2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/drivers/usb/host/ehci.h
Alan Stern 914b701280 USB: EHCI: use the new clear_tt_buffer interface
This patch (as1256) changes ehci-hcd and all the other drivers in the
EHCI family to make use of the new clear_tt_buffer callbacks.  When a
Clear-TT-Buffer request is in progress for a QH, the QH is not allowed
to be linked into the async schedule until the request is finished.
At that time, if there are any URBs queued for the QH, it is linked
into the async schedule.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-07-12 15:16:39 -07:00

716 lines
22 KiB
C

/*
* Copyright (c) 2001-2002 by David Brownell
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __LINUX_EHCI_HCD_H
#define __LINUX_EHCI_HCD_H
/* definitions used for the EHCI driver */
/*
* __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
* __leXX (normally) or __beXX (given EHCI_BIG_ENDIAN_DESC), depending on
* the host controller implementation.
*
* To facilitate the strongest possible byte-order checking from "sparse"
* and so on, we use __leXX unless that's not practical.
*/
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_DESC
typedef __u32 __bitwise __hc32;
typedef __u16 __bitwise __hc16;
#else
#define __hc32 __le32
#define __hc16 __le16
#endif
/* statistics can be kept for for tuning/monitoring */
struct ehci_stats {
/* irq usage */
unsigned long normal;
unsigned long error;
unsigned long reclaim;
unsigned long lost_iaa;
/* termination of urbs from core */
unsigned long complete;
unsigned long unlink;
};
/* ehci_hcd->lock guards shared data against other CPUs:
* ehci_hcd: async, reclaim, periodic (and shadow), ...
* usb_host_endpoint: hcpriv
* ehci_qh: qh_next, qtd_list
* ehci_qtd: qtd_list
*
* Also, hold this lock when talking to HC registers or
* when updating hw_* fields in shared qh/qtd/... structures.
*/
#define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
struct ehci_hcd { /* one per controller */
/* glue to PCI and HCD framework */
struct ehci_caps __iomem *caps;
struct ehci_regs __iomem *regs;
struct ehci_dbg_port __iomem *debug;
__u32 hcs_params; /* cached register copy */
spinlock_t lock;
/* async schedule support */
struct ehci_qh *async;
struct ehci_qh *reclaim;
unsigned scanning : 1;
/* periodic schedule support */
#define DEFAULT_I_TDPS 1024 /* some HCs can do less */
unsigned periodic_size;
__hc32 *periodic; /* hw periodic table */
dma_addr_t periodic_dma;
unsigned i_thresh; /* uframes HC might cache */
union ehci_shadow *pshadow; /* mirror hw periodic table */
int next_uframe; /* scan periodic, start here */
unsigned periodic_sched; /* periodic activity count */
/* list of itds completed while clock_frame was still active */
struct list_head cached_itd_list;
unsigned clock_frame;
/* per root hub port */
unsigned long reset_done [EHCI_MAX_ROOT_PORTS];
/* bit vectors (one bit per port) */
unsigned long bus_suspended; /* which ports were
already suspended at the start of a bus suspend */
unsigned long companion_ports; /* which ports are
dedicated to the companion controller */
unsigned long owned_ports; /* which ports are
owned by the companion during a bus suspend */
unsigned long port_c_suspend; /* which ports have
the change-suspend feature turned on */
unsigned long suspended_ports; /* which ports are
suspended */
/* per-HC memory pools (could be per-bus, but ...) */
struct dma_pool *qh_pool; /* qh per active urb */
struct dma_pool *qtd_pool; /* one or more per qh */
struct dma_pool *itd_pool; /* itd per iso urb */
struct dma_pool *sitd_pool; /* sitd per split iso urb */
struct timer_list iaa_watchdog;
struct timer_list watchdog;
unsigned long actions;
unsigned stamp;
unsigned random_frame;
unsigned long next_statechange;
u32 command;
/* SILICON QUIRKS */
unsigned no_selective_suspend:1;
unsigned has_fsl_port_bug:1; /* FreeScale */
unsigned big_endian_mmio:1;
unsigned big_endian_desc:1;
unsigned has_amcc_usb23:1;
/* required for usb32 quirk */
#define OHCI_CTRL_HCFS (3 << 6)
