2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-24 22:55:35 +08:00
linux-next/drivers/dma/dma-jz4780.c
Alex Smith d894fc6046 dmaengine: jz4780: add driver for the Ingenic JZ4780 DMA controller
This patch adds a driver for the DMA controller found in the Ingenic
JZ4780.

It currently does not implement any support for the programmable firmware
feature of the controller - this is not necessary for most uses. It also
does not take priority into account when allocating channels, it just
allocates the first available channel. This can be implemented later.

Signed-off-by: Alex Smith <alex.smith@imgtec.com>
Signed-off-by: Zubair Lutfullah Kakakhel <Zubair.Kakakhel@imgtec.com>
[Updated for dmaengine api changes, Add residue support, couple of minor fixes]
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2015-04-01 08:43:49 +05:30

878 lines
23 KiB
C

/*
* Ingenic JZ4780 DMA controller
*
* Copyright (c) 2015 Imagination Technologies
* Author: Alex Smith <alex@alex-smith.me.uk>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/clk.h>
#include <linux/dmapool.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "dmaengine.h"
#include "virt-dma.h"
#define JZ_DMA_NR_CHANNELS 32
/* Global registers. */
#define JZ_DMA_REG_DMAC 0x1000
#define JZ_DMA_REG_DIRQP 0x1004
#define JZ_DMA_REG_DDR 0x1008
#define JZ_DMA_REG_DDRS 0x100c
#define JZ_DMA_REG_DMACP 0x101c
#define JZ_DMA_REG_DSIRQP 0x1020
#define JZ_DMA_REG_DSIRQM 0x1024
#define JZ_DMA_REG_DCIRQP 0x1028
#define JZ_DMA_REG_DCIRQM 0x102c
/* Per-channel registers. */
#define JZ_DMA_REG_CHAN(n) (n * 0x20)
#define JZ_DMA_REG_DSA(n) (0x00 + JZ_DMA_REG_CHAN(n))
#define JZ_DMA_REG_DTA(n) (0x04 + JZ_DMA_REG_CHAN(n))
#define JZ_DMA_REG_DTC(n) (0x08 + JZ_DMA_REG_CHAN(n))
#define JZ_DMA_REG_DRT(n) (0x0c + JZ_DMA_REG_CHAN(n))
#define JZ_DMA_REG_DCS(n) (0x10 + JZ_DMA_REG_CHAN(n))
#define JZ_DMA_REG_DCM(n) (0x14 + JZ_DMA_REG_CHAN(n))
#define JZ_DMA_REG_DDA(n) (0x18 + JZ_DMA_REG_CHAN(n))
#define JZ_DMA_REG_DSD(n) (0x1c + JZ_DMA_REG_CHAN(n))
#define JZ_DMA_DMAC_DMAE BIT(0)
#define JZ_DMA_DMAC_AR BIT(2)
#define JZ_DMA_DMAC_HLT BIT(3)
#define JZ_DMA_DMAC_FMSC BIT(31)
#define JZ_DMA_DRT_AUTO 0x8
#define JZ_DMA_DCS_CTE BIT(0)
#define JZ_DMA_DCS_HLT BIT(2)
#define JZ_DMA_DCS_TT BIT(3)
#define JZ_DMA_DCS_AR BIT(4)
#define JZ_DMA_DCS_DES8 BIT(30)
#define JZ_DMA_DCM_LINK BIT(0)
#define JZ_DMA_DCM_TIE BIT(1)
#define JZ_DMA_DCM_STDE BIT(2)
#define JZ_DMA_DCM_TSZ_SHIFT 8
#define JZ_DMA_DCM_TSZ_MASK (0x7 << JZ_DMA_DCM_TSZ_SHIFT)
#define JZ_DMA_DCM_DP_SHIFT 12
#define JZ_DMA_DCM_SP_SHIFT 14
#define JZ_DMA_DCM_DAI BIT(22)
#define JZ_DMA_DCM_SAI BIT(23)
#define JZ_DMA_SIZE_4_BYTE 0x0
#define JZ_DMA_SIZE_1_BYTE 0x1
#define JZ_DMA_SIZE_2_BYTE 0x2
#define JZ_DMA_SIZE_16_BYTE 0x3
#define JZ_DMA_SIZE_32_BYTE 0x4
#define JZ_DMA_SIZE_64_BYTE 0x5
#define JZ_DMA_SIZE_128_BYTE 0x6
#define JZ_DMA_WIDTH_32_BIT 0x0
#define JZ_DMA_WIDTH_8_BIT 0x1
#define JZ_DMA_WIDTH_16_BIT 0x2
#define JZ_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
/**
* struct jz4780_dma_hwdesc - descriptor structure read by the DMA controller.
