2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/fs/xfs/xfs_dquot.c
Kaixu Xia a647d109e0 xfs: fix some comments
Fix the comments to help people understand the code.

Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
[darrick: fix the indenting problems too]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25 11:34:07 -07:00

1387 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2003 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_shared.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_bmap.h"
#include "xfs_quota.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_trans_space.h"
#include "xfs_trans_priv.h"
#include "xfs_qm.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_bmap_btree.h"
#include "xfs_error.h"
/*
* Lock order:
*
* ip->i_lock
* qi->qi_tree_lock
* dquot->q_qlock (xfs_dqlock() and friends)
* dquot->q_flush (xfs_dqflock() and friends)
* qi->qi_lru_lock
*
* If two dquots need to be locked the order is user before group/project,
* otherwise by the lowest id first, see xfs_dqlock2.
*/
struct kmem_zone *xfs_qm_dqtrxzone;
static struct kmem_zone *xfs_qm_dqzone;
static struct lock_class_key xfs_dquot_group_class;
static struct lock_class_key xfs_dquot_project_class;
/*
* This is called to free all the memory associated with a dquot
*/
void
xfs_qm_dqdestroy(
struct xfs_dquot *dqp)
{
ASSERT(list_empty(&dqp->q_lru));
kmem_free(dqp->q_logitem.qli_item.li_lv_shadow);
mutex_destroy(&dqp->q_qlock);
XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot);
kmem_cache_free(xfs_qm_dqzone, dqp);
}
/*
* If default limits are in force, push them into the dquot now.
* We overwrite the dquot limits only if they are zero and this
* is not the root dquot.
*/
void
xfs_qm_adjust_dqlimits(
struct xfs_dquot *dq)
{
struct xfs_mount *mp = dq->q_mount;
struct xfs_quotainfo *q = mp->m_quotainfo;
struct xfs_def_quota *defq;
int prealloc = 0;
ASSERT(dq->q_id);
defq = xfs_get_defquota(q, xfs_dquot_type(dq));
if (!dq->q_blk.softlimit) {
dq->q_blk.softlimit = defq->blk.soft;
prealloc = 1;
}
if (!dq->q_blk.hardlimit) {
dq->q_blk.hardlimit = defq->blk.hard;
prealloc = 1;
}
if (!dq->q_ino.softlimit)
dq->q_ino.softlimit = defq->ino.soft;
if (!dq->q_ino.hardlimit)
dq->q_ino.hardlimit = defq->ino.hard;
if (!dq->q_rtb.softlimit)
dq->q_rtb.softlimit = defq->rtb.soft;
if (!dq->q_rtb.hardlimit)
dq->q_rtb.hardlimit = defq->rtb.hard;
if (prealloc)
xfs_dquot_set_prealloc_limits(dq);
}
/* Set the expiration time of a quota's grace period. */
time64_t
xfs_dquot_set_timeout(
struct xfs_mount *mp,
time64_t timeout)
{
struct xfs_quotainfo *qi = mp->m_quotainfo;
return clamp_t(time64_t, timeout, qi->qi_expiry_min,
qi->qi_expiry_max);
}
/* Set the length of the default grace period. */
time64_t
xfs_dquot_set_grace_period(
time64_t grace)
{
return clamp_t(time64_t, grace, XFS_DQ_GRACE_MIN, XFS_DQ_GRACE_MAX);
}
/*
* Determine if this quota counter is over either limit and set the quota
* timers as appropriate.
*/
static inline void
xfs_qm_adjust_res_timer(
struct xfs_mount *mp,
struct xfs_dquot_res *res,
struct xfs_quota_limits *qlim)
{
ASSERT(res->hardlimit == 0 || res->softlimit <= res->hardlimit);
if ((res->softlimit && res->count > res->softlimit) ||
(res->hardlimit && res->count > res->hardlimit)) {
if (res->timer == 0)
res->timer = xfs_dquot_set_timeout(mp,
ktime_get_real_seconds() + qlim->time);
} else {
if (res->timer == 0)
res->warnings = 0;
else
res->timer = 0;
}
}
/*
* Check the limits and timers of a dquot and start or reset timers
* if necessary.
* This gets called even when quota enforcement is OFF, which makes our
* life a little less complicated. (We just don't reject any quota
* reservations in that case, when enforcement is off).
* We also return 0 as the values of the timers in Q_GETQUOTA calls, when
* enforcement's off.
* In contrast, warnings are a little different in that they don't
* 'automatically' get started when limits get exceeded. They do
* get reset to zero, however, when we find the count to be under
* the soft limit (they are only ever set non-zero via userspace).
