, SLICE_NUM_HIGH);
}
#ifdef CONFIG_PPC_64K_PAGES
#define MMU_PAGE_BASE MMU_PAGE_64K
#else
#define MMU_PAGE_BASE MMU_PAGE_4K
#endif
unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
unsigned long flags, unsigned int psize,
int topdown)
{
struct slice_mask mask;
struct slice_mask good_mask;
struct slice_mask potential_mask;
struct slice_mask compat_mask;
int fixed = (flags & MAP_FIXED);
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
struct mm_struct *mm = current->mm;
unsigned long newaddr;
/*
* init different masks
*/
mask.low_slices = 0;
bitmap_zero(mask.high_slices, SLICE_NUM_HIGH);
/* silence stupid warning */;
potential_mask.low_slices = 0;
bitmap_zero(potential_mask.high_slices, SLICE_NUM_HIGH);
compat_mask.low_slices = 0;
bitmap_zero(compat_mask.high_slices, SLICE_NUM_HIGH);
/* Sanity checks */
BUG_ON(mm->task_size == 0);
VM_BUG_ON(radix_enabled());
slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
addr, len, flags, topdown);
if (len > mm->task_size)
return -ENOMEM;
if (len & ((1ul << pshift) - 1))
return -EINVAL;
if (fixed && (addr & ((1ul << pshift) - 1)))
return -EINVAL;
if (fixed && addr > (mm->task_size - len))
return -ENOMEM;
/* If hint, make sure it matches our alignment restrictions */
if (!fixed && addr) {
addr = _ALIGN_UP(addr, 1ul << pshift);
slice_dbg(" aligned addr=%lx\n", addr);
/* Ignore hint if it's too large or overlaps a VMA */
if (addr > mm->task_size - len ||
!slice_area_is_free(mm, addr, len))
addr = 0;
}
/* First make up a "good" mask of slices that have the right size
* already
*/
slice_mask_for_size(mm, psize, &good_mask);
slice_print_mask(" good_mask", good_mask);
/*
* Here "good" means slices that are already the right page size,
* "compat" means slices that have a compatible page size (i.e.
* 4k in a 64k pagesize kernel), and "free" means slices without
* any VMAs.
*
* If MAP_FIXED:
* check if fits in good | compat => OK
* check if fits in good | compat | free => convert free
* else bad
* If have hint:
* check if hint fits in good => OK
* check if hint fits in good | free => convert free
* Otherwise:
* search in good, found => OK
* search in good | free, found => convert free
* search in good | compat | free, found => convert free.
*/
#ifdef CONFIG_PPC_64K_PAGES
/* If we support combo pages, we can allow 64k pages in 4k slices */
if (psize == MMU_PAGE_64K) {
slice_mask_for_size(mm, MMU_PAGE_4K, &compat_mask);
if (fixed)
slice_or_mask(&good_mask, &compat_mask);
}
#endif
/* First check hint if it's valid or if we have MAP_FIXED */
if (addr != 0 || fixed) {
/* Build a mask for the requested range */
slice_range_to_mask(addr, len, &mask);
slice_print_mask(" mask", mask);
/* Check if we fit in the good mask. If we do, we just return,
* nothing else to do
*/
if (slice_check_fit(mask, good_mask)) {
slice_dbg(" fits good !\n");
return addr;
}
} else {
/* Now let's see if we can find something in the existing
* slices for that size
*/
newaddr = slice_find_area(mm, len, good_mask, psize, topdown);
if (newaddr != -ENOMEM) {
/* Found within the good mask, we don't have to setup,
* we thus return directly
*/
slice_dbg(" found area at 0x%lx\n", newaddr);
return newaddr;
}
}
/* We don't fit in the good mask, check what other slices are
* empty and thus can be converted
*/
slice_mask_for_free(mm, &potential_mask);
slice_or_mask(&potential_mask, &good_mask);
slice_print_mask(" potential", potential_mask);
if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
slice_dbg(" fits potential !\n");
goto convert;
}
/* If we have MAP_FIXED and failed the above steps, then error out */
if (fixed)
return -EBUSY;
slice_dbg(" search...\n");
/* If we had a hint that didn't work out, see if we can fit
* anywhere in the good area.