* @dcm: value for the DCM (channel command) register
* @dsa: source address
* @dta: target address
* @dtc: transfer count (number of blocks of the transfer size specified in DCM
* to transfer) in the low 24 bits, offset of the next descriptor from the
* descriptor base address in the upper 8 bits.
* @sd: target/source stride difference (in stride transfer mode).
* @drt: request type
*/
struct jz4780_dma_hwdesc {
uint32_t dcm;
uint32_t dsa;
uint32_t dta;
uint32_t dtc;
uint32_t sd;
uint32_t drt;
uint32_t reserved[2];
};
/* Size of allocations for hardware descriptor blocks. */
#define JZ_DMA_DESC_BLOCK_SIZE PAGE_SIZE
#define JZ_DMA_MAX_DESC \
(JZ_DMA_DESC_BLOCK_SIZE / sizeof(struct jz4780_dma_hwdesc))
struct jz4780_dma_desc {
struct virt_dma_desc vdesc;
struct jz4780_dma_hwdesc *desc;
dma_addr_t desc_phys;
unsigned int count;
enum dma_transaction_type type;
uint32_t status;
};
struct jz4780_dma_chan {
struct virt_dma_chan vchan;
unsigned int id;
struct dma_pool *desc_pool;
uint32_t transfer_type;
uint32_t transfer_shift;
struct dma_slave_config config;
struct jz4780_dma_desc *desc;
unsigned int curr_hwdesc;
};
struct jz4780_dma_dev {
struct dma_device dma_device;
void __iomem *base;
struct clk *clk;
unsigned int irq;
uint32_t chan_reserved;
struct jz4780_dma_chan chan[JZ_DMA_NR_CHANNELS];
};
struct jz4780_dma_data {
uint32_t transfer_type;
int channel;
};
static inline struct jz4780_dma_chan *to_jz4780_dma_chan(struct dma_chan *chan)
{
return container_of(chan, struct jz4780_dma_chan, vchan.chan);
}
static inline struct jz4780_dma_desc *to_jz4780_dma_desc(
struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct jz4780_dma_desc, vdesc);
}
static inline struct jz4780_dma_dev *jz4780_dma_chan_parent(
struct jz4780_dma_chan *jzchan)
{
return container_of(jzchan->vchan.chan.device, struct jz4780_dma_dev,
dma_device);
}
static inline uint32_t jz4780_dma_readl(struct jz4780_dma_dev *jzdma,
unsigned int reg)
{
return readl(jzdma->base + reg);
}
static inline void jz4780_dma_writel(struct jz4780_dma_dev *jzdma,
unsigned int reg, uint32_t val)
{
writel(val, jzdma->base + reg);
}
static struct jz4780_dma_desc *jz4780_dma_desc_alloc(
struct jz4780_dma_chan *jzchan, unsigned int count,
enum dma_transaction_type type)
{
struct jz4780_dma_desc *desc;
if (count > JZ_DMA_MAX_DESC)
return NULL;
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (!desc)
return NULL;
desc->desc = dma_pool_alloc(jzchan->desc_pool, GFP_NOWAIT,
&desc->desc_phys);
if (!desc->desc) {
kfree(desc);
return NULL;
}
desc->count = count;
desc->type = type;
return desc;
}
static void jz4780_dma_desc_free(struct virt_dma_desc *vdesc)
{
struct jz4780_dma_desc *desc = to_jz4780_dma_desc(vdesc);
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(vdesc->tx.chan);
dma_pool_free(jzchan->desc_pool, desc->desc, desc->desc_phys);
kfree(desc);
}
static uint32_t jz4780_dma_transfer_size(unsigned long val, int *ord)
{
*ord = ffs(val) - 1;
switch (*ord) {
case 0:
return JZ_DMA_SIZE_1_BYTE;
case 1:
return JZ_DMA_SIZE_2_BYTE;
case 2:
return JZ_DMA_SIZE_4_BYTE;
case 4:
return JZ_DMA_SIZE_16_BYTE;
case 5:
return JZ_DMA_SIZE_32_BYTE;
case 6:
return JZ_DMA_SIZE_64_BYTE;