#define OHCI_USB_OPER (2 << 6)
#define OHCI_USB_SUSPEND (3 << 6)
#define OHCI_HCCTRL_OFFSET 0x4
#define OHCI_HCCTRL_LEN 0x4
__hc32 *ohci_hcctrl_reg;
u8 sbrn; /* packed release number */
/* irq statistics */
#ifdef EHCI_STATS
struct ehci_stats stats;
# define COUNT(x) do { (x)++; } while (0)
#else
# define COUNT(x) do {} while (0)
#endif
/* debug files */
#ifdef DEBUG
struct dentry *debug_dir;
struct dentry *debug_async;
struct dentry *debug_periodic;
struct dentry *debug_registers;
#endif
};
/* convert between an HCD pointer and the corresponding EHCI_HCD */
static inline struct ehci_hcd *hcd_to_ehci (struct usb_hcd *hcd)
{
return (struct ehci_hcd *) (hcd->hcd_priv);
}
static inline struct usb_hcd *ehci_to_hcd (struct ehci_hcd *ehci)
{
return container_of ((void *) ehci, struct usb_hcd, hcd_priv);
}
static inline void
iaa_watchdog_start(struct ehci_hcd *ehci)
{
WARN_ON(timer_pending(&ehci->iaa_watchdog));
mod_timer(&ehci->iaa_watchdog,
jiffies + msecs_to_jiffies(EHCI_IAA_MSECS));
}
static inline void iaa_watchdog_done(struct ehci_hcd *ehci)
{
del_timer(&ehci->iaa_watchdog);
}
enum ehci_timer_action {
TIMER_IO_WATCHDOG,
TIMER_ASYNC_SHRINK,
TIMER_ASYNC_OFF,
};
static inline void
timer_action_done (struct ehci_hcd *ehci, enum ehci_timer_action action)
{
clear_bit (action, &ehci->actions);
}
static void free_cached_itd_list(struct ehci_hcd *ehci);
/*-------------------------------------------------------------------------*/
#include <linux/usb/ehci_def.h>
/*-------------------------------------------------------------------------*/
#define QTD_NEXT(ehci, dma) cpu_to_hc32(ehci, (u32)dma)
/*
* EHCI Specification 0.95 Section 3.5
* QTD: describe data transfer components (buffer, direction, ...)
* See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
*
* These are associated only with "QH" (Queue Head) structures,
* used with control, bulk, and interrupt transfers.
*/
struct ehci_qtd {
/* first part defined by EHCI spec */
__hc32 hw_next; /* see EHCI 3.5.1 */
__hc32 hw_alt_next; /* see EHCI 3.5.2 */
__hc32 hw_token; /* see EHCI 3.5.3 */
#define QTD_TOGGLE (1 << 31) /* data toggle */
#define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
#define QTD_IOC (1 << 15) /* interrupt on complete */
#define QTD_CERR(tok) (((tok)>>10) & 0x3)
#define QTD_PID(tok) (((tok)>>8) & 0x3)
#define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
#define QTD_STS_HALT (1 << 6) /* halted on error */
#define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
#define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
#define QTD_STS_XACT (1 << 3) /* device gave illegal response */
#define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
#define QTD_STS_STS (1 << 1) /* split transaction state */
#define QTD_STS_PING (1 << 0) /* issue PING? */
#define ACTIVE_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_ACTIVE)
#define HALT_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_HALT)
#define STATUS_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_STS)
__hc32 hw_buf [5]; /* see EHCI 3.5.4 */
__hc32 hw_buf_hi [5]; /* Appendix B */
/* the rest is HCD-private */
dma_addr_t qtd_dma; /* qtd address */
struct list_head qtd_list; /* sw qtd list */
struct urb *urb; /* qtd's urb */
size_t length; /* length of buffer */
} __attribute__ ((aligned (32)));
/* mask NakCnt+T in qh->hw_alt_next */
#define QTD_MASK(ehci) cpu_to_hc32 (ehci, ~0x1f)
#define IS_SHORT_READ(token) (QTD_LENGTH (token) != 0 && QTD_PID (token) == 1)
/*-------------------------------------------------------------------------*/
/* type tag from {qh,itd,sitd,fstn}->hw_next */
#define Q_NEXT_TYPE(ehci,dma) ((dma) & cpu_to_hc32(ehci, 3 << 1))
/*
* Now the following defines are not converted using the
* cpu_to_le32() macro anymore, since we have to support
* "dynamic" switching between be and le support, so that the driver
* can be used on one system with SoC EHCI controller using big-endian
* descriptors as well as a normal little-endian PCI EHCI controller.
