2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 07:34:06 +08:00
linux-next/sound/soc/codecs/tas6424.c
Jean-Jacques Hiblot 396888772a
ASoC: tas6424: Allow disabling auto diagnostics for faster power-on
The TAS6424 incorporates both DC-load and AC-load diagnostics which are
used to determine the status of the load. The DC diagnostics runs when any
channel is directed to leave the Hi-Z state and enter the MUTE or PLAY
state.
The DC diagnostics are turned on by default but, if a fast startup without
diagnostics is required, the diagnostics can be disabled using a dedicated
ALSA control.

Signed-off-by: Jean-Jacques Hiblot <jjhiblot@ti.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2018-05-04 08:13:12 +09:00

771 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* ALSA SoC Texas Instruments TAS6424 Quad-Channel Audio Amplifier
*
* Copyright (C) 2016-2017 Texas Instruments Incorporated - http://www.ti.com/
* Author: Andreas Dannenberg <dannenberg@ti.com>
* Andrew F. Davis <afd@ti.com>
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include "tas6424.h"
/* Define how often to check (and clear) the fault status register (in ms) */
#define TAS6424_FAULT_CHECK_INTERVAL 200
static const char * const tas6424_supply_names[] = {
"dvdd", /* Digital power supply. Connect to 3.3-V supply. */
"vbat", /* Supply used for higher voltage analog circuits. */
"pvdd", /* Class-D amp output FETs supply. */
};
#define TAS6424_NUM_SUPPLIES ARRAY_SIZE(tas6424_supply_names)
struct tas6424_data {
struct device *dev;
struct regmap *regmap;
struct regulator_bulk_data supplies[TAS6424_NUM_SUPPLIES];
struct delayed_work fault_check_work;
unsigned int last_fault1;
unsigned int last_fault2;
unsigned int last_warn;
struct gpio_desc *standby_gpio;
struct gpio_desc *mute_gpio;
};
/*
* DAC digital volumes. From -103.5 to 24 dB in 0.5 dB steps. Note that
* setting the gain below -100 dB (register value <0x7) is effectively a MUTE
* as per device datasheet.
*/
static DECLARE_TLV_DB_SCALE(dac_tlv, -10350, 50, 0);
static const struct snd_kcontrol_new tas6424_snd_controls[] = {
SOC_SINGLE_TLV("Speaker Driver CH1 Playback Volume",
TAS6424_CH1_VOL_CTRL, 0, 0xff, 0, dac_tlv),
SOC_SINGLE_TLV("Speaker Driver CH2 Playback Volume",
TAS6424_CH2_VOL_CTRL, 0, 0xff, 0, dac_tlv),
SOC_SINGLE_TLV("Speaker Driver CH3 Playback Volume",
TAS6424_CH3_VOL_CTRL, 0, 0xff, 0, dac_tlv),
SOC_SINGLE_TLV("Speaker Driver CH4 Playback Volume",
TAS6424_CH4_VOL_CTRL, 0, 0xff, 0, dac_tlv),
SOC_SINGLE_STROBE("Auto Diagnostics Switch", TAS6424_DC_DIAG_CTRL1,
TAS6424_LDGBYPASS_SHIFT, 1),
};
static int tas6424_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct tas6424_data *tas6424 = snd_soc_component_get_drvdata(component);
dev_dbg(component->dev, "%s() event=0x%0x\n", __func__, event);
if (event & SND_SOC_DAPM_POST_PMU) {
/* Observe codec shutdown-to-active time */
msleep(12);
/* Turn on TAS6424 periodic fault checking/handling */
tas6424->last_fault1 = 0;
tas6424->last_fault2 = 0;
tas6424->last_warn = 0;
schedule_delayed_work(&tas6424->fault_check_work,
msecs_to_jiffies(TAS6424_FAULT_CHECK_INTERVAL));
} else if (event & SND_SOC_DAPM_PRE_PMD) {
/* Disable TAS6424 periodic fault checking/handling */
cancel_delayed_work_sync(&tas6424->fault_check_work);
}
return 0;
}
static const struct snd_soc_dapm_widget tas6424_dapm_widgets[] = {
SND_SOC_DAPM_AIF_IN("DAC IN", "Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC_E("DAC", NULL, SND_SOC_NOPM, 0, 0, tas6424_dac_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_OUTPUT("OUT")
};
static const struct snd_soc_dapm_route tas6424_audio_map[] = {
{ "DAC", NULL, "DAC IN" },