case 7:
return JZ_DMA_SIZE_128_BYTE;
default:
return -EINVAL;
}
}
static uint32_t jz4780_dma_setup_hwdesc(struct jz4780_dma_chan *jzchan,
struct jz4780_dma_hwdesc *desc, dma_addr_t addr, size_t len,
enum dma_transfer_direction direction)
{
struct dma_slave_config *config = &jzchan->config;
uint32_t width, maxburst, tsz;
int ord;
if (direction == DMA_MEM_TO_DEV) {
desc->dcm = JZ_DMA_DCM_SAI;
desc->dsa = addr;
desc->dta = config->dst_addr;
desc->drt = jzchan->transfer_type;
width = config->dst_addr_width;
maxburst = config->dst_maxburst;
} else {
desc->dcm = JZ_DMA_DCM_DAI;
desc->dsa = config->src_addr;
desc->dta = addr;
desc->drt = jzchan->transfer_type;
width = config->src_addr_width;
maxburst = config->src_maxburst;
}
/*
* This calculates the maximum transfer size that can be used with the
* given address, length, width and maximum burst size. The address
* must be aligned to the transfer size, the total length must be
* divisible by the transfer size, and we must not use more than the
* maximum burst specified by the user.
*/
tsz = jz4780_dma_transfer_size(addr | len | (width * maxburst), &ord);
jzchan->transfer_shift = ord;
switch (width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
case DMA_SLAVE_BUSWIDTH_2_BYTES:
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
width = JZ_DMA_WIDTH_32_BIT;
break;
default:
return -EINVAL;
}
desc->dcm |= tsz << JZ_DMA_DCM_TSZ_SHIFT;
desc->dcm |= width << JZ_DMA_DCM_SP_SHIFT;
desc->dcm |= width << JZ_DMA_DCM_DP_SHIFT;
desc->dtc = len >> ord;
}
static struct dma_async_tx_descriptor *jz4780_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_transfer_direction direction, unsigned long flags)
{
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan);
struct jz4780_dma_desc *desc;
unsigned int i;
int err;
desc = jz4780_dma_desc_alloc(jzchan, sg_len, DMA_SLAVE);
if (!desc)
return NULL;
for (i = 0; i < sg_len; i++) {
err = jz4780_dma_setup_hwdesc(jzchan, &desc->desc[i],
sg_dma_address(&sgl[i]),
sg_dma_len(&sgl[i]),
direction);
if (err < 0)
return ERR_PTR(err);
desc->desc[i].dcm |= JZ_DMA_DCM_TIE;
if (i != (sg_len - 1)) {
/* Automatically proceeed to the next descriptor. */
desc->desc[i].dcm |= JZ_DMA_DCM_LINK;
/*
* The upper 8 bits of the DTC field in the descriptor
* must be set to (offset from descriptor base of next
* descriptor >> 4).
*/
desc->desc[i].dtc |=
(((i + 1) * sizeof(*desc->desc)) >> 4) << 24;
}
}
return vchan_tx_prep(&jzchan->vchan, &desc->vdesc, flags);
}
static struct dma_async_tx_descriptor *jz4780_dma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan);
struct jz4780_dma_desc *desc;
unsigned int periods, i;
int err;
if (buf_len % period_len)
return NULL;
periods = buf_len / period_len;
desc = jz4780_dma_desc_alloc(jzchan, periods, DMA_CYCLIC);
if (!desc)
return NULL;
for (i = 0; i < periods; i++) {
err = jz4780_dma_setup_hwdesc(jzchan, &desc->desc[i], buf_addr,
period_len, direction);
if (err < 0)
return ERR_PTR(err);
buf_addr += period_len;
/*
* Set the link bit to indicate that the controller should
* automatically proceed to the next descriptor. In
* jz4780_dma_begin(), this will be cleared if we need to issue
* an interrupt after each period.