*/
/* values for that type tag */
#define Q_TYPE_ITD (0 << 1)
#define Q_TYPE_QH (1 << 1)
#define Q_TYPE_SITD (2 << 1)
#define Q_TYPE_FSTN (3 << 1)
/* next async queue entry, or pointer to interrupt/periodic QH */
#define QH_NEXT(ehci,dma) (cpu_to_hc32(ehci, (((u32)dma)&~0x01f)|Q_TYPE_QH))
/* for periodic/async schedules and qtd lists, mark end of list */
#define EHCI_LIST_END(ehci) cpu_to_hc32(ehci, 1) /* "null pointer" to hw */
/*
* Entries in periodic shadow table are pointers to one of four kinds
* of data structure. That's dictated by the hardware; a type tag is
* encoded in the low bits of the hardware's periodic schedule. Use
* Q_NEXT_TYPE to get the tag.
*
* For entries in the async schedule, the type tag always says "qh".
*/
union ehci_shadow {
struct ehci_qh *qh; /* Q_TYPE_QH */
struct ehci_itd *itd; /* Q_TYPE_ITD */
struct ehci_sitd *sitd; /* Q_TYPE_SITD */
struct ehci_fstn *fstn; /* Q_TYPE_FSTN */
__hc32 *hw_next; /* (all types) */
void *ptr;
};
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.95 Section 3.6
* QH: describes control/bulk/interrupt endpoints
* See Fig 3-7 "Queue Head Structure Layout".
*
* These appear in both the async and (for interrupt) periodic schedules.
*/
struct ehci_qh {
/* first part defined by EHCI spec */
__hc32 hw_next; /* see EHCI 3.6.1 */
__hc32 hw_info1; /* see EHCI 3.6.2 */
#define QH_HEAD 0x00008000
__hc32 hw_info2; /* see EHCI 3.6.2 */
#define QH_SMASK 0x000000ff
#define QH_CMASK 0x0000ff00
#define QH_HUBADDR 0x007f0000
#define QH_HUBPORT 0x3f800000
#define QH_MULT 0xc0000000
__hc32 hw_current; /* qtd list - see EHCI 3.6.4 */
/* qtd overlay (hardware parts of a struct ehci_qtd) */
__hc32 hw_qtd_next;
__hc32 hw_alt_next;
__hc32 hw_token;
__hc32 hw_buf [5];
__hc32 hw_buf_hi [5];
/* the rest is HCD-private */
dma_addr_t qh_dma; /* address of qh */
union ehci_shadow qh_next; /* ptr to qh; or periodic */
struct list_head qtd_list; /* sw qtd list */
struct ehci_qtd *dummy;
struct ehci_qh *reclaim; /* next to reclaim */
struct ehci_hcd *ehci;
/*
* Do NOT use atomic operations for QH refcounting. On some CPUs
* (PPC7448 for example), atomic operations cannot be performed on
* memory that is cache-inhibited (i.e. being used for DMA).
* Spinlocks are used to protect all QH fields.
