2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/fs/seq_file.c
Michal Hocko a7c3e901a4 mm: introduce kv[mz]alloc helpers
Patch series "kvmalloc", v5.

There are many open coded kmalloc with vmalloc fallback instances in the
tree.  Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.

As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.

Most callers, I could find, have been converted to use the helper
instead.  This is patch 6.  There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.

[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com

This patch (of 9):

Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code.  Yet we do not have any common helper
for that and so users have invented their own helpers.  Some of them are
really creative when doing so.  Let's just add kv[mz]alloc and make sure
it is implemented properly.  This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures.  This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.

This patch also changes some existing users and removes helpers which
are specific for them.  In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL).  Those need to be
fixed separately.

While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers.  Existing ones would have to die
slowly.

[sfr@canb.auug.org.au: f2fs fixup]
  Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>	[ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:12 -07:00

1039 lines
23 KiB
C

/*
* linux/fs/seq_file.c
*
* helper functions for making synthetic files from sequences of records.
* initial implementation -- AV, Oct 2001.
*/
#include <linux/fs.h>
#include <linux/export.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/cred.h>
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/string_helpers.h>
#include <linux/uaccess.h>
#include <asm/page.h>
static void seq_set_overflow(struct seq_file *m)
{
m->count = m->size;
}
static void *seq_buf_alloc(unsigned long size)
{
return kvmalloc(size, GFP_KERNEL);
}
/**
* seq_open - initialize sequential file
* @file: file we initialize
* @op: method table describing the sequence
*
* seq_open() sets @file, associating it with a sequence described
* by @op. @op->start() sets the iterator up and returns the first
* element of sequence. @op->stop() shuts it down. @op->next()
* returns the next element of sequence. @op->show() prints element
* into the buffer. In case of error ->start() and ->next() return
* ERR_PTR(error). In the end of sequence they return %NULL. ->show()
* returns 0 in case of success and negative number in case of error.
* Returning SEQ_SKIP means "discard this element and move on".
* Note: seq_open() will allocate a struct seq_file and store its
* pointer in @file->private_data. This pointer should not be modified.
*/
int seq_open(struct file *file, const struct seq_operations *op)
{
struct seq_file *p;
WARN_ON(file->private_data);
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return -ENOMEM;
file->private_data = p;
mutex_init(&p->lock);
p->op = op;
// No refcounting: the lifetime of 'p' is constrained
// to the lifetime of the file.
p->file = file;
/*
* Wrappers around seq_open(e.g. swaps_open) need to be
* aware of this. If they set f_version themselves, they
* should call seq_open first and then set f_version.
*/
file->f_version = 0;
/*
* seq_files support lseek() and pread(). They do not implement
* write() at all, but we clear FMODE_PWRITE here for historical
* reasons.
*
* If a client of seq_files a) implements file.write() and b) wishes to
* support pwrite() then that client will need to implement its own
* file.open() which calls seq_open() and then sets FMODE_PWRITE.
*/
file->f_mode &= ~FMODE_PWRITE;
return 0;
}
EXPORT_SYMBOL(seq_open);
static int traverse(struct seq_file *m, loff_t offset)
{
loff_t pos = 0, index;
int error = 0;
void *p;
m->version = 0;
index = 0;
m->count = m->from = 0;