*/
void
xfs_qm_adjust_dqtimers(
struct xfs_dquot *dq)
{
struct xfs_mount *mp = dq->q_mount;
struct xfs_quotainfo *qi = mp->m_quotainfo;
struct xfs_def_quota *defq;
ASSERT(dq->q_id);
defq = xfs_get_defquota(qi, xfs_dquot_type(dq));
xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_blk, &defq->blk);
xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_ino, &defq->ino);
xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_rtb, &defq->rtb);
}
/*
* initialize a buffer full of dquots and log the whole thing
*/
STATIC void
xfs_qm_init_dquot_blk(
struct xfs_trans *tp,
struct xfs_mount *mp,
xfs_dqid_t id,
xfs_dqtype_t type,
struct xfs_buf *bp)
{
struct xfs_quotainfo *q = mp->m_quotainfo;
struct xfs_dqblk *d;
xfs_dqid_t curid;
unsigned int qflag;
unsigned int blftype;
int i;
ASSERT(tp);
ASSERT(xfs_buf_islocked(bp));
switch (type) {
case XFS_DQTYPE_USER:
qflag = XFS_UQUOTA_CHKD;
blftype = XFS_BLF_UDQUOT_BUF;
break;
case XFS_DQTYPE_PROJ:
qflag = XFS_PQUOTA_CHKD;
blftype = XFS_BLF_PDQUOT_BUF;
break;
case XFS_DQTYPE_GROUP:
qflag = XFS_GQUOTA_CHKD;
blftype = XFS_BLF_GDQUOT_BUF;
break;
default:
ASSERT(0);
return;
}
d = bp->b_addr;
/*
* ID of the first dquot in the block - id's are zero based.
*/
curid = id - (id % q->qi_dqperchunk);
memset(d, 0, BBTOB(q->qi_dqchunklen));
for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) {
d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
d->dd_diskdq.d_id = cpu_to_be32(curid);
d->dd_diskdq.d_type = type;
if (curid > 0 && xfs_sb_version_hasbigtime(&mp->m_sb))
d->dd_diskdq.d_type |= XFS_DQTYPE_BIGTIME;
if (xfs_sb_version_hascrc(&mp->m_sb)) {
uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid);
xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
XFS_DQUOT_CRC_OFF);
}
}
xfs_trans_dquot_buf(tp, bp, blftype);
/*
* quotacheck uses delayed writes to update all the dquots on disk in an
* efficient manner instead of logging the individual dquot changes as
* they are made. However if we log the buffer allocated here and crash
* after quotacheck while the logged initialisation is still in the
* active region of the log, log recovery can replay the dquot buffer
* initialisation over the top of the checked dquots and corrupt quota
* accounting.
*
* To avoid this problem, quotacheck cannot log the initialised buffer.
* We must still dirty the buffer and write it back before the
* allocation transaction clears the log. Therefore, mark the buffer as
* ordered instead of logging it directly. This is safe for quotacheck
* because it detects and repairs allocated but initialized dquot blocks
* in the quota inodes.
*/
if (!(mp->m_qflags & qflag))
xfs_trans_ordered_buf(tp, bp);
else
xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1);
}
/*
* Initialize the dynamic speculative preallocation thresholds. The lo/hi
* watermarks correspond to the soft and hard limits by default. If a soft limit
* is not specified, we use 95% of the hard limit.
*/
void
xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp)
{
uint64_t space;
dqp->q_prealloc_hi_wmark = dqp->q_blk.hardlimit;
dqp->q_prealloc_lo_wmark = dqp->q_blk.softlimit;
if (!dqp->q_prealloc_lo_wmark) {
dqp->q_prealloc_lo_wmark = dqp->q_prealloc_hi_wmark;
do_div(dqp->q_prealloc_lo_wmark, 100);
dqp->q_prealloc_lo_wmark *= 95;
}
space = dqp->q_prealloc_hi_wmark;
do_div(space, 100);
dqp->q_low_space[XFS_QLOWSP_1_PCNT] = space;
dqp->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3;
dqp->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5;
}
/*
* Ensure that the given in-core dquot has a buffer on disk backing it, and
* return the buffer locked and held. This is called when the bmapi finds a
* hole.
*/
STATIC int
xfs_dquot_disk_alloc(
struct xfs_trans **tpp,
struct xfs_dquot *dqp,
struct xfs_buf **bpp)
{
struct xfs_bmbt_irec map;
struct xfs_trans *tp = *tpp;
struct xfs_mount *mp = tp->t_mountp;
struct xfs_buf *bp;
xfs_dqtype_t qtype = xfs_dquot_type(dqp);
struct xfs_inode *quotip = xfs_quota_inode(mp, qtype);
int nmaps = 1;
int error;
trace_xfs_dqalloc(dqp);
xfs_ilock(quotip, XFS_ILOCK_EXCL);
if (!xfs_this_quota_on(dqp->q_mount, qtype)) {
/*
* Return if this type of quotas is turned off while we didn't
* have an inode lock
*/
xfs_iunlock(quotip, XFS_ILOCK_EXCL);
return -ESRCH;
}
/* Create the block mapping. */
xfs_trans_ijoin(tp, quotip, XFS_ILOCK_EXCL);
error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset,
XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, 0, &map,
&nmaps);
if (error)
return error;
ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB);
ASSERT(nmaps == 1);
ASSERT((map.br_startblock != DELAYSTARTBLOCK) &&
(map.br_startblock != HOLESTARTBLOCK));
/*
* Keep track of the blkno to save a lookup later
*/
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
/* now we can just get the buffer (there's nothing to read yet) */
error = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno,
mp->m_quotainfo->qi_dqchunklen, 0, &bp);
if (error)
return error;
bp->b_ops = &xfs_dquot_buf_ops;
/*
* Make a chunk of dquots out of this buffer and log
* the entire thing.