*/
u32 refcount;
unsigned stamp;
u8 qh_state;
#define QH_STATE_LINKED 1 /* HC sees this */
#define QH_STATE_UNLINK 2 /* HC may still see this */
#define QH_STATE_IDLE 3 /* HC doesn't see this */
#define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
#define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
u8 xacterrs; /* XactErr retry counter */
#define QH_XACTERR_MAX 32 /* XactErr retry limit */
/* periodic schedule info */
u8 usecs; /* intr bandwidth */
u8 gap_uf; /* uframes split/csplit gap */
u8 c_usecs; /* ... split completion bw */
u16 tt_usecs; /* tt downstream bandwidth */
unsigned short period; /* polling interval */
unsigned short start; /* where polling starts */
#define NO_FRAME ((unsigned short)~0) /* pick new start */
struct usb_device *dev; /* access to TT */
unsigned clearing_tt:1; /* Clear-TT-Buf in progress */
} __attribute__ ((aligned (32)));
/*-------------------------------------------------------------------------*/
/* description of one iso transaction (up to 3 KB data if highspeed) */
struct ehci_iso_packet {
/* These will be copied to iTD when scheduling */
u64 bufp; /* itd->hw_bufp{,_hi}[pg] |= */
__hc32 transaction; /* itd->hw_transaction[i] |= */
u8 cross; /* buf crosses pages */
/* for full speed OUT splits */
u32 buf1;
};
/* temporary schedule data for packets from iso urbs (both speeds)
* each packet is one logical usb transaction to the device (not TT),
* beginning at stream->next_uframe
*/
struct ehci_iso_sched {
struct list_head td_list;
unsigned span;
struct ehci_iso_packet packet [0];
};
/*
* ehci_iso_stream - groups all (s)itds for this endpoint.
* acts like a qh would, if EHCI had them for ISO.
*/
struct ehci_iso_stream {
/* first two fields match QH, but info1 == 0 */
__hc32 hw_next;
__hc32 hw_info1;
u32 refcount;
u8 bEndpointAddress;
u8 highspeed;
u16 depth; /* depth in uframes */
struct list_head td_list; /* queued itds/sitds */
struct list_head free_list; /* list of unused itds/sitds */
struct usb_device *udev;
struct usb_host_endpoint *ep;
/* output of (re)scheduling */
unsigned long start; /* jiffies */
unsigned long rescheduled;
int next_uframe;
__hc32 splits;
/* the rest is derived from the endpoint descriptor,
* trusting urb->interval == f(epdesc->bInterval) and
* including the extra info for hw_bufp[0..2]
*/
u8 usecs, c_usecs;
u16 interval;
u16 tt_usecs;
u16 maxp;
u16 raw_mask;
unsigned bandwidth;
/* This is used to initialize iTD's hw_bufp fields */
__hc32 buf0;
__hc32 buf1;
__hc32 buf2;
/* this is used to initialize sITD's tt info */
__hc32 address;
};
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.95 Section 3.3
* Fig 3-4 "Isochronous Transaction Descriptor (iTD)"
*
* Schedule records for high speed iso xfers
*/
struct ehci_itd {
/* first part defined by EHCI spec */
__hc32 hw_next; /* see EHCI 3.3.1 */
__hc32 hw_transaction [8]; /* see EHCI 3.3.2 */
#define EHCI_ISOC_ACTIVE (1<<31) /* activate transfer this slot */
#define EHCI_ISOC_BUF_ERR (1<<30) /* Data buffer error */
#define EHCI_ISOC_BABBLE (1<<29) /* babble detected */
#define EHCI_ISOC_XACTERR (1<<28) /* XactErr - transaction error */
#define EHCI_ITD_LENGTH(tok) (((tok)>>16) & 0x0fff)
#define EHCI_ITD_IOC (1 << 15) /* interrupt on complete */
#define ITD_ACTIVE(ehci) cpu_to_hc32(ehci, EHCI_ISOC_ACTIVE)
__hc32 hw_bufp [7]; /* see EHCI 3.3.3 */
__hc32 hw_bufp_hi [7]; /* Appendix B */
/* the rest is HCD-private */
dma_addr_t itd_dma; /* for this itd */
union ehci_shadow itd_next; /* ptr to periodic q entry */
struct urb *urb;
struct ehci_iso_stream *stream; /* endpoint's queue */
struct list_head itd_list; /* list of stream's itds */
/* any/all hw_transactions here may be used by that urb */