*/
desc->desc[i].dcm |= JZ_DMA_DCM_TIE | JZ_DMA_DCM_LINK;
/*
* The upper 8 bits of the DTC field in the descriptor must be
* set to (offset from descriptor base of next descriptor >> 4).
* If this is the last descriptor, link it back to the first,
* i.e. leave offset set to 0, otherwise point to the next one.
*/
if (i != (periods - 1)) {
desc->desc[i].dtc |=
(((i + 1) * sizeof(*desc->desc)) >> 4) << 24;
}
}
return vchan_tx_prep(&jzchan->vchan, &desc->vdesc, flags);
}
struct dma_async_tx_descriptor *jz4780_dma_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan);
struct jz4780_dma_desc *desc;
uint32_t tsz;
int ord;
desc = jz4780_dma_desc_alloc(jzchan, 1, DMA_MEMCPY);
if (!desc)
return NULL;
tsz = jz4780_dma_transfer_size(dest | src | len, &ord);
if (tsz < 0)
return ERR_PTR(tsz);
desc->desc[0].dsa = src;
desc->desc[0].dta = dest;
desc->desc[0].drt = JZ_DMA_DRT_AUTO;
desc->desc[0].dcm = JZ_DMA_DCM_TIE | JZ_DMA_DCM_SAI | JZ_DMA_DCM_DAI |
tsz << JZ_DMA_DCM_TSZ_SHIFT |
JZ_DMA_WIDTH_32_BIT << JZ_DMA_DCM_SP_SHIFT |
JZ_DMA_WIDTH_32_BIT << JZ_DMA_DCM_DP_SHIFT;
desc->desc[0].dtc = len >> ord;
return vchan_tx_prep(&jzchan->vchan, &desc->vdesc, flags);
}
static void jz4780_dma_begin(struct jz4780_dma_chan *jzchan)
{
struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan);
struct virt_dma_desc *vdesc;
unsigned int i;
dma_addr_t desc_phys;
if (!jzchan->desc) {
vdesc = vchan_next_desc(&jzchan->vchan);
if (!vdesc)
return;
list_del(&vdesc->node);
jzchan->desc = to_jz4780_dma_desc(vdesc);
jzchan->curr_hwdesc = 0;
if (jzchan->desc->type == DMA_CYCLIC && vdesc->tx.callback) {
/*
* The DMA controller doesn't support triggering an
* interrupt after processing each descriptor, only
* after processing an entire terminated list of
* descriptors. For a cyclic DMA setup the list of
* descriptors is not terminated so we can never get an
* interrupt.
*
* If the user requested a callback for a cyclic DMA
* setup then we workaround this hardware limitation
* here by degrading to a set of unlinked descriptors
* which we will submit in sequence in response to the
* completion of processing the previous descriptor.
*/
for (i = 0; i < jzchan->desc->count; i++)
jzchan->desc->desc[i].dcm &= ~JZ_DMA_DCM_LINK;
}
} else {
/*
* There is an existing transfer, therefore this must be one
* for which we unlinked the descriptors above. Advance to the
* next one in the list.