if (!offset) {
m->index = index;
return 0;
}
if (!m->buf) {
m->buf = seq_buf_alloc(m->size = PAGE_SIZE);
if (!m->buf)
return -ENOMEM;
}
p = m->op->start(m, &index);
while (p) {
error = PTR_ERR(p);
if (IS_ERR(p))
break;
error = m->op->show(m, p);
if (error < 0)
break;
if (unlikely(error)) {
error = 0;
m->count = 0;
}
if (seq_has_overflowed(m))
goto Eoverflow;
if (pos + m->count > offset) {
m->from = offset - pos;
m->count -= m->from;
m->index = index;
break;
}
pos += m->count;
m->count = 0;
if (pos == offset) {
index++;
m->index = index;
break;
}
p = m->op->next(m, p, &index);
}
m->op->stop(m, p);
m->index = index;
return error;
Eoverflow:
m->op->stop(m, p);
kvfree(m->buf);
m->count = 0;
m->buf = seq_buf_alloc(m->size <<= 1);
return !m->buf ? -ENOMEM : -EAGAIN;
}
/**
* seq_read - ->read() method for sequential files.
* @file: the file to read from
* @buf: the buffer to read to
* @size: the maximum number of bytes to read
* @ppos: the current position in the file
*
* Ready-made ->f_op->read()
*/
ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
struct seq_file *m = file->private_data;
size_t copied = 0;
loff_t pos;
size_t n;
void *p;
int err = 0;
mutex_lock(&m->lock);
/*
* seq_file->op->..m_start/m_stop/m_next may do special actions
* or optimisations based on the file->f_version, so we want to
* pass the file->f_version to those methods.
*
* seq_file->version is just copy of f_version, and seq_file
* methods can treat it simply as file version.
* It is copied in first and copied out after all operations.
* It is convenient to have it as part of structure to avoid the
* need of passing another argument to all the seq_file methods.
*/
m->version = file->f_version;
/*
* if request is to read from zero offset, reset iterator to first
* record as it might have been already advanced by previous requests
*/
if (*ppos == 0)
m->index = 0;
/* Don't assume *ppos is where we left it */
if (unlikely(*ppos != m->read_pos)) {
while ((err = traverse(m, *ppos)) == -EAGAIN)
;
if (err) {
/* With prejudice... */
m->read_pos = 0;
m->version = 0;
m->index = 0;
m->count = 0;
goto Done;
} else {
m->read_pos = *ppos;
}
}
/* grab buffer if we didn't have one */
if (!m->buf) {
m->buf = seq_buf_alloc(m->size = PAGE_SIZE);
if (!m->buf)
goto Enomem;
}
/* if not empty - flush it first */
if (m->count) {
n = min(m->count, size);
err = copy_to_user(buf, m->buf + m->from, n);
if (err)
goto Efault;
m->count -= n;
m->from += n;
size -= n;
buf += n;
copied += n;
if (!m->count) {
m->from = 0;
m->index++;
}
if (!size)
goto Done;
}
/* we need at least one record in buffer */
pos = m->index;
p = m->op->start(m, &pos);
while (1) {
err = PTR_ERR(p);
if (!p || IS_ERR(p))
break;
err = m->op->show(m, p);
if (err < 0)
break;
if (unlikely(err))
m->count = 0;
if (unlikely(!m->count)) {
p = m->op->next(m, p, &pos);
m->index = pos;
continue;
}
if (m->count < m->size)
goto Fill;
m->op->stop(m, p);
kvfree(m->buf);
m->count = 0;
m->buf = seq_buf_alloc(m->size <<= 1);
if (!m->buf)
goto Enomem;
m->version = 0;
pos = m->index;
p = m->op->start(m, &pos);
}
m->op->stop(m, p);
m->count = 0;
goto Done;
Fill:
/* they want more? let's try to get some more */
while (m->count < size) {
size_t offs = m->count;
loff_t next = pos;
p = m->op->next(m, p, &next);
if (!p || IS_ERR(p)) {
err = PTR_ERR(p);
break;
}
err = m->op->show(m, p);
if (seq_has_overflowed(m) || err) {
m->count = offs;
if (likely(err <= 0))
break;
}
pos = next;
}
m->op->stop(m, p);
n = min(m->count, size);
err = copy_to_user(buf, m->buf, n);
if (err)
goto Efault;
copied += n;
m->count -= n;
if (m->count)
m->from = n;
else
pos++;
m->index = pos;
Done:
if (!copied)
copied = err;
else {
*ppos += copied;
m->read_pos += copied;
}
file->f_version = m->version;
mutex_unlock(&m->lock);
return copied;
Enomem:
err = -ENOMEM;
goto Done;
Efault:
err = -EFAULT;
goto Done;
}
EXPORT_SYMBOL(seq_read);
/**