unsigned frame; /* where scheduled */
unsigned pg;
unsigned index[8]; /* in urb->iso_frame_desc */
} __attribute__ ((aligned (32)));
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.95 Section 3.4
* siTD, aka split-transaction isochronous Transfer Descriptor
* ... describe full speed iso xfers through TT in hubs
* see Figure 3-5 "Split-transaction Isochronous Transaction Descriptor (siTD)
*/
struct ehci_sitd {
/* first part defined by EHCI spec */
__hc32 hw_next;
/* uses bit field macros above - see EHCI 0.95 Table 3-8 */
__hc32 hw_fullspeed_ep; /* EHCI table 3-9 */
__hc32 hw_uframe; /* EHCI table 3-10 */
__hc32 hw_results; /* EHCI table 3-11 */
#define SITD_IOC (1 << 31) /* interrupt on completion */
#define SITD_PAGE (1 << 30) /* buffer 0/1 */
#define SITD_LENGTH(x) (0x3ff & ((x)>>16))
#define SITD_STS_ACTIVE (1 << 7) /* HC may execute this */
#define SITD_STS_ERR (1 << 6) /* error from TT */
#define SITD_STS_DBE (1 << 5) /* data buffer error (in HC) */
#define SITD_STS_BABBLE (1 << 4) /* device was babbling */
#define SITD_STS_XACT (1 << 3) /* illegal IN response */
#define SITD_STS_MMF (1 << 2) /* incomplete split transaction */
#define SITD_STS_STS (1 << 1) /* split transaction state */
#define SITD_ACTIVE(ehci) cpu_to_hc32(ehci, SITD_STS_ACTIVE)
__hc32 hw_buf [2]; /* EHCI table 3-12 */
__hc32 hw_backpointer; /* EHCI table 3-13 */
__hc32 hw_buf_hi [2]; /* Appendix B */
/* the rest is HCD-private */
dma_addr_t sitd_dma;
union ehci_shadow sitd_next; /* ptr to periodic q entry */
struct urb *urb;
struct ehci_iso_stream *stream; /* endpoint's queue */
struct list_head sitd_list; /* list of stream's sitds */
unsigned frame;
unsigned index;
} __attribute__ ((aligned (32)));
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.96 Section 3.7
* Periodic Frame Span Traversal Node (FSTN)
*
* Manages split interrupt transactions (using TT) that span frame boundaries
* into uframes 0/1; see 4.12.2.2. In those uframes, a "save place" FSTN
* makes the HC jump (back) to a QH to scan for fs/ls QH completions until
* it hits a "restore" FSTN; then it returns to finish other uframe 0/1 work.
*/
struct ehci_fstn {
__hc32 hw_next; /* any periodic q entry */
__hc32 hw_prev; /* qh or EHCI_LIST_END */
/* the rest is HCD-private */
dma_addr_t fstn_dma;
union ehci_shadow fstn_next; /* ptr to periodic q entry */
} __attribute__ ((aligned (32)));
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_USB_EHCI_ROOT_HUB_TT
/*
* Some EHCI controllers have a Transaction Translator built into the
* root hub. This is a non-standard feature. Each controller will need
* to add code to the following inline functions, and call them as
* needed (mostly in root hub code).
*/
#define ehci_is_TDI(e) (ehci_to_hcd(e)->has_tt)
/* Returns the speed of a device attached to a port on the root hub. */
static inline unsigned int
ehci_port_speed(struct ehci_hcd *ehci, unsigned int portsc)
{
if (ehci_is_TDI(ehci)) {
switch ((portsc>>26)&3) {
case 0:
return 0;
case 1:
return (1<<USB_PORT_FEAT_LOWSPEED);
case 2:
default:
return (1<<USB_PORT_FEAT_HIGHSPEED);
}
}
return (1<<USB_PORT_FEAT_HIGHSPEED);
}
#else
#define ehci_is_TDI(e) (0)
#define ehci_port_speed(ehci, portsc) (1<<USB_PORT_FEAT_HIGHSPEED)
#endif
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_PPC_83xx
/* Some Freescale processors have an erratum in which the TT
* port number in the queue head was 0..N-1 instead of 1..N.
*/
#define ehci_has_fsl_portno_bug(e) ((e)->has_fsl_port_bug)
#else
#define ehci_has_fsl_portno_bug(e) (0)
#endif
/*
* While most USB host controllers implement their registers in
* little-endian format, a minority (celleb companion chip) implement
* them in big endian format.