*/
xfs_qm_init_dquot_blk(tp, mp, dqp->q_id, qtype, bp);
xfs_buf_set_ref(bp, XFS_DQUOT_REF);
/*
* Hold the buffer and join it to the dfops so that we'll still own
* the buffer when we return to the caller. The buffer disposal on
* error must be paid attention to very carefully, as it has been
* broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota
* code when allocating a new dquot record" in 2005, and the later
* conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep
* the buffer locked across the _defer_finish call. We can now do
* this correctly with xfs_defer_bjoin.
*
* Above, we allocated a disk block for the dquot information and used
* get_buf to initialize the dquot. If the _defer_finish fails, the old
* transaction is gone but the new buffer is not joined or held to any
* transaction, so we must _buf_relse it.
*
* If everything succeeds, the caller of this function is returned a
* buffer that is locked and held to the transaction. The caller
* is responsible for unlocking any buffer passed back, either
* manually or by committing the transaction. On error, the buffer is
* released and not passed back.
*/
xfs_trans_bhold(tp, bp);
error = xfs_defer_finish(tpp);
if (error) {
xfs_trans_bhold_release(*tpp, bp);
xfs_trans_brelse(*tpp, bp);
return error;
}
*bpp = bp;
return 0;
}
/*
* Read in the in-core dquot's on-disk metadata and return the buffer.
* Returns ENOENT to signal a hole.
*/
STATIC int
xfs_dquot_disk_read(
struct xfs_mount *mp,
struct xfs_dquot *dqp,
struct xfs_buf **bpp)
{
struct xfs_bmbt_irec map;
struct xfs_buf *bp;
xfs_dqtype_t qtype = xfs_dquot_type(dqp);
struct xfs_inode *quotip = xfs_quota_inode(mp, qtype);
uint lock_mode;
int nmaps = 1;
int error;
lock_mode = xfs_ilock_data_map_shared(quotip);
if (!xfs_this_quota_on(mp, qtype)) {
/*
* Return if this type of quotas is turned off while we
* didn't have the quota inode lock.
*/
xfs_iunlock(quotip, lock_mode);
return -ESRCH;
}
/*
* Find the block map; no allocations yet
*/
error = xfs_bmapi_read(quotip, dqp->q_fileoffset,
XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0);
xfs_iunlock(quotip, lock_mode);
if (error)
return error;
ASSERT(nmaps == 1);
ASSERT(map.br_blockcount >= 1);
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
if (map.br_startblock == HOLESTARTBLOCK)
return -ENOENT;
trace_xfs_dqtobp_read(dqp);
/*
* store the blkno etc so that we don't have to do the
* mapping all the time
*/
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
mp->m_quotainfo->qi_dqchunklen, 0, &bp,
&xfs_dquot_buf_ops);
if (error) {
ASSERT(bp == NULL);
return error;
}
ASSERT(xfs_buf_islocked(bp));
xfs_buf_set_ref(bp, XFS_DQUOT_REF);
*bpp = bp;
return 0;
}
/* Allocate and initialize everything we need for an incore dquot. */
STATIC struct xfs_dquot *
xfs_dquot_alloc(
struct xfs_mount *mp,
xfs_dqid_t id,
xfs_dqtype_t type)
{
struct xfs_dquot *dqp;
dqp = kmem_cache_zalloc(xfs_qm_dqzone, GFP_KERNEL | __GFP_NOFAIL);
dqp->q_type = type;
dqp->q_id = id;
dqp->q_mount = mp;
INIT_LIST_HEAD(&dqp->q_lru);
mutex_init(&dqp->q_qlock);
init_waitqueue_head(&dqp->q_pinwait);
dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk;
/*
* Offset of dquot in the (fixed sized) dquot chunk.
*/
dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) *
sizeof(xfs_dqblk_t);
/*
* Because we want to use a counting completion, complete
* the flush completion once to allow a single access to
* the flush completion without blocking.
*/
init_completion(&dqp->q_flush);
complete(&dqp->q_flush);
/*
* Make sure group quotas have a different lock class than user
* quotas.
*/
switch (type) {
case XFS_DQTYPE_USER:
/* uses the default lock class */
break;
case XFS_DQTYPE_GROUP:
lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class);
break;
case XFS_DQTYPE_PROJ:
lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class);
break;
default:
ASSERT(0);
break;
}
xfs_qm_dquot_logitem_init(dqp);
XFS_STATS_INC(mp, xs_qm_dquot);
return dqp;
}
/* Copy the in-core quota fields in from the on-disk buffer. */
STATIC int
xfs_dquot_from_disk(
struct xfs_dquot *dqp,
struct xfs_buf *bp)
{
struct xfs_disk_dquot *ddqp = bp->b_addr + dqp->q_bufoffset;
/*
* Ensure that we got the type and ID we were looking for.
* Everything else was checked by the dquot buffer verifier.