{ "OUT", NULL, "DAC" },
};
static int tas6424_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
unsigned int rate = params_rate(params);
unsigned int width = params_width(params);
u8 sap_ctrl = 0;
dev_dbg(component->dev, "%s() rate=%u width=%u\n", __func__, rate, width);
switch (rate) {
case 44100:
sap_ctrl |= TAS6424_SAP_RATE_44100;
break;
case 48000:
sap_ctrl |= TAS6424_SAP_RATE_48000;
break;
case 96000:
sap_ctrl |= TAS6424_SAP_RATE_96000;
break;
default:
dev_err(component->dev, "unsupported sample rate: %u\n", rate);
return -EINVAL;
}
switch (width) {
case 16:
sap_ctrl |= TAS6424_SAP_TDM_SLOT_SZ_16;
break;
case 24:
break;
default:
dev_err(component->dev, "unsupported sample width: %u\n", width);
return -EINVAL;
}
snd_soc_component_update_bits(component, TAS6424_SAP_CTRL,
TAS6424_SAP_RATE_MASK |
TAS6424_SAP_TDM_SLOT_SZ_16,
sap_ctrl);
return 0;
}
static int tas6424_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
u8 serial_format = 0;
dev_dbg(component->dev, "%s() fmt=0x%0x\n", __func__, fmt);
/* clock masters */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
dev_err(component->dev, "Invalid DAI master/slave interface\n");
return -EINVAL;
}
/* signal polarity */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
default:
dev_err(component->dev, "Invalid DAI clock signal polarity\n");
return -EINVAL;
}
/* interface format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
serial_format |= TAS6424_SAP_I2S;
break;
case SND_SOC_DAIFMT_DSP_A:
serial_format |= TAS6424_SAP_DSP;
break;
case SND_SOC_DAIFMT_DSP_B:
/*
* We can use the fact that the TAS6424 does not care about the
* LRCLK duty cycle during TDM to receive DSP_B formatted data
* in LEFTJ mode (no delaying of the 1st data bit).
*/
serial_format |= TAS6424_SAP_LEFTJ;
break;
case SND_SOC_DAIFMT_LEFT_J:
serial_format |= TAS6424_SAP_LEFTJ;
break;
default:
dev_err(component->dev, "Invalid DAI interface format\n");
return -EINVAL;
}
snd_soc_component_update_bits(component, TAS6424_SAP_CTRL,
TAS6424_SAP_FMT_MASK, serial_format);
return 0;
}
static int tas6424_set_dai_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask,
int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
unsigned int first_slot, last_slot;
bool sap_tdm_slot_last;
dev_dbg(component->dev, "%s() tx_mask=%d rx_mask=%d\n", __func__,
tx_mask, rx_mask);
if (!tx_mask || !rx_mask)
return 0; /* nothing needed to disable TDM mode */
/*
* Determine the first slot and last slot that is being requested so
* we'll be able to more easily enforce certain constraints as the
* TAS6424's TDM interface is not fully configurable.
*/
first_slot = __ffs(tx_mask);
last_slot = __fls(rx_mask);
if (last_slot - first_slot != 4) {
dev_err(component->dev, "tdm mask must cover 4 contiguous slots\n");
return -EINVAL;
}
switch (first_slot) {
case 0:
sap_tdm_slot_last = false;
break;
case 4:
sap_tdm_slot_last = true;
break;
default:
dev_err(component->dev, "tdm mask must start at slot 0 or 4\n");
return -EINVAL;
}
snd_soc_component_update_bits(component, TAS6424_SAP_CTRL, TAS6424_SAP_TDM_SLOT_LAST,
sap_tdm_slot_last ? TAS6424_SAP_TDM_SLOT_LAST : 0);
return 0;
}
static int tas6424_mute(struct snd_soc_dai *dai, int mute)
{
struct snd_soc_component *component = dai->component;
struct tas6424_data *tas6424 = snd_soc_component_get_drvdata(component);
unsigned int val;
dev_dbg(component->dev, "%s() mute=%d\n", __func__, mute);
if (tas6424->mute_gpio) {
gpiod_set_value_cansleep(tas6424->mute_gpio, mute);
return 0;
}
if (mute)
val = TAS6424_ALL_STATE_MUTE;
else
val = TAS6424_ALL_STATE_PLAY;
snd_soc_component_write(component, TAS6424_CH_STATE_CTRL, val);
return 0;
}