*/
jzchan->curr_hwdesc =
(jzchan->curr_hwdesc + 1) % jzchan->desc->count;
}
/* Use 8-word descriptors. */
jz4780_dma_writel(jzdma, JZ_DMA_REG_DCS(jzchan->id), JZ_DMA_DCS_DES8);
/* Write descriptor address and initiate descriptor fetch. */
desc_phys = jzchan->desc->desc_phys +
(jzchan->curr_hwdesc * sizeof(*jzchan->desc->desc));
jz4780_dma_writel(jzdma, JZ_DMA_REG_DDA(jzchan->id), desc_phys);
jz4780_dma_writel(jzdma, JZ_DMA_REG_DDRS, BIT(jzchan->id));
/* Enable the channel. */
jz4780_dma_writel(jzdma, JZ_DMA_REG_DCS(jzchan->id),
JZ_DMA_DCS_DES8 | JZ_DMA_DCS_CTE);
}
static void jz4780_dma_issue_pending(struct dma_chan *chan)
{
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&jzchan->vchan.lock, flags);
if (vchan_issue_pending(&jzchan->vchan) && !jzchan->desc)
jz4780_dma_begin(jzchan);
spin_unlock_irqrestore(&jzchan->vchan.lock, flags);
}
static int jz4780_dma_terminate_all(struct jz4780_dma_chan *jzchan)
{
struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&jzchan->vchan.lock, flags);
/* Clear the DMA status and stop the transfer. */
jz4780_dma_writel(jzdma, JZ_DMA_REG_DCS(jzchan->id), 0);
if (jzchan->desc) {
jz4780_dma_desc_free(&jzchan->desc->vdesc);
jzchan->desc = NULL;
}
vchan_get_all_descriptors(&jzchan->vchan, &head);
spin_unlock_irqrestore(&jzchan->vchan.lock, flags);
vchan_dma_desc_free_list(&jzchan->vchan, &head);
return 0;
}
static int jz4780_dma_slave_config(struct jz4780_dma_chan *jzchan,
const struct dma_slave_config *config)
{
if ((config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
|| (config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES))
return -EINVAL;
/* Copy the reset of the slave configuration, it is used later. */
memcpy(&jzchan->config, config, sizeof(jzchan->config));
return 0;
}
static size_t jz4780_dma_desc_residue(struct jz4780_dma_chan *jzchan,
struct jz4780_dma_desc *desc, unsigned int next_sg)
{
struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan);
unsigned int residue, count;
unsigned int i;
residue = 0;
for (i = next_sg; i < desc->count; i++)
residue += desc->desc[i].dtc << jzchan->transfer_shift;
if (next_sg != 0) {
count = jz4780_dma_readl(jzdma,
JZ_DMA_REG_DTC(jzchan->id));
residue += count << jzchan->transfer_shift;
}
return residue;
}
static enum dma_status jz4780_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
status = dma_cookie_status(chan, cookie, txstate);
if ((status == DMA_COMPLETE) || (txstate == NULL))
return status;
spin_lock_irqsave(&jzchan->vchan.lock, flags);
vdesc = vchan_find_desc(&jzchan->vchan, cookie);
if (vdesc) {
/* On the issued list, so hasn't been processed yet */
txstate->residue = jz4780_dma_desc_residue(jzchan,
to_jz4780_dma_desc(vdesc), 0);
} else if (cookie == jzchan->desc->vdesc.tx.cookie) {
txstate->residue = jz4780_dma_desc_residue(jzchan, jzchan->desc,
(jzchan->curr_hwdesc + 1) % jzchan->desc->count);
} else
txstate->residue = 0;
if (vdesc && jzchan->desc && vdesc == &jzchan->desc->vdesc
&& jzchan->desc->status & (JZ_DMA_DCS_AR | JZ_DMA_DCS_HLT))
status = DMA_ERROR;
spin_unlock_irqrestore(&jzchan->vchan.lock, flags);
return status;
}
static void jz4780_dma_chan_irq(struct jz4780_dma_dev *jzdma,
struct jz4780_dma_chan *jzchan)
{
uint32_t dcs;
spin_lock(&jzchan->vchan.lock);
dcs = jz4780_dma_readl(jzdma, JZ_DMA_REG_DCS(jzchan->id));