*/
if ((ddqp->d_type & XFS_DQTYPE_REC_MASK) != xfs_dquot_type(dqp) ||
be32_to_cpu(ddqp->d_id) != dqp->q_id) {
xfs_alert_tag(bp->b_mount, XFS_PTAG_VERIFIER_ERROR,
"Metadata corruption detected at %pS, quota %u",
__this_address, dqp->q_id);
xfs_alert(bp->b_mount, "Unmount and run xfs_repair");
return -EFSCORRUPTED;
}
/* copy everything from disk dquot to the incore dquot */
dqp->q_type = ddqp->d_type;
dqp->q_blk.hardlimit = be64_to_cpu(ddqp->d_blk_hardlimit);
dqp->q_blk.softlimit = be64_to_cpu(ddqp->d_blk_softlimit);
dqp->q_ino.hardlimit = be64_to_cpu(ddqp->d_ino_hardlimit);
dqp->q_ino.softlimit = be64_to_cpu(ddqp->d_ino_softlimit);
dqp->q_rtb.hardlimit = be64_to_cpu(ddqp->d_rtb_hardlimit);
dqp->q_rtb.softlimit = be64_to_cpu(ddqp->d_rtb_softlimit);
dqp->q_blk.count = be64_to_cpu(ddqp->d_bcount);
dqp->q_ino.count = be64_to_cpu(ddqp->d_icount);
dqp->q_rtb.count = be64_to_cpu(ddqp->d_rtbcount);
dqp->q_blk.warnings = be16_to_cpu(ddqp->d_bwarns);
dqp->q_ino.warnings = be16_to_cpu(ddqp->d_iwarns);
dqp->q_rtb.warnings = be16_to_cpu(ddqp->d_rtbwarns);
dqp->q_blk.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_btimer);
dqp->q_ino.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_itimer);
dqp->q_rtb.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_rtbtimer);
/*
* Reservation counters are defined as reservation plus current usage
* to avoid having to add every time.
*/
dqp->q_blk.reserved = dqp->q_blk.count;
dqp->q_ino.reserved = dqp->q_ino.count;
dqp->q_rtb.reserved = dqp->q_rtb.count;
/* initialize the dquot speculative prealloc thresholds */
xfs_dquot_set_prealloc_limits(dqp);
return 0;
}
/* Copy the in-core quota fields into the on-disk buffer. */
void
xfs_dquot_to_disk(
struct xfs_disk_dquot *ddqp,
struct xfs_dquot *dqp)
{
ddqp->d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
ddqp->d_version = XFS_DQUOT_VERSION;
ddqp->d_type = dqp->q_type;
ddqp->d_id = cpu_to_be32(dqp->q_id);
ddqp->d_pad0 = 0;
ddqp->d_pad = 0;
ddqp->d_blk_hardlimit = cpu_to_be64(dqp->q_blk.hardlimit);
ddqp->d_blk_softlimit = cpu_to_be64(dqp->q_blk.softlimit);
ddqp->d_ino_hardlimit = cpu_to_be64(dqp->q_ino.hardlimit);
ddqp->d_ino_softlimit = cpu_to_be64(dqp->q_ino.softlimit);
ddqp->d_rtb_hardlimit = cpu_to_be64(dqp->q_rtb.hardlimit);
ddqp->d_rtb_softlimit = cpu_to_be64(dqp->q_rtb.softlimit);
ddqp->d_bcount = cpu_to_be64(dqp->q_blk.count);
ddqp->d_icount = cpu_to_be64(dqp->q_ino.count);
ddqp->d_rtbcount = cpu_to_be64(dqp->q_rtb.count);
ddqp->d_bwarns = cpu_to_be16(dqp->q_blk.warnings);
ddqp->d_iwarns = cpu_to_be16(dqp->q_ino.warnings);
ddqp->d_rtbwarns = cpu_to_be16(dqp->q_rtb.warnings);
ddqp->d_btimer = xfs_dquot_to_disk_ts(dqp, dqp->q_blk.timer);
ddqp->d_itimer = xfs_dquot_to_disk_ts(dqp, dqp->q_ino.timer);
ddqp->d_rtbtimer = xfs_dquot_to_disk_ts(dqp, dqp->q_rtb.timer);
}
/* Allocate and initialize the dquot buffer for this in-core dquot. */
static int
xfs_qm_dqread_alloc(
struct xfs_mount *mp,
struct xfs_dquot *dqp,
struct xfs_buf **bpp)
{
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc,
XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp);
if (error)
goto err;
error = xfs_dquot_disk_alloc(&tp, dqp, bpp);
if (error)
goto err_cancel;
error = xfs_trans_commit(tp);
if (error) {
/*
* Buffer was held to the transaction, so we have to unlock it
* manually here because we're not passing it back.
*/
xfs_buf_relse(*bpp);
*bpp = NULL;
goto err;
}
return 0;
err_cancel:
xfs_trans_cancel(tp);
err:
return error;
}
/*
* Read in the ondisk dquot using dqtobp() then copy it to an incore version,
* and release the buffer immediately. If @can_alloc is true, fill any
* holes in the on-disk metadata.