*/
if (addr) {
addr = slice_find_area(mm, len, good_mask, psize, topdown);
if (addr != -ENOMEM) {
slice_dbg(" found area at 0x%lx\n", addr);
return addr;
}
}
/* Now let's see if we can find something in the existing slices
* for that size plus free slices
*/
addr = slice_find_area(mm, len, potential_mask, psize, topdown);
#ifdef CONFIG_PPC_64K_PAGES
if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
/* retry the search with 4k-page slices included */
slice_or_mask(&potential_mask, &compat_mask);
addr = slice_find_area(mm, len, potential_mask, psize,
topdown);
}
#endif
if (addr == -ENOMEM)
return -ENOMEM;
slice_range_to_mask(addr, len, &mask);
slice_dbg(" found potential area at 0x%lx\n", addr);
slice_print_mask(" mask", mask);
convert:
slice_andnot_mask(&mask, &good_mask);
slice_andnot_mask(&mask, &compat_mask);
if (mask.low_slices || !bitmap_empty(mask.high_slices, SLICE_NUM_HIGH)) {
slice_convert(mm, mask, psize);
if (psize > MMU_PAGE_BASE)
on_each_cpu(slice_flush_segments, mm, 1);
}
return addr;
}
EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
unsigned long arch_get_unmapped_area(struct file *filp,
unsigned long addr,
unsigned long len,
unsigned long pgoff,
unsigned long flags)
{
return slice_get_unmapped_area(addr, len, flags,
current->mm->context.user_psize, 0);
}
unsigned long arch_get_unmapped_area_topdown(struct file *filp,
const unsigned long addr0,
const unsigned long len,
const unsigned long pgoff,
const unsigned long flags)
{
return slice_get_unmapped_area(addr0, len, flags,
current->mm->context.user_psize, 1);
}
unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
{
unsigned char *hpsizes;
int index, mask_index;
/*
* Radix doesn't use slice, but can get enabled along with MMU_SLICE
*/
if (radix_enabled()) {
#ifdef CONFIG_PPC_64K_PAGES
return MMU_PAGE_64K;
#else
return MMU_PAGE_4K;
#endif
}
if (addr < SLICE_LOW_TOP) {
u64 lpsizes;
lpsizes = mm->context.low_slices_psize;
index = GET_LOW_SLICE_INDEX(addr);
return (lpsizes >> (index * 4)) & 0xf;
}
hpsizes = mm->context.high_slices_psize;
index = GET_HIGH_SLICE_INDEX(addr);
mask_index = index & 0x1;
return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf;
}
EXPORT_SYMBOL_GPL(get_slice_psize);
/*
* This is called by hash_page when it needs to do a lazy conversion of
* an address space from real 64K pages to combo 4K pages (typically
* when hitting a non cacheable mapping on a processor or hypervisor
* that won't allow them for 64K pages).
*
* This is also called in init_new_context() to change back the user
* psize from whatever the parent context had it set to
* N.B. This may be called before mm->context.id has been set.
*
* This function will only change the content of the {low,high)_slice_psize
* masks, it will not flush SLBs as this shall be handled lazily by the
* caller.
*/
void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
{
int index, mask_index;
unsigned char *hpsizes;
unsigned long flags, lpsizes;
unsigned int old_psize;
int i;
slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
VM_BUG_ON(radix_enabled());
spin_lock_irqsave(&slice_convert_lock, flags);
old_psize = mm->context.user_psize;
slice_dbg(" old_psize=%d\n", old_psize);
if (old_psize == psize)
goto bail;
mm->context.user_psize = psize;
wmb();
lpsizes = mm->context.low_slices_psize;
for (i = 0; i < SLICE_NUM_LOW; i++)
if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
lpsizes = (lpsizes & ~(0xful << (i * 4))) |
(((unsigned long)psize) << (i * 4));
/* Assign the value back */
mm->context.low_slices_psize = lpsizes;
hpsizes = mm->context.high_slices_psize;
for (i = 0; i < SLICE_NUM_HIGH; i++) {
mask_index = i & 0x1;
index = i >> 1;
if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize)
hpsizes[index] = (hpsizes[index] &
~(0xf << (mask_index * 4))) |
(((unsigned long)psize) << (mask_index * 4));
}
slice_dbg(" lsps=%lx, hsps=%lx\n",
mm->context.low_slices_psize,
mm->context.high_slices_psize);
bail:
spin_unlock_irqrestore(&slice_convert_lock, flags);
}
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long len, unsigned int psize)
{
struct slice_mask mask;
VM_BUG_ON(radix_enabled());
slice_range_to_mask(start, len, &mask);
slice_convert(mm, mask, psize);
}
#ifdef CONFIG_HUGETLB_PAGE
/*
* is_hugepage_only_range() is used by generic code to verify whether
* a normal mmap mapping (non hugetlbfs) is valid on a given area.
*
* until the generic code provides a more generic hook and/or starts
* calling arch get_unmapped_area for MAP_FIXED (which our implementation
* here knows how to deal with), we hijack it to keep standard mappings
* away from us.
*
* because of that generic code limitation, MAP_FIXED mapping cannot
* "convert" back a slice with no VMAs to the standard page size, only
* get_unmapped_area() can. It would be possible to fix it here but I
* prefer working on fixing the generic code instead.
*
* WARNING: This will not work if hugetlbfs isn't enabled since the
* generic code will redefine that function as 0 in that. This is ok
* for now as we only use slices with hugetlbfs enabled. This should
* be fixed as the generic code gets fixed.
*/
int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
unsigned long len)
{
struct slice_mask mask, available;
unsigned int psize = mm->context.user_psize;
if (radix_enabled())
return 0;
slice_range_to_mask(addr, len, &mask);
slice_mask_for_size(mm, psize, &available);
#ifdef CONFIG_PPC_64K_PAGES
/* We need to account for 4k slices too */
if (psize == MMU_PAGE_64K) {
struct slice_mask compat_mask;
slice_mask_for_size(mm, MMU_PAGE_4K, &compat_mask);
slice_or_mask(&available, &compat_mask);
}
#endif
#if 0 /* too verbose */
slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
mm, addr, len);
slice_print_mask(" mask", mask);
slice_print_mask(" available", available);
#endif
return !slice_check_fit(mask, available);
}
#endif