*
* This attempts to support either format at compile time without a
* runtime penalty, or both formats with the additional overhead
* of checking a flag bit.
*/
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO
#define ehci_big_endian_mmio(e) ((e)->big_endian_mmio)
#else
#define ehci_big_endian_mmio(e) 0
#endif
/*
* Big-endian read/write functions are arch-specific.
* Other arches can be added if/when they're needed.
*/
#if defined(CONFIG_ARM) && defined(CONFIG_ARCH_IXP4XX)
#define readl_be(addr) __raw_readl((__force unsigned *)addr)
#define writel_be(val, addr) __raw_writel(val, (__force unsigned *)addr)
#endif
static inline unsigned int ehci_readl(const struct ehci_hcd *ehci,
__u32 __iomem * regs)
{
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO
return ehci_big_endian_mmio(ehci) ?
readl_be(regs) :
readl(regs);
#else
return readl(regs);
#endif
}
static inline void ehci_writel(const struct ehci_hcd *ehci,
const unsigned int val, __u32 __iomem *regs)
{
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO
ehci_big_endian_mmio(ehci) ?
writel_be(val, regs) :
writel(val, regs);
#else
writel(val, regs);
#endif
}
/*
* On certain ppc-44x SoC there is a HW issue, that could only worked around with
* explicit suspend/operate of OHCI. This function hereby makes sense only on that arch.
* Other common bits are dependant on has_amcc_usb23 quirk flag.
*/
#ifdef CONFIG_44x
static inline void set_ohci_hcfs(struct ehci_hcd *ehci, int operational)
{
u32 hc_control;
hc_control = (readl_be(ehci->ohci_hcctrl_reg) & ~OHCI_CTRL_HCFS);
if (operational)
hc_control |= OHCI_USB_OPER;
else
hc_control |= OHCI_USB_SUSPEND;
writel_be(hc_control, ehci->ohci_hcctrl_reg);
(void) readl_be(ehci->ohci_hcctrl_reg);
}
#else
static inline void set_ohci_hcfs(struct ehci_hcd *ehci, int operational)
{ }
#endif
/*-------------------------------------------------------------------------*/
/*
* The AMCC 440EPx not only implements its EHCI registers in big-endian
* format, but also its DMA data structures (descriptors).
*
* EHCI controllers accessed through PCI work normally (little-endian
* everywhere), so we won't bother supporting a BE-only mode for now.
*/
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_DESC
#define ehci_big_endian_desc(e) ((e)->big_endian_desc)
/* cpu to ehci */
static inline __hc32 cpu_to_hc32 (const struct ehci_hcd *ehci, const u32 x)
{
return ehci_big_endian_desc(ehci)
? (__force __hc32)cpu_to_be32(x)
: (__force __hc32)cpu_to_le32(x);
}
/* ehci to cpu */
static inline u32 hc32_to_cpu (const struct ehci_hcd *ehci, const __hc32 x)
{
return ehci_big_endian_desc(ehci)
? be32_to_cpu((__force __be32)x)
: le32_to_cpu((__force __le32)x);
}
static inline u32 hc32_to_cpup (const struct ehci_hcd *ehci, const __hc32 *x)
{
return ehci_big_endian_desc(ehci)
? be32_to_cpup((__force __be32 *)x)
: le32_to_cpup((__force __le32 *)x);
}
#else
/* cpu to ehci */
static inline __hc32 cpu_to_hc32 (const struct ehci_hcd *ehci, const u32 x)
{
return cpu_to_le32(x);
}
/* ehci to cpu */
static inline u32 hc32_to_cpu (const struct ehci_hcd *ehci, const __hc32 x)
{
return le32_to_cpu(x);
}
static inline u32 hc32_to_cpup (const struct ehci_hcd *ehci, const __hc32 *x)
{
return le32_to_cpup(x);
}
#endif
/*-------------------------------------------------------------------------*/
#ifndef DEBUG
#define STUB_DEBUG_FILES
#endif /* DEBUG */
/*-------------------------------------------------------------------------*/
#endif /* __LINUX_EHCI_HCD_H */