2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 08:04:13 +08:00
linux-next/security/Kconfig
Serge E. Hallyn b53767719b Implement file posix capabilities
Implement file posix capabilities.  This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.

This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php.  For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.

Changelog:
	Nov 27:
	Incorporate fixes from Andrew Morton
	(security-introduce-file-caps-tweaks and
	security-introduce-file-caps-warning-fix)
	Fix Kconfig dependency.
	Fix change signaling behavior when file caps are not compiled in.

	Nov 13:
	Integrate comments from Alexey: Remove CONFIG_ ifdef from
	capability.h, and use %zd for printing a size_t.

	Nov 13:
	Fix endianness warnings by sparse as suggested by Alexey
	Dobriyan.

	Nov 09:
	Address warnings of unused variables at cap_bprm_set_security
	when file capabilities are disabled, and simultaneously clean
	up the code a little, by pulling the new code into a helper
	function.

	Nov 08:
	For pointers to required userspace tools and how to use
	them, see http://www.friedhoff.org/fscaps.html.

	Nov 07:
	Fix the calculation of the highest bit checked in
	check_cap_sanity().

	Nov 07:
	Allow file caps to be enabled without CONFIG_SECURITY, since
	capabilities are the default.
	Hook cap_task_setscheduler when !CONFIG_SECURITY.
	Move capable(TASK_KILL) to end of cap_task_kill to reduce
	audit messages.

	Nov 05:
	Add secondary calls in selinux/hooks.c to task_setioprio and
	task_setscheduler so that selinux and capabilities with file
	cap support can be stacked.

	Sep 05:
	As Seth Arnold points out, uid checks are out of place
	for capability code.

	Sep 01:
	Define task_setscheduler, task_setioprio, cap_task_kill, and
	task_setnice to make sure a user cannot affect a process in which
	they called a program with some fscaps.

	One remaining question is the note under task_setscheduler: are we
	ok with CAP_SYS_NICE being sufficient to confine a process to a
	cpuset?

	It is a semantic change, as without fsccaps, attach_task doesn't
	allow CAP_SYS_NICE to override the uid equivalence check.  But since
	it uses security_task_setscheduler, which elsewhere is used where
	CAP_SYS_NICE can be used to override the uid equivalence check,
	fixing it might be tough.

	     task_setscheduler
		 note: this also controls cpuset:attach_task.  Are we ok with
		     CAP_SYS_NICE being used to confine to a cpuset?
	     task_setioprio
	     task_setnice
		 sys_setpriority uses this (through set_one_prio) for another
		 process.  Need same checks as setrlimit

	Aug 21:
	Updated secureexec implementation to reflect the fact that
	euid and uid might be the same and nonzero, but the process
	might still have elevated caps.

	Aug 15:
	Handle endianness of xattrs.
	Enforce capability version match between kernel and disk.
	Enforce that no bits beyond the known max capability are
	set, else return -EPERM.
	With this extra processing, it may be worth reconsidering
	doing all the work at bprm_set_security rather than
	d_instantiate.

	Aug 10:
	Always call getxattr at bprm_set_security, rather than
	caching it at d_instantiate.

[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:43:07 -07:00

110 lines
3.5 KiB
Plaintext

#
# Security configuration
#
menu "Security options"
config KEYS
bool "Enable access key retention support"
help
This option provides support for retaining authentication tokens and
access keys in the kernel.
It also includes provision of methods by which such keys might be
associated with a process so that network filesystems, encryption
support and the like can find them.
Furthermore, a special type of key is available that acts as keyring:
a searchable sequence of keys. Each process is equipped with access
to five standard keyrings: UID-specific, GID-specific, session,
process and thread.
If you are unsure as to whether this is required, answer N.
config KEYS_DEBUG_PROC_KEYS
bool "Enable the /proc/keys file by which keys may be viewed"
depends on KEYS
help
This option turns on support for the /proc/keys file - through which
can be listed all the keys on the system that are viewable by the
reading process.
The only keys included in the list are those that grant View
permission to the reading process whether or not it possesses them.
Note that LSM security checks are still performed, and may further
filter out keys that the current process is not authorised to view.
Only key attributes are listed here; key payloads are not included in
the resulting table.
If you are unsure as to whether this is required, answer N.
config SECURITY
bool "Enable different security models"
depends on SYSFS
help
This allows you to choose different security modules to be
configured into your kernel.
If this option is not selected, the default Linux security
model will be used.
If you are unsure how to answer this question, answer N.
config SECURITY_NETWORK
bool "Socket and Networking Security Hooks"
depends on SECURITY
help
This enables the socket and networking security hooks.
If enabled, a security module can use these hooks to
implement socket and networking access controls.
If you are unsure how to answer this question, answer N.
config SECURITY_NETWORK_XFRM
bool "XFRM (IPSec) Networking Security Hooks"
depends on XFRM && SECURITY_NETWORK
help
This enables the XFRM (IPSec) networking security hooks.
If enabled, a security module can use these hooks to
implement per-packet access controls based on labels
derived from IPSec policy. Non-IPSec communications are
designated as unlabelled, and only sockets authorized
to communicate unlabelled data can send without using
IPSec.
If you are unsure how to answer this question, answer N.
config SECURITY_CAPABILITIES
bool "Default Linux Capabilities"
depends on SECURITY
help
This enables the "default" Linux capabilities functionality.
If you are unsure how to answer this question, answer Y.
config SECURITY_FILE_CAPABILITIES
bool "File POSIX Capabilities (EXPERIMENTAL)"
depends on (SECURITY=n || SECURITY_CAPABILITIES!=n) && EXPERIMENTAL
default n
help
This enables filesystem capabilities, allowing you to give
binaries a subset of root's powers without using setuid 0.
If in doubt, answer N.
config SECURITY_ROOTPLUG
bool "Root Plug Support"
depends on USB=y && SECURITY
help
This is a sample LSM module that should only be used as such.
It prevents any programs running with egid == 0 if a specific
USB device is not present in the system.
See <http://www.linuxjournal.com/article.php?sid=6279> for
more information about this module.
If you are unsure how to answer this question, answer N.
source security/selinux/Kconfig
endmenu