static int tas6424_power_off(struct snd_soc_component *component)
{
struct tas6424_data *tas6424 = snd_soc_component_get_drvdata(component);
int ret;
snd_soc_component_write(component, TAS6424_CH_STATE_CTRL, TAS6424_ALL_STATE_HIZ);
regcache_cache_only(tas6424->regmap, true);
regcache_mark_dirty(tas6424->regmap);
ret = regulator_bulk_disable(ARRAY_SIZE(tas6424->supplies),
tas6424->supplies);
if (ret < 0) {
dev_err(component->dev, "failed to disable supplies: %d\n", ret);
return ret;
}
return 0;
}
static int tas6424_power_on(struct snd_soc_component *component)
{
struct tas6424_data *tas6424 = snd_soc_component_get_drvdata(component);
int ret;
u8 chan_states;
int no_auto_diags = 0;
unsigned int reg_val;
if (!regmap_read(tas6424->regmap, TAS6424_DC_DIAG_CTRL1, &reg_val))
no_auto_diags = reg_val & TAS6424_LDGBYPASS_MASK;
ret = regulator_bulk_enable(ARRAY_SIZE(tas6424->supplies),
tas6424->supplies);
if (ret < 0) {
dev_err(component->dev, "failed to enable supplies: %d\n", ret);
return ret;
}
regcache_cache_only(tas6424->regmap, false);
ret = regcache_sync(tas6424->regmap);
if (ret < 0) {
dev_err(component->dev, "failed to sync regcache: %d\n", ret);
return ret;
}
if (tas6424->mute_gpio) {
gpiod_set_value_cansleep(tas6424->mute_gpio, 0);
/*
* channels are muted via the mute pin. Don't also mute
* them via the registers so that subsequent register
* access is not necessary to un-mute the channels
*/
chan_states = TAS6424_ALL_STATE_PLAY;
} else {
chan_states = TAS6424_ALL_STATE_MUTE;
}
snd_soc_component_write(component, TAS6424_CH_STATE_CTRL, chan_states);
/* any time we come out of HIZ, the output channels automatically run DC
* load diagnostics if autodiagnotics are enabled. wait here until this
* completes.
*/
if (!no_auto_diags)
msleep(230);
return 0;
}
static int tas6424_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
dev_dbg(component->dev, "%s() level=%d\n", __func__, level);
switch (level) {
case SND_SOC_BIAS_ON:
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
tas6424_power_on(component);
break;
case SND_SOC_BIAS_OFF:
tas6424_power_off(component);
break;
}
return 0;
}
static struct snd_soc_component_driver soc_codec_dev_tas6424 = {
.set_bias_level = tas6424_set_bias_level,
.controls = tas6424_snd_controls,
.num_controls = ARRAY_SIZE(tas6424_snd_controls),
.dapm_widgets = tas6424_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(tas6424_dapm_widgets),
.dapm_routes = tas6424_audio_map,
.num_dapm_routes = ARRAY_SIZE(tas6424_audio_map),
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static struct snd_soc_dai_ops tas6424_speaker_dai_ops = {
.hw_params = tas6424_hw_params,
.set_fmt = tas6424_set_dai_fmt,
.set_tdm_slot = tas6424_set_dai_tdm_slot,
.digital_mute = tas6424_mute,
};
static struct snd_soc_dai_driver tas6424_dai[] = {
{
.name = "tas6424-amplifier",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 4,
.rates = TAS6424_RATES,
.formats = TAS6424_FORMATS,
},
.ops = &tas6424_speaker_dai_ops,
},
};
static void tas6424_fault_check_work(struct work_struct *work)
{
struct tas6424_data *tas6424 = container_of(work, struct tas6424_data,
fault_check_work.work);
struct device *dev = tas6424->dev;
unsigned int reg;
int ret;
ret = regmap_read(tas6424->regmap, TAS6424_GLOB_FAULT1, &reg);
if (ret < 0) {
dev_err(dev, "failed to read FAULT1 register: %d\n", ret);
goto out;
}
/*
* Ignore any clock faults as there is no clean way to check for them.
* We would need to start checking for those faults *after* the SAIF
* stream has been setup, and stop checking *before* the stream is
* stopped to avoid any false-positives. However there are no
* appropriate hooks to monitor these events.