*/
static int
xfs_qm_dqread(
struct xfs_mount *mp,
xfs_dqid_t id,
xfs_dqtype_t type,
bool can_alloc,
struct xfs_dquot **dqpp)
{
struct xfs_dquot *dqp;
struct xfs_buf *bp;
int error;
dqp = xfs_dquot_alloc(mp, id, type);
trace_xfs_dqread(dqp);
/* Try to read the buffer, allocating if necessary. */
error = xfs_dquot_disk_read(mp, dqp, &bp);
if (error == -ENOENT && can_alloc)
error = xfs_qm_dqread_alloc(mp, dqp, &bp);
if (error)
goto err;
/*
* At this point we should have a clean locked buffer. Copy the data
* to the incore dquot and release the buffer since the incore dquot
* has its own locking protocol so we needn't tie up the buffer any
* further.
*/
ASSERT(xfs_buf_islocked(bp));
error = xfs_dquot_from_disk(dqp, bp);
xfs_buf_relse(bp);
if (error)
goto err;
*dqpp = dqp;
return error;
err:
trace_xfs_dqread_fail(dqp);
xfs_qm_dqdestroy(dqp);
*dqpp = NULL;
return error;
}
/*
* Advance to the next id in the current chunk, or if at the
* end of the chunk, skip ahead to first id in next allocated chunk
* using the SEEK_DATA interface.
*/
static int
xfs_dq_get_next_id(
struct xfs_mount *mp,
xfs_dqtype_t type,
xfs_dqid_t *id)
{
struct xfs_inode *quotip = xfs_quota_inode(mp, type);
xfs_dqid_t next_id = *id + 1; /* simple advance */
uint lock_flags;
struct xfs_bmbt_irec got;
struct xfs_iext_cursor cur;
xfs_fsblock_t start;
int error = 0;
/* If we'd wrap past the max ID, stop */
if (next_id < *id)
return -ENOENT;
/* If new ID is within the current chunk, advancing it sufficed */
if (next_id % mp->m_quotainfo->qi_dqperchunk) {
*id = next_id;
return 0;
}
/* Nope, next_id is now past the current chunk, so find the next one */
start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk;
lock_flags = xfs_ilock_data_map_shared(quotip);
if (!(quotip->i_df.if_flags & XFS_IFEXTENTS)) {
error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK);
if (error)
return error;
}
if (xfs_iext_lookup_extent(quotip, &quotip->i_df, start, &cur, &got)) {
/* contiguous chunk, bump startoff for the id calculation */
if (got.br_startoff < start)
got.br_startoff = start;
*id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk;
} else {
error = -ENOENT;
}
xfs_iunlock(quotip, lock_flags);
return error;
}
/*
* Look up the dquot in the in-core cache. If found, the dquot is returned
* locked and ready to go.
*/
static struct xfs_dquot *
xfs_qm_dqget_cache_lookup(
struct xfs_mount *mp,
struct xfs_quotainfo *qi,
struct radix_tree_root *tree,
xfs_dqid_t id)
{
struct xfs_dquot *dqp;
restart:
mutex_lock(&qi->qi_tree_lock);
dqp = radix_tree_lookup(tree, id);
if (!dqp) {
mutex_unlock(&qi->qi_tree_lock);
XFS_STATS_INC(mp, xs_qm_dqcachemisses);
return NULL;
}
xfs_dqlock(dqp);
if (dqp->q_flags & XFS_DQFLAG_FREEING) {
xfs_dqunlock(dqp);
mutex_unlock(&qi->qi_tree_lock);
trace_xfs_dqget_freeing(dqp);
delay(1);
goto restart;
}
dqp->q_nrefs++;
mutex_unlock(&qi->qi_tree_lock);
trace_xfs_dqget_hit(dqp);
XFS_STATS_INC(mp, xs_qm_dqcachehits);
return dqp;
}
/*
* Try to insert a new dquot into the in-core cache. If an error occurs the
* caller should throw away the dquot and start over. Otherwise, the dquot
* is returned locked (and held by the cache) as if there had been a cache
* hit.
*/
static int
xfs_qm_dqget_cache_insert(
struct xfs_mount *mp,
struct xfs_quotainfo *qi,
struct radix_tree_root *tree,
xfs_dqid_t id,
struct xfs_dquot *dqp)
{
int error;
mutex_lock(&qi->qi_tree_lock);
error = radix_tree_insert(tree, id, dqp);
if (unlikely(error)) {
/* Duplicate found! Caller must try again. */
WARN_ON(error != -EEXIST);
mutex_unlock(&qi->qi_tree_lock);
trace_xfs_dqget_dup(dqp);
return error;
}
/* Return a locked dquot to the caller, with a reference taken. */
xfs_dqlock(dqp);
dqp->q_nrefs = 1;
qi->qi_dquots++;
mutex_unlock(&qi->qi_tree_lock);
return 0;
}
/* Check our input parameters. */
static int
xfs_qm_dqget_checks(
struct xfs_mount *mp,
xfs_dqtype_t type)
{
if (WARN_ON_ONCE(!XFS_IS_QUOTA_RUNNING(mp)))
return -ESRCH;
switch (type) {
case XFS_DQTYPE_USER:
if (!XFS_IS_UQUOTA_ON(mp))
return -ESRCH;
return 0;
case XFS_DQTYPE_GROUP:
if (!XFS_IS_GQUOTA_ON(mp))
return -ESRCH;
return 0;
case XFS_DQTYPE_PROJ:
if (!XFS_IS_PQUOTA_ON(mp))
return -ESRCH;
return 0;
default:
WARN_ON_ONCE(0);
return -EINVAL;
}
}
/*
* Given the file system, id, and type (UDQUOT/GDQUOT/PDQUOT), return a
* locked dquot, doing an allocation (if requested) as needed.