* seq_lseek - ->llseek() method for sequential files.
* @file: the file in question
* @offset: new position
* @whence: 0 for absolute, 1 for relative position
*
* Ready-made ->f_op->llseek()
*/
loff_t seq_lseek(struct file *file, loff_t offset, int whence)
{
struct seq_file *m = file->private_data;
loff_t retval = -EINVAL;
mutex_lock(&m->lock);
m->version = file->f_version;
switch (whence) {
case SEEK_CUR:
offset += file->f_pos;
case SEEK_SET:
if (offset < 0)
break;
retval = offset;
if (offset != m->read_pos) {
while ((retval = traverse(m, offset)) == -EAGAIN)
;
if (retval) {
/* with extreme prejudice... */
file->f_pos = 0;
m->read_pos = 0;
m->version = 0;
m->index = 0;
m->count = 0;
} else {
m->read_pos = offset;
retval = file->f_pos = offset;
}
} else {
file->f_pos = offset;
}
}
file->f_version = m->version;
mutex_unlock(&m->lock);
return retval;
}
EXPORT_SYMBOL(seq_lseek);
/**
* seq_release - free the structures associated with sequential file.
* @file: file in question
* @inode: its inode
*
* Frees the structures associated with sequential file; can be used
* as ->f_op->release() if you don't have private data to destroy.
*/
int seq_release(struct inode *inode, struct file *file)
{
struct seq_file *m = file->private_data;
kvfree(m->buf);
kfree(m);
return 0;
}
EXPORT_SYMBOL(seq_release);
/**
* seq_escape - print string into buffer, escaping some characters
* @m: target buffer
* @s: string
* @esc: set of characters that need escaping
*
* Puts string into buffer, replacing each occurrence of character from
* @esc with usual octal escape.
* Use seq_has_overflowed() to check for errors.
*/
void seq_escape(struct seq_file *m, const char *s, const char *esc)
{
char *buf;
size_t size = seq_get_buf(m, &buf);
int ret;
ret = string_escape_str(s, buf, size, ESCAPE_OCTAL, esc);
seq_commit(m, ret < size ? ret : -1);
}
EXPORT_SYMBOL(seq_escape);
void seq_vprintf(struct seq_file *m, const char *f, va_list args)
{
int len;
if (m->count < m->size) {
len = vsnprintf(m->buf + m->count, m->size - m->count, f, args);
if (m->count + len < m->size) {
m->count += len;
return;
}
}
seq_set_overflow(m);
}
EXPORT_SYMBOL(seq_vprintf);
void seq_printf(struct seq_file *m, const char *f, ...)
{
va_list args;
va_start(args, f);
seq_vprintf(m, f, args);
va_end(args);
}
EXPORT_SYMBOL(seq_printf);
/**
* mangle_path - mangle and copy path to buffer beginning
* @s: buffer start
* @p: beginning of path in above buffer
* @esc: set of characters that need escaping
*
* Copy the path from @p to @s, replacing each occurrence of character from
* @esc with usual octal escape.
* Returns pointer past last written character in @s, or NULL in case of
* failure.
*/
char *mangle_path(char *s, const char *p, const char *esc)
{
while (s <= p) {
char c = *p++;
if (!c) {
return s;
} else if (!strchr(esc, c)) {
*s++ = c;
} else if (s + 4 > p) {
break;
} else {
*s++ = '\\';
*s++ = '0' + ((c & 0300) >> 6);
*s++ = '0' + ((c & 070) >> 3);
*s++ = '0' + (c & 07);
}
}
return NULL;
}
EXPORT_SYMBOL(mangle_path);
/**
* seq_path - seq_file interface to print a pathname
* @m: the seq_file handle
* @path: the struct path to print
* @esc: set of characters to escape in the output
*
* return the absolute path of 'path', as represented by the
* dentry / mnt pair in the path parameter.
*/
int seq_path(struct seq_file *m, const struct path *path, const char *esc)
{
char *buf;
size_t size = seq_get_buf(m, &buf);
int res = -1;
if (size) {
char *p = d_path(path, buf, size);
if (!IS_ERR(p)) {
char *end = mangle_path(buf, p, esc);
if (end)
res = end - buf;
}
}
seq_commit(m, res);
return res;
}
EXPORT_SYMBOL(seq_path);
/**
* seq_file_path - seq_file interface to print a pathname of a file
* @m: the seq_file handle
* @file: the struct file to print
* @esc: set of characters to escape in the output
*
* return the absolute path to the file.
*/
int seq_file_path(struct seq_file *m, struct file *file, const char *esc)
{