*/
reg &= TAS6424_FAULT_PVDD_OV |
TAS6424_FAULT_VBAT_OV |
TAS6424_FAULT_PVDD_UV |
TAS6424_FAULT_VBAT_UV;
if (reg)
goto check_global_fault2_reg;
/*
* Only flag errors once for a given occurrence. This is needed as
* the TAS6424 will take time clearing the fault condition internally
* during which we don't want to bombard the system with the same
* error message over and over.
*/
if ((reg & TAS6424_FAULT_PVDD_OV) && !(tas6424->last_fault1 & TAS6424_FAULT_PVDD_OV))
dev_crit(dev, "experienced a PVDD overvoltage fault\n");
if ((reg & TAS6424_FAULT_VBAT_OV) && !(tas6424->last_fault1 & TAS6424_FAULT_VBAT_OV))
dev_crit(dev, "experienced a VBAT overvoltage fault\n");
if ((reg & TAS6424_FAULT_PVDD_UV) && !(tas6424->last_fault1 & TAS6424_FAULT_PVDD_UV))
dev_crit(dev, "experienced a PVDD undervoltage fault\n");
if ((reg & TAS6424_FAULT_VBAT_UV) && !(tas6424->last_fault1 & TAS6424_FAULT_VBAT_UV))
dev_crit(dev, "experienced a VBAT undervoltage fault\n");
/* Store current fault1 value so we can detect any changes next time */
tas6424->last_fault1 = reg;
check_global_fault2_reg:
ret = regmap_read(tas6424->regmap, TAS6424_GLOB_FAULT2, &reg);
if (ret < 0) {
dev_err(dev, "failed to read FAULT2 register: %d\n", ret);
goto out;
}
reg &= TAS6424_FAULT_OTSD |
TAS6424_FAULT_OTSD_CH1 |
TAS6424_FAULT_OTSD_CH2 |
TAS6424_FAULT_OTSD_CH3 |
TAS6424_FAULT_OTSD_CH4;
if (!reg)
goto check_warn_reg;
if ((reg & TAS6424_FAULT_OTSD) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD))
dev_crit(dev, "experienced a global overtemp shutdown\n");
if ((reg & TAS6424_FAULT_OTSD_CH1) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD_CH1))
dev_crit(dev, "experienced an overtemp shutdown on CH1\n");
if ((reg & TAS6424_FAULT_OTSD_CH2) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD_CH2))
dev_crit(dev, "experienced an overtemp shutdown on CH2\n");
if ((reg & TAS6424_FAULT_OTSD_CH3) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD_CH3))
dev_crit(dev, "experienced an overtemp shutdown on CH3\n");
if ((reg & TAS6424_FAULT_OTSD_CH4) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD_CH4))
dev_crit(dev, "experienced an overtemp shutdown on CH4\n");
/* Store current fault2 value so we can detect any changes next time */
tas6424->last_fault2 = reg;
check_warn_reg:
ret = regmap_read(tas6424->regmap, TAS6424_WARN, &reg);
if (ret < 0) {
dev_err(dev, "failed to read WARN register: %d\n", ret);
goto out;
}
reg &= TAS6424_WARN_VDD_UV |
TAS6424_WARN_VDD_POR |
TAS6424_WARN_VDD_OTW |
TAS6424_WARN_VDD_OTW_CH1 |
TAS6424_WARN_VDD_OTW_CH2 |
TAS6424_WARN_VDD_OTW_CH3 |
TAS6424_WARN_VDD_OTW_CH4;
if (!reg)
goto out;
if ((reg & TAS6424_WARN_VDD_UV) && !(tas6424->last_warn & TAS6424_WARN_VDD_UV))
dev_warn(dev, "experienced a VDD under voltage condition\n");
if ((reg & TAS6424_WARN_VDD_POR) && !(tas6424->last_warn & TAS6424_WARN_VDD_POR))
dev_warn(dev, "experienced a VDD POR condition\n");
if ((reg & TAS6424_WARN_VDD_OTW) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW))
dev_warn(dev, "experienced a global overtemp warning\n");
if ((reg & TAS6424_WARN_VDD_OTW_CH1) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW_CH1))
dev_warn(dev, "experienced an overtemp warning on CH1\n");
if ((reg & TAS6424_WARN_VDD_OTW_CH2) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW_CH2))
dev_warn(dev, "experienced an overtemp warning on CH2\n");
if ((reg & TAS6424_WARN_VDD_OTW_CH3) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW_CH3))
dev_warn(dev, "experienced an overtemp warning on CH3\n");
if ((reg & TAS6424_WARN_VDD_OTW_CH4) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW_CH4))