*/
int
xfs_qm_dqget(
struct xfs_mount *mp,
xfs_dqid_t id,
xfs_dqtype_t type,
bool can_alloc,
struct xfs_dquot **O_dqpp)
{
struct xfs_quotainfo *qi = mp->m_quotainfo;
struct radix_tree_root *tree = xfs_dquot_tree(qi, type);
struct xfs_dquot *dqp;
int error;
error = xfs_qm_dqget_checks(mp, type);
if (error)
return error;
restart:
dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
if (dqp) {
*O_dqpp = dqp;
return 0;
}
error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
if (error)
return error;
error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
if (error) {
/*
* Duplicate found. Just throw away the new dquot and start
* over.
*/
xfs_qm_dqdestroy(dqp);
XFS_STATS_INC(mp, xs_qm_dquot_dups);
goto restart;
}
trace_xfs_dqget_miss(dqp);
*O_dqpp = dqp;
return 0;
}
/*
* Given a dquot id and type, read and initialize a dquot from the on-disk
* metadata. This function is only for use during quota initialization so
* it ignores the dquot cache assuming that the dquot shrinker isn't set up.
* The caller is responsible for _qm_dqdestroy'ing the returned dquot.
*/
int
xfs_qm_dqget_uncached(
struct xfs_mount *mp,
xfs_dqid_t id,
xfs_dqtype_t type,
struct xfs_dquot **dqpp)
{
int error;
error = xfs_qm_dqget_checks(mp, type);
if (error)
return error;
return xfs_qm_dqread(mp, id, type, 0, dqpp);
}
/* Return the quota id for a given inode and type. */
xfs_dqid_t
xfs_qm_id_for_quotatype(
struct xfs_inode *ip,
xfs_dqtype_t type)
{
switch (type) {
case XFS_DQTYPE_USER:
return i_uid_read(VFS_I(ip));
case XFS_DQTYPE_GROUP:
return i_gid_read(VFS_I(ip));
case XFS_DQTYPE_PROJ:
return ip->i_d.di_projid;
}
ASSERT(0);
return 0;
}
/*
* Return the dquot for a given inode and type. If @can_alloc is true, then
* allocate blocks if needed. The inode's ILOCK must be held and it must not
* have already had an inode attached.
*/
int
xfs_qm_dqget_inode(
struct xfs_inode *ip,
xfs_dqtype_t type,
bool can_alloc,
struct xfs_dquot **O_dqpp)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_quotainfo *qi = mp->m_quotainfo;
struct radix_tree_root *tree = xfs_dquot_tree(qi, type);
struct xfs_dquot *dqp;
xfs_dqid_t id;
int error;
error = xfs_qm_dqget_checks(mp, type);
if (error)
return error;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
ASSERT(xfs_inode_dquot(ip, type) == NULL);
id = xfs_qm_id_for_quotatype(ip, type);
restart:
dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
if (dqp) {
*O_dqpp = dqp;
return 0;
}
/*
* Dquot cache miss. We don't want to keep the inode lock across
* a (potential) disk read. Also we don't want to deal with the lock
* ordering between quotainode and this inode. OTOH, dropping the inode
* lock here means dealing with a chown that can happen before
* we re-acquire the lock.
*/
xfs_iunlock(ip, XFS_ILOCK_EXCL);
error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (error)
return error;
/*
* A dquot could be attached to this inode by now, since we had
* dropped the ilock.
*/
if (xfs_this_quota_on(mp, type)) {
struct xfs_dquot *dqp1;
dqp1 = xfs_inode_dquot(ip, type);
if (dqp1) {
xfs_qm_dqdestroy(dqp);
dqp = dqp1;
xfs_dqlock(dqp);
goto dqret;
}
} else {
/* inode stays locked on return */
xfs_qm_dqdestroy(dqp);
return -ESRCH;
}
error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
if (error) {
/*
* Duplicate found. Just throw away the new dquot and start
* over.
*/
xfs_qm_dqdestroy(dqp);
XFS_STATS_INC(mp, xs_qm_dquot_dups);
goto restart;
}
dqret:
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
trace_xfs_dqget_miss(dqp);
*O_dqpp = dqp;
return 0;
}
/*
* Starting at @id and progressing upwards, look for an initialized incore
* dquot, lock it, and return it.
*/
int
xfs_qm_dqget_next(
struct xfs_mount *mp,
xfs_dqid_t id,
xfs_dqtype_t type,
struct xfs_dquot **dqpp)
{
struct xfs_dquot *dqp;
int error = 0;
*dqpp = NULL;
for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) {
error = xfs_qm_dqget(mp, id, type, false, &dqp);
if (error == -ENOENT)
continue;
else if (error != 0)
break;
if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) {
*dqpp = dqp;
return 0;
}
xfs_qm_dqput(dqp);
}
return error;
}
/*
* Release a reference to the dquot (decrement ref-count) and unlock it.