return seq_path(m, &file->f_path, esc);
}
EXPORT_SYMBOL(seq_file_path);
/*
* Same as seq_path, but relative to supplied root.
*/
int seq_path_root(struct seq_file *m, const struct path *path,
const struct path *root, const char *esc)
{
char *buf;
size_t size = seq_get_buf(m, &buf);
int res = -ENAMETOOLONG;
if (size) {
char *p;
p = __d_path(path, root, buf, size);
if (!p)
return SEQ_SKIP;
res = PTR_ERR(p);
if (!IS_ERR(p)) {
char *end = mangle_path(buf, p, esc);
if (end)
res = end - buf;
else
res = -ENAMETOOLONG;
}
}
seq_commit(m, res);
return res < 0 && res != -ENAMETOOLONG ? res : 0;
}
/*
* returns the path of the 'dentry' from the root of its filesystem.
*/
int seq_dentry(struct seq_file *m, struct dentry *dentry, const char *esc)
{
char *buf;
size_t size = seq_get_buf(m, &buf);
int res = -1;
if (size) {
char *p = dentry_path(dentry, buf, size);
if (!IS_ERR(p)) {
char *end = mangle_path(buf, p, esc);
if (end)
res = end - buf;
}
}
seq_commit(m, res);
return res;
}
EXPORT_SYMBOL(seq_dentry);
static void *single_start(struct seq_file *p, loff_t *pos)
{
return NULL + (*pos == 0);
}
static void *single_next(struct seq_file *p, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void single_stop(struct seq_file *p, void *v)
{
}
int single_open(struct file *file, int (*show)(struct seq_file *, void *),
void *data)
{
struct seq_operations *op = kmalloc(sizeof(*op), GFP_KERNEL);
int res = -ENOMEM;
if (op) {
op->start = single_start;
op->next = single_next;
op->stop = single_stop;
op->show = show;
res = seq_open(file, op);
if (!res)
((struct seq_file *)file->private_data)->private = data;
else
kfree(op);
}
return res;
}
EXPORT_SYMBOL(single_open);
int single_open_size(struct file *file, int (*show)(struct seq_file *, void *),
void *data, size_t size)
{
char *buf = seq_buf_alloc(size);
int ret;
if (!buf)
return -ENOMEM;
ret = single_open(file, show, data);
if (ret) {
kvfree(buf);
return ret;
}
((struct seq_file *)file->private_data)->buf = buf;
((struct seq_file *)file->private_data)->size = size;
return 0;
}
EXPORT_SYMBOL(single_open_size);
int single_release(struct inode *inode, struct file *file)
{
const struct seq_operations *op = ((struct seq_file *)file->private_data)->op;
int res = seq_release(inode, file);
kfree(op);
return res;
}
EXPORT_SYMBOL(single_release);
int seq_release_private(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
kfree(seq->private);
seq->private = NULL;
return seq_release(inode, file);
}
EXPORT_SYMBOL(seq_release_private);
void *__seq_open_private(struct file *f, const struct seq_operations *ops,
int psize)
{
int rc;
void *private;
struct seq_file *seq;
private = kzalloc(psize, GFP_KERNEL);
if (private == NULL)
goto out;
rc = seq_open(f, ops);
if (rc < 0)
goto out_free;
seq = f->private_data;
seq->private = private;
return private;
out_free:
kfree(private);
out:
return NULL;
}
EXPORT_SYMBOL(__seq_open_private);
int seq_open_private(struct file *filp, const struct seq_operations *ops,
int psize)
{
return __seq_open_private(filp, ops, psize) ? 0 : -ENOMEM;
}
EXPORT_SYMBOL(seq_open_private);
void seq_putc(struct seq_file *m, char c)
{
if (m->count >= m->size)
return;
m->buf[m->count++] = c;
}
EXPORT_SYMBOL(seq_putc);
void seq_puts(struct seq_file *m, const char *s)
{
int len = strlen(s);
if (m->count + len >= m->size) {
seq_set_overflow(m);
return;
}
memcpy(m->buf + m->count, s, len);
m->count += len;
}
EXPORT_SYMBOL(seq_puts);
/*
* A helper routine for putting decimal numbers without rich format of printf().
* only 'unsigned long long' is supported.
* This routine will put strlen(delimiter) + number into seq_file.
* This routine is very quick when you show lots of numbers.
* In usual cases, it will be better to use seq_printf(). It's easier to read.
*/
void seq_put_decimal_ull(struct seq_file *m, const char *delimiter,
unsigned long long num)
{
int len;
if (m->count + 2 >= m->size) /* we'll write 2 bytes at least */