dev_warn(dev, "experienced an overtemp warning on CH4\n");
/* Store current warn value so we can detect any changes next time */
tas6424->last_warn = reg;
/* Clear any faults by toggling the CLEAR_FAULT control bit */
ret = regmap_write_bits(tas6424->regmap, TAS6424_MISC_CTRL3,
TAS6424_CLEAR_FAULT, TAS6424_CLEAR_FAULT);
if (ret < 0)
dev_err(dev, "failed to write MISC_CTRL3 register: %d\n", ret);
ret = regmap_write_bits(tas6424->regmap, TAS6424_MISC_CTRL3,
TAS6424_CLEAR_FAULT, 0);
if (ret < 0)
dev_err(dev, "failed to write MISC_CTRL3 register: %d\n", ret);
out:
/* Schedule the next fault check at the specified interval */
schedule_delayed_work(&tas6424->fault_check_work,
msecs_to_jiffies(TAS6424_FAULT_CHECK_INTERVAL));
}
static const struct reg_default tas6424_reg_defaults[] = {
{ TAS6424_MODE_CTRL, 0x00 },
{ TAS6424_MISC_CTRL1, 0x32 },
{ TAS6424_MISC_CTRL2, 0x62 },
{ TAS6424_SAP_CTRL, 0x04 },
{ TAS6424_CH_STATE_CTRL, 0x55 },
{ TAS6424_CH1_VOL_CTRL, 0xcf },
{ TAS6424_CH2_VOL_CTRL, 0xcf },
{ TAS6424_CH3_VOL_CTRL, 0xcf },
{ TAS6424_CH4_VOL_CTRL, 0xcf },
{ TAS6424_DC_DIAG_CTRL1, 0x00 },
{ TAS6424_DC_DIAG_CTRL2, 0x11 },
{ TAS6424_DC_DIAG_CTRL3, 0x11 },
{ TAS6424_PIN_CTRL, 0xff },
{ TAS6424_AC_DIAG_CTRL1, 0x00 },
{ TAS6424_MISC_CTRL3, 0x00 },
{ TAS6424_CLIP_CTRL, 0x01 },
{ TAS6424_CLIP_WINDOW, 0x14 },
{ TAS6424_CLIP_WARN, 0x00 },
{ TAS6424_CBC_STAT, 0x00 },
{ TAS6424_MISC_CTRL4, 0x40 },
};
static bool tas6424_is_writable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case TAS6424_MODE_CTRL:
case TAS6424_MISC_CTRL1:
case TAS6424_MISC_CTRL2:
case TAS6424_SAP_CTRL:
case TAS6424_CH_STATE_CTRL:
case TAS6424_CH1_VOL_CTRL:
case TAS6424_CH2_VOL_CTRL:
case TAS6424_CH3_VOL_CTRL:
case TAS6424_CH4_VOL_CTRL:
case TAS6424_DC_DIAG_CTRL1:
case TAS6424_DC_DIAG_CTRL2:
case TAS6424_DC_DIAG_CTRL3:
case TAS6424_PIN_CTRL:
case TAS6424_AC_DIAG_CTRL1:
case TAS6424_MISC_CTRL3:
case TAS6424_CLIP_CTRL:
case TAS6424_CLIP_WINDOW:
case TAS6424_CLIP_WARN:
case TAS6424_CBC_STAT:
case TAS6424_MISC_CTRL4:
return true;
default:
return false;
}
}
static bool tas6424_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case TAS6424_DC_LOAD_DIAG_REP12:
case TAS6424_DC_LOAD_DIAG_REP34:
case TAS6424_DC_LOAD_DIAG_REPLO:
case TAS6424_CHANNEL_STATE:
case TAS6424_CHANNEL_FAULT:
case TAS6424_GLOB_FAULT1:
case TAS6424_GLOB_FAULT2:
case TAS6424_WARN:
case TAS6424_AC_LOAD_DIAG_REP1:
case TAS6424_AC_LOAD_DIAG_REP2:
case TAS6424_AC_LOAD_DIAG_REP3:
case TAS6424_AC_LOAD_DIAG_REP4:
return true;
default:
return false;
}
}
static const struct regmap_config tas6424_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.writeable_reg = tas6424_is_writable_reg,
.volatile_reg = tas6424_is_volatile_reg,
.max_register = TAS6424_MAX,
.reg_defaults = tas6424_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(tas6424_reg_defaults),
.cache_type = REGCACHE_RBTREE,
};
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id tas6424_of_ids[] = {
{ .compatible = "ti,tas6424", },
{ },
};
MODULE_DEVICE_TABLE(of, tas6424_of_ids);
#endif
static int tas6424_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct tas6424_data *tas6424;
int ret;
int i;
tas6424 = devm_kzalloc(dev, sizeof(*tas6424), GFP_KERNEL);
if (!tas6424)
return -ENOMEM;
dev_set_drvdata(dev, tas6424);
tas6424->dev = dev;
tas6424->regmap = devm_regmap_init_i2c(client, &tas6424_regmap_config);
if (IS_ERR(tas6424->regmap)) {
ret = PTR_ERR(tas6424->regmap);
dev_err(dev, "unable to allocate register map: %d\n", ret);
return ret;
}
/*
* Get control of the standby pin and set it LOW to take the codec
* out of the stand-by mode.