jz4780_dma_writel(jzdma, JZ_DMA_REG_DCS(jzchan->id), 0);
if (dcs & JZ_DMA_DCS_AR) {
dev_warn(&jzchan->vchan.chan.dev->device,
"address error (DCS=0x%x)\n", dcs);
}
if (dcs & JZ_DMA_DCS_HLT) {
dev_warn(&jzchan->vchan.chan.dev->device,
"channel halt (DCS=0x%x)\n", dcs);
}
if (jzchan->desc) {
jzchan->desc->status = dcs;
if ((dcs & (JZ_DMA_DCS_AR | JZ_DMA_DCS_HLT)) == 0) {
if (jzchan->desc->type == DMA_CYCLIC) {
vchan_cyclic_callback(&jzchan->desc->vdesc);
} else {
vchan_cookie_complete(&jzchan->desc->vdesc);
jzchan->desc = NULL;
}
jz4780_dma_begin(jzchan);
}
} else {
dev_err(&jzchan->vchan.chan.dev->device,
"channel IRQ with no active transfer\n");
}
spin_unlock(&jzchan->vchan.lock);
}
static irqreturn_t jz4780_dma_irq_handler(int irq, void *data)
{
struct jz4780_dma_dev *jzdma = data;
uint32_t pending, dmac;
int i;
pending = jz4780_dma_readl(jzdma, JZ_DMA_REG_DIRQP);
for (i = 0; i < JZ_DMA_NR_CHANNELS; i++) {
if (!(pending & (1<<i)))
continue;
jz4780_dma_chan_irq(jzdma, &jzdma->chan[i]);
}
/* Clear halt and address error status of all channels. */
dmac = jz4780_dma_readl(jzdma, JZ_DMA_REG_DMAC);
dmac &= ~(JZ_DMA_DMAC_HLT | JZ_DMA_DMAC_AR);
jz4780_dma_writel(jzdma, JZ_DMA_REG_DMAC, dmac);
/* Clear interrupt pending status. */
jz4780_dma_writel(jzdma, JZ_DMA_REG_DIRQP, 0);
return IRQ_HANDLED;
}
static int jz4780_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan);
jzchan->desc_pool = dma_pool_create(dev_name(&chan->dev->device),
chan->device->dev,
JZ_DMA_DESC_BLOCK_SIZE,
PAGE_SIZE, 0);
if (!jzchan->desc_pool) {
dev_err(&chan->dev->device,
"failed to allocate descriptor pool\n");
return -ENOMEM;
}
return 0;
}
static void jz4780_dma_free_chan_resources(struct dma_chan *chan)
{
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan);
vchan_free_chan_resources(&jzchan->vchan);
dma_pool_destroy(jzchan->desc_pool);
jzchan->desc_pool = NULL;
}
static bool jz4780_dma_filter_fn(struct dma_chan *chan, void *param)
{
struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan);
struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan);
struct jz4780_dma_data *data = param;
if (data->channel > -1) {
if (data->channel != jzchan->id)
return false;
} else if (jzdma->chan_reserved & BIT(jzchan->id)) {
return false;
}
jzchan->transfer_type = data->transfer_type;
return true;
}
static struct dma_chan *jz4780_of_dma_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct jz4780_dma_dev *jzdma = ofdma->of_dma_data;
dma_cap_mask_t mask = jzdma->dma_device.cap_mask;
struct jz4780_dma_data data;
if (dma_spec->args_count != 2)
return NULL;
data.transfer_type = dma_spec->args[0];
data.channel = dma_spec->args[1];
if (data.channel > -1) {
if (data.channel >= JZ_DMA_NR_CHANNELS) {
dev_err(jzdma->dma_device.dev,
"device requested non-existent channel %u\n",
data.channel);
return NULL;
}
/* Can only select a channel marked as reserved. */
if (!(jzdma->chan_reserved & BIT(data.channel))) {
dev_err(jzdma->dma_device.dev,
"device requested unreserved channel %u\n",
data.channel);
return NULL;
}
}
return dma_request_channel(mask, jz4780_dma_filter_fn, &data);
}
static int jz4780_dma_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct jz4780_dma_dev *jzdma;
struct jz4780_dma_chan *jzchan;
struct dma_device *dd;
struct resource *res;
int i, ret;
jzdma = devm_kzalloc(dev, sizeof(*jzdma), GFP_KERNEL);