*
* If there is a group quota attached to this dquot, carefully release that
* too without tripping over deadlocks'n'stuff.
*/
void
xfs_qm_dqput(
struct xfs_dquot *dqp)
{
ASSERT(dqp->q_nrefs > 0);
ASSERT(XFS_DQ_IS_LOCKED(dqp));
trace_xfs_dqput(dqp);
if (--dqp->q_nrefs == 0) {
struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo;
trace_xfs_dqput_free(dqp);
if (list_lru_add(&qi->qi_lru, &dqp->q_lru))
XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused);
}
xfs_dqunlock(dqp);
}
/*
* Release a dquot. Flush it if dirty, then dqput() it.
* dquot must not be locked.
*/
void
xfs_qm_dqrele(
struct xfs_dquot *dqp)
{
if (!dqp)
return;
trace_xfs_dqrele(dqp);
xfs_dqlock(dqp);
/*
* We don't care to flush it if the dquot is dirty here.
* That will create stutters that we want to avoid.
* Instead we do a delayed write when we try to reclaim
* a dirty dquot. Also xfs_sync will take part of the burden...
*/
xfs_qm_dqput(dqp);
}
/*
* This is the dquot flushing I/O completion routine. It is called
* from interrupt level when the buffer containing the dquot is
* flushed to disk. It is responsible for removing the dquot logitem
* from the AIL if it has not been re-logged, and unlocking the dquot's
* flush lock. This behavior is very similar to that of inodes..
*/
static void
xfs_qm_dqflush_done(
struct xfs_log_item *lip)
{
struct xfs_dq_logitem *qip = (struct xfs_dq_logitem *)lip;
struct xfs_dquot *dqp = qip->qli_dquot;
struct xfs_ail *ailp = lip->li_ailp;
xfs_lsn_t tail_lsn;
/*
* We only want to pull the item from the AIL if its
* location in the log has not changed since we started the flush.
* Thus, we only bother if the dquot's lsn has
* not changed. First we check the lsn outside the lock
* since it's cheaper, and then we recheck while
* holding the lock before removing the dquot from the AIL.
*/
if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) &&
((lip->li_lsn == qip->qli_flush_lsn) ||
test_bit(XFS_LI_FAILED, &lip->li_flags))) {
spin_lock(&ailp->ail_lock);
xfs_clear_li_failed(lip);
if (lip->li_lsn == qip->qli_flush_lsn) {
/* xfs_ail_update_finish() drops the AIL lock */
tail_lsn = xfs_ail_delete_one(ailp, lip);
xfs_ail_update_finish(ailp, tail_lsn);
} else {
spin_unlock(&ailp->ail_lock);
}
}
/*
* Release the dq's flush lock since we're done with it.
*/
xfs_dqfunlock(dqp);
}
void
xfs_buf_dquot_iodone(
struct xfs_buf *bp)
{
struct xfs_log_item *lip, *n;
list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
list_del_init(&lip->li_bio_list);
xfs_qm_dqflush_done(lip);
}
}
void
xfs_buf_dquot_io_fail(
struct xfs_buf *bp)
{
struct xfs_log_item *lip;
spin_lock(&bp->b_mount->m_ail->ail_lock);
list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
xfs_set_li_failed(lip, bp);
spin_unlock(&bp->b_mount->m_ail->ail_lock);
}
/* Check incore dquot for errors before we flush. */
static xfs_failaddr_t
xfs_qm_dqflush_check(
struct xfs_dquot *dqp)
{
xfs_dqtype_t type = xfs_dquot_type(dqp);
if (type != XFS_DQTYPE_USER &&
type != XFS_DQTYPE_GROUP &&
type != XFS_DQTYPE_PROJ)
return __this_address;
if (dqp->q_id == 0)
return NULL;
if (dqp->q_blk.softlimit && dqp->q_blk.count > dqp->q_blk.softlimit &&
!dqp->q_blk.timer)
return __this_address;
if (dqp->q_ino.softlimit && dqp->q_ino.count > dqp->q_ino.softlimit &&
!dqp->q_ino.timer)
return __this_address;
if (dqp->q_rtb.softlimit && dqp->q_rtb.count > dqp->q_rtb.softlimit &&
!dqp->q_rtb.timer)
return __this_address;
/* bigtime flag should never be set on root dquots */
if (dqp->q_type & XFS_DQTYPE_BIGTIME) {
if (!xfs_sb_version_hasbigtime(&dqp->q_mount->m_sb))
return __this_address;
if (dqp->q_id == 0)
return __this_address;
}
return NULL;
}
/*
* Write a modified dquot to disk.
* The dquot must be locked and the flush lock too taken by caller.
* The flush lock will not be unlocked until the dquot reaches the disk,
* but the dquot is free to be unlocked and modified by the caller
* in the interim. Dquot is still locked on return. This behavior is
* identical to that of inodes.