* Note: The actual pin polarity is taken care of in the GPIO lib
* according the polarity specified in the DTS.
*/
tas6424->standby_gpio = devm_gpiod_get_optional(dev, "standby",
GPIOD_OUT_LOW);
if (IS_ERR(tas6424->standby_gpio)) {
if (PTR_ERR(tas6424->standby_gpio) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_info(dev, "failed to get standby GPIO: %ld\n",
PTR_ERR(tas6424->standby_gpio));
tas6424->standby_gpio = NULL;
}
/*
* Get control of the mute pin and set it HIGH in order to start with
* all the output muted.
* Note: The actual pin polarity is taken care of in the GPIO lib
* according the polarity specified in the DTS.
*/
tas6424->mute_gpio = devm_gpiod_get_optional(dev, "mute",
GPIOD_OUT_HIGH);
if (IS_ERR(tas6424->mute_gpio)) {
if (PTR_ERR(tas6424->mute_gpio) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_info(dev, "failed to get nmute GPIO: %ld\n",
PTR_ERR(tas6424->mute_gpio));
tas6424->mute_gpio = NULL;
}
for (i = 0; i < ARRAY_SIZE(tas6424->supplies); i++)
tas6424->supplies[i].supply = tas6424_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(tas6424->supplies),
tas6424->supplies);
if (ret) {
dev_err(dev, "unable to request supplies: %d\n", ret);
return ret;
}
ret = regulator_bulk_enable(ARRAY_SIZE(tas6424->supplies),
tas6424->supplies);
if (ret) {
dev_err(dev, "unable to enable supplies: %d\n", ret);
return ret;
}
/* Reset device to establish well-defined startup state */
ret = regmap_update_bits(tas6424->regmap, TAS6424_MODE_CTRL,
TAS6424_RESET, TAS6424_RESET);
if (ret) {
dev_err(dev, "unable to reset device: %d\n", ret);
return ret;
}
INIT_DELAYED_WORK(&tas6424->fault_check_work, tas6424_fault_check_work);
ret = devm_snd_soc_register_component(dev, &soc_codec_dev_tas6424,
tas6424_dai, ARRAY_SIZE(tas6424_dai));
if (ret < 0) {
dev_err(dev, "unable to register codec: %d\n", ret);
return ret;
}
return 0;
}
static int tas6424_i2c_remove(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct tas6424_data *tas6424 = dev_get_drvdata(dev);
int ret;
cancel_delayed_work_sync(&tas6424->fault_check_work);
/* put the codec in stand-by */
if (tas6424->standby_gpio)
gpiod_set_value_cansleep(tas6424->standby_gpio, 1);
ret = regulator_bulk_disable(ARRAY_SIZE(tas6424->supplies),
tas6424->supplies);
if (ret < 0) {
dev_err(dev, "unable to disable supplies: %d\n", ret);
return ret;
}
return 0;
}
static const struct i2c_device_id tas6424_i2c_ids[] = {
{ "tas6424", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tas6424_i2c_ids);
static struct i2c_driver tas6424_i2c_driver = {
.driver = {
.name = "tas6424",
.of_match_table = of_match_ptr(tas6424_of_ids),
},
.probe = tas6424_i2c_probe,
.remove = tas6424_i2c_remove,
.id_table = tas6424_i2c_ids,
};
module_i2c_driver(tas6424_i2c_driver);
MODULE_AUTHOR("Andreas Dannenberg <dannenberg@ti.com>");
MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
MODULE_DESCRIPTION("TAS6424 Audio amplifier driver");
MODULE_LICENSE("GPL v2");