goto overflow;
len = strlen(delimiter);
if (m->count + len >= m->size)
goto overflow;
memcpy(m->buf + m->count, delimiter, len);
m->count += len;
if (m->count + 1 >= m->size)
goto overflow;
if (num < 10) {
m->buf[m->count++] = num + '0';
return;
}
len = num_to_str(m->buf + m->count, m->size - m->count, num);
if (!len)
goto overflow;
m->count += len;
return;
overflow:
seq_set_overflow(m);
}
EXPORT_SYMBOL(seq_put_decimal_ull);
void seq_put_decimal_ll(struct seq_file *m, const char *delimiter, long long num)
{
int len;
if (m->count + 3 >= m->size) /* we'll write 2 bytes at least */
goto overflow;
len = strlen(delimiter);
if (m->count + len >= m->size)
goto overflow;
memcpy(m->buf + m->count, delimiter, len);
m->count += len;
if (m->count + 2 >= m->size)
goto overflow;
if (num < 0) {
m->buf[m->count++] = '-';
num = -num;
}
if (num < 10) {
m->buf[m->count++] = num + '0';
return;
}
len = num_to_str(m->buf + m->count, m->size - m->count, num);
if (!len)
goto overflow;
m->count += len;
return;
overflow:
seq_set_overflow(m);
}
EXPORT_SYMBOL(seq_put_decimal_ll);
/**
* seq_write - write arbitrary data to buffer
* @seq: seq_file identifying the buffer to which data should be written
* @data: data address
* @len: number of bytes
*
* Return 0 on success, non-zero otherwise.
*/
int seq_write(struct seq_file *seq, const void *data, size_t len)
{
if (seq->count + len < seq->size) {
memcpy(seq->buf + seq->count, data, len);
seq->count += len;
return 0;
}
seq_set_overflow(seq);
return -1;
}
EXPORT_SYMBOL(seq_write);
/**
* seq_pad - write padding spaces to buffer
* @m: seq_file identifying the buffer to which data should be written
* @c: the byte to append after padding if non-zero
*/
void seq_pad(struct seq_file *m, char c)
{
int size = m->pad_until - m->count;
if (size > 0)
seq_printf(m, "%*s", size, "");
if (c)
seq_putc(m, c);
}
EXPORT_SYMBOL(seq_pad);
/* A complete analogue of print_hex_dump() */
void seq_hex_dump(struct seq_file *m, const char *prefix_str, int prefix_type,
int rowsize, int groupsize, const void *buf, size_t len,
bool ascii)
{
const u8 *ptr = buf;
int i, linelen, remaining = len;
char *buffer;
size_t size;
int ret;
if (rowsize != 16 && rowsize != 32)
rowsize = 16;
for (i = 0; i < len && !seq_has_overflowed(m); i += rowsize) {
linelen = min(remaining, rowsize);
remaining -= rowsize;
switch (prefix_type) {
case DUMP_PREFIX_ADDRESS:
seq_printf(m, "%s%p: ", prefix_str, ptr + i);
break;
case DUMP_PREFIX_OFFSET:
seq_printf(m, "%s%.8x: ", prefix_str, i);
break;
default:
seq_printf(m, "%s", prefix_str);
break;
}
size = seq_get_buf(m, &buffer);
ret = hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize,
buffer, size, ascii);
seq_commit(m, ret < size ? ret : -1);
seq_putc(m, '\n');
}
}
EXPORT_SYMBOL(seq_hex_dump);
struct list_head *seq_list_start(struct list_head *head, loff_t pos)
{
struct list_head *lh;
list_for_each(lh, head)
if (pos-- == 0)
return lh;
return NULL;
}
EXPORT_SYMBOL(seq_list_start);
struct list_head *seq_list_start_head(struct list_head *head, loff_t pos)
{
if (!pos)
return head;
return seq_list_start(head, pos - 1);
}
EXPORT_SYMBOL(seq_list_start_head);
struct list_head *seq_list_next(void *v, struct list_head *head, loff_t *ppos)
{
struct list_head *lh;
lh = ((struct list_head *)v)->next;
++*ppos;
return lh == head ? NULL : lh;
}
EXPORT_SYMBOL(seq_list_next);
/**
* seq_hlist_start - start an iteration of a hlist
* @head: the head of the hlist
* @pos: the start position of the sequence
*
* Called at seq_file->op->start().
*/
struct hlist_node *seq_hlist_start(struct hlist_head *head, loff_t pos)
{
struct hlist_node *node;
hlist_for_each(node, head)
if (pos-- == 0)
return node;
return NULL;
}
EXPORT_SYMBOL(seq_hlist_start);
/**
* seq_hlist_start_head - start an iteration of a hlist
* @head: the head of the hlist
* @pos: the start position of the sequence
*