*/
int
xfs_qm_dqflush(
struct xfs_dquot *dqp,
struct xfs_buf **bpp)
{
struct xfs_mount *mp = dqp->q_mount;
struct xfs_log_item *lip = &dqp->q_logitem.qli_item;
struct xfs_buf *bp;
struct xfs_dqblk *dqblk;
xfs_failaddr_t fa;
int error;
ASSERT(XFS_DQ_IS_LOCKED(dqp));
ASSERT(!completion_done(&dqp->q_flush));
trace_xfs_dqflush(dqp);
*bpp = NULL;
xfs_qm_dqunpin_wait(dqp);
/*
* Get the buffer containing the on-disk dquot
*/
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
mp->m_quotainfo->qi_dqchunklen, XBF_TRYLOCK,
&bp, &xfs_dquot_buf_ops);
if (error == -EAGAIN)
goto out_unlock;
if (error)
goto out_abort;
fa = xfs_qm_dqflush_check(dqp);
if (fa) {
xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS",
dqp->q_id, fa);
xfs_buf_relse(bp);
error = -EFSCORRUPTED;
goto out_abort;
}
/* Flush the incore dquot to the ondisk buffer. */
dqblk = bp->b_addr + dqp->q_bufoffset;
xfs_dquot_to_disk(&dqblk->dd_diskdq, dqp);
/*
* Clear the dirty field and remember the flush lsn for later use.
*/
dqp->q_flags &= ~XFS_DQFLAG_DIRTY;
xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
&dqp->q_logitem.qli_item.li_lsn);
/*
* copy the lsn into the on-disk dquot now while we have the in memory
* dquot here. This can't be done later in the write verifier as we
* can't get access to the log item at that point in time.
*
* We also calculate the CRC here so that the on-disk dquot in the
* buffer always has a valid CRC. This ensures there is no possibility
* of a dquot without an up-to-date CRC getting to disk.
*/
if (xfs_sb_version_hascrc(&mp->m_sb)) {
dqblk->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn);
xfs_update_cksum((char *)dqblk, sizeof(struct xfs_dqblk),
XFS_DQUOT_CRC_OFF);
}
/*
* Attach the dquot to the buffer so that we can remove this dquot from
* the AIL and release the flush lock once the dquot is synced to disk.
*/
bp->b_flags |= _XBF_DQUOTS;
list_add_tail(&dqp->q_logitem.qli_item.li_bio_list, &bp->b_li_list);
/*
* If the buffer is pinned then push on the log so we won't
* get stuck waiting in the write for too long.
*/
if (xfs_buf_ispinned(bp)) {
trace_xfs_dqflush_force(dqp);
xfs_log_force(mp, 0);
}
trace_xfs_dqflush_done(dqp);
*bpp = bp;
return 0;
out_abort:
dqp->q_flags &= ~XFS_DQFLAG_DIRTY;
xfs_trans_ail_delete(lip, 0);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
out_unlock:
xfs_dqfunlock(dqp);
return error;
}
/*
* Lock two xfs_dquot structures.
*
* To avoid deadlocks we always lock the quota structure with
* the lowerd id first.
*/
void
xfs_dqlock2(
struct xfs_dquot *d1,
struct xfs_dquot *d2)
{
if (d1 && d2) {
ASSERT(d1 != d2);
if (d1->q_id > d2->q_id) {
mutex_lock(&d2->q_qlock);
mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED);
} else {
mutex_lock(&d1->q_qlock);
mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED);
}
} else if (d1) {
mutex_lock(&d1->q_qlock);
} else if (d2) {
mutex_lock(&d2->q_qlock);
}
}
int __init
xfs_qm_init(void)
{
xfs_qm_dqzone = kmem_cache_create("xfs_dquot",
sizeof(struct xfs_dquot),
0, 0, NULL);
if (!xfs_qm_dqzone)
goto out;
xfs_qm_dqtrxzone = kmem_cache_create("xfs_dqtrx",
sizeof(struct xfs_dquot_acct),
0, 0, NULL);
if (!xfs_qm_dqtrxzone)
goto out_free_dqzone;
return 0;
out_free_dqzone:
kmem_cache_destroy(xfs_qm_dqzone);
out:
return -ENOMEM;
}
void
xfs_qm_exit(void)
{
kmem_cache_destroy(xfs_qm_dqtrxzone);
kmem_cache_destroy(xfs_qm_dqzone);
}
/*
* Iterate every dquot of a particular type. The caller must ensure that the
* particular quota type is active. iter_fn can return negative error codes,
* or -ECANCELED to indicate that it wants to stop iterating.
*/
int
xfs_qm_dqiterate(
struct xfs_mount *mp,
xfs_dqtype_t type,
xfs_qm_dqiterate_fn iter_fn,
void *priv)
{
struct xfs_dquot *dq;
xfs_dqid_t id = 0;
int error;
do {
error = xfs_qm_dqget_next(mp, id, type, &dq);
if (error == -ENOENT)
return 0;
if (error)
return error;
error = iter_fn(dq, type, priv);
id = dq->q_id;
xfs_qm_dqput(dq);
} while (error == 0 && id != 0);
return error;
}