* Called at seq_file->op->start(). Call this function if you want to
* print a header at the top of the output.
*/
struct hlist_node *seq_hlist_start_head(struct hlist_head *head, loff_t pos)
{
if (!pos)
return SEQ_START_TOKEN;
return seq_hlist_start(head, pos - 1);
}
EXPORT_SYMBOL(seq_hlist_start_head);
/**
* seq_hlist_next - move to the next position of the hlist
* @v: the current iterator
* @head: the head of the hlist
* @ppos: the current position
*
* Called at seq_file->op->next().
*/
struct hlist_node *seq_hlist_next(void *v, struct hlist_head *head,
loff_t *ppos)
{
struct hlist_node *node = v;
++*ppos;
if (v == SEQ_START_TOKEN)
return head->first;
else
return node->next;
}
EXPORT_SYMBOL(seq_hlist_next);
/**
* seq_hlist_start_rcu - start an iteration of a hlist protected by RCU
* @head: the head of the hlist
* @pos: the start position of the sequence
*
* Called at seq_file->op->start().
*
* This list-traversal primitive may safely run concurrently with
* the _rcu list-mutation primitives such as hlist_add_head_rcu()
* as long as the traversal is guarded by rcu_read_lock().
*/
struct hlist_node *seq_hlist_start_rcu(struct hlist_head *head,
loff_t pos)
{
struct hlist_node *node;
__hlist_for_each_rcu(node, head)
if (pos-- == 0)
return node;
return NULL;
}
EXPORT_SYMBOL(seq_hlist_start_rcu);
/**
* seq_hlist_start_head_rcu - start an iteration of a hlist protected by RCU
* @head: the head of the hlist
* @pos: the start position of the sequence
*
* Called at seq_file->op->start(). Call this function if you want to
* print a header at the top of the output.
*
* This list-traversal primitive may safely run concurrently with
* the _rcu list-mutation primitives such as hlist_add_head_rcu()
* as long as the traversal is guarded by rcu_read_lock().
*/
struct hlist_node *seq_hlist_start_head_rcu(struct hlist_head *head,
loff_t pos)
{
if (!pos)
return SEQ_START_TOKEN;
return seq_hlist_start_rcu(head, pos - 1);
}
EXPORT_SYMBOL(seq_hlist_start_head_rcu);
/**
* seq_hlist_next_rcu - move to the next position of the hlist protected by RCU
* @v: the current iterator
* @head: the head of the hlist
* @ppos: the current position
*
* Called at seq_file->op->next().
*
* This list-traversal primitive may safely run concurrently with
* the _rcu list-mutation primitives such as hlist_add_head_rcu()
* as long as the traversal is guarded by rcu_read_lock().
*/
struct hlist_node *seq_hlist_next_rcu(void *v,
struct hlist_head *head,
loff_t *ppos)
{
struct hlist_node *node = v;
++*ppos;
if (v == SEQ_START_TOKEN)
return rcu_dereference(head->first);
else
return rcu_dereference(node->next);
}
EXPORT_SYMBOL(seq_hlist_next_rcu);
/**
* seq_hlist_start_precpu - start an iteration of a percpu hlist array
* @head: pointer to percpu array of struct hlist_heads
* @cpu: pointer to cpu "cursor"
* @pos: start position of sequence
*
* Called at seq_file->op->start().
*/
struct hlist_node *
seq_hlist_start_percpu(struct hlist_head __percpu *head, int *cpu, loff_t pos)
{
struct hlist_node *node;
for_each_possible_cpu(*cpu) {
hlist_for_each(node, per_cpu_ptr(head, *cpu)) {
if (pos-- == 0)
return node;
}
}
return NULL;
}
EXPORT_SYMBOL(seq_hlist_start_percpu);
/**
* seq_hlist_next_percpu - move to the next position of the percpu hlist array
* @v: pointer to current hlist_node
* @head: pointer to percpu array of struct hlist_heads
* @cpu: pointer to cpu "cursor"
* @pos: start position of sequence
*
* Called at seq_file->op->next().
*/
struct hlist_node *
seq_hlist_next_percpu(void *v, struct hlist_head __percpu *head,
int *cpu, loff_t *pos)
{
struct hlist_node *node = v;
++*pos;
if (node->next)
return node->next;
for (*cpu = cpumask_next(*cpu, cpu_possible_mask); *cpu < nr_cpu_ids;
*cpu = cpumask_next(*cpu, cpu_possible_mask)) {
struct hlist_head *bucket = per_cpu_ptr(head, *cpu);
if (!hlist_empty(bucket))
return bucket->first;
}
return NULL;
}
EXPORT_SYMBOL(seq_hlist_next_percpu);