if (!jzdma)
return -ENOMEM;
platform_set_drvdata(pdev, jzdma);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "failed to get I/O memory\n");
return -EINVAL;
}
jzdma->base = devm_ioremap_resource(dev, res);
if (IS_ERR(jzdma->base))
return PTR_ERR(jzdma->base);
jzdma->irq = platform_get_irq(pdev, 0);
if (jzdma->irq < 0) {
dev_err(dev, "failed to get IRQ: %d\n", ret);
return jzdma->irq;
}
ret = devm_request_irq(dev, jzdma->irq, jz4780_dma_irq_handler, 0,
dev_name(dev), jzdma);
if (ret) {
dev_err(dev, "failed to request IRQ %u!\n", jzdma->irq);
return -EINVAL;
}
jzdma->clk = devm_clk_get(dev, NULL);
if (IS_ERR(jzdma->clk)) {
dev_err(dev, "failed to get clock\n");
return PTR_ERR(jzdma->clk);
}
clk_prepare_enable(jzdma->clk);
/* Property is optional, if it doesn't exist the value will remain 0. */
of_property_read_u32_index(dev->of_node, "ingenic,reserved-channels",
0, &jzdma->chan_reserved);
dd = &jzdma->dma_device;
dma_cap_set(DMA_MEMCPY, dd->cap_mask);
dma_cap_set(DMA_SLAVE, dd->cap_mask);
dma_cap_set(DMA_CYCLIC, dd->cap_mask);
dd->dev = dev;
dd->copy_align = 2; /* 2^2 = 4 byte alignment */
dd->device_alloc_chan_resources = jz4780_dma_alloc_chan_resources;
dd->device_free_chan_resources = jz4780_dma_free_chan_resources;
dd->device_prep_slave_sg = jz4780_dma_prep_slave_sg;
dd->device_prep_dma_cyclic = jz4780_dma_prep_dma_cyclic;
dd->device_prep_dma_memcpy = jz4780_dma_prep_dma_memcpy;
dd->device_config = jz4780_dma_slave_config;
dd->device_terminate_all = jz4780_dma_terminate_all;
dd->device_tx_status = jz4780_dma_tx_status;
dd->device_issue_pending = jz4780_dma_issue_pending;
dd->src_addr_widths = JZ_DMA_BUSWIDTHS;
dd->dst_addr_widths = JZ_DMA_BUSWIDTHS;
dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
/*
* Enable DMA controller, mark all channels as not programmable.
* Also set the FMSC bit - it increases MSC performance, so it makes
* little sense not to enable it.
*/
jz4780_dma_writel(jzdma, JZ_DMA_REG_DMAC,
JZ_DMA_DMAC_DMAE | JZ_DMA_DMAC_FMSC);
jz4780_dma_writel(jzdma, JZ_DMA_REG_DMACP, 0);
INIT_LIST_HEAD(&dd->channels);
for (i = 0; i < JZ_DMA_NR_CHANNELS; i++) {
jzchan = &jzdma->chan[i];
jzchan->id = i;
vchan_init(&jzchan->vchan, dd);
jzchan->vchan.desc_free = jz4780_dma_desc_free;
}
ret = dma_async_device_register(dd);
if (ret) {
dev_err(dev, "failed to register device\n");
goto err_disable_clk;
}
/* Register with OF DMA helpers. */
ret = of_dma_controller_register(dev->of_node, jz4780_of_dma_xlate,
jzdma);
if (ret) {
dev_err(dev, "failed to register OF DMA controller\n");
goto err_unregister_dev;
}
dev_info(dev, "JZ4780 DMA controller initialised\n");
return 0;
err_unregister_dev:
dma_async_device_unregister(dd);
err_disable_clk:
clk_disable_unprepare(jzdma->clk);
return ret;
}
static int jz4780_dma_remove(struct platform_device *pdev)
{
struct jz4780_dma_dev *jzdma = platform_get_drvdata(pdev);
of_dma_controller_free(pdev->dev.of_node);
devm_free_irq(&pdev->dev, jzdma->irq, jzdma);
dma_async_device_unregister(&jzdma->dma_device);
return 0;
}
static const struct of_device_id jz4780_dma_dt_match[] = {
{ .compatible = "ingenic,jz4780-dma", .data = NULL },
{},
};
MODULE_DEVICE_TABLE(of, jz4780_dma_dt_match);
static struct platform_driver jz4780_dma_driver = {
.probe = jz4780_dma_probe,
.remove = jz4780_dma_remove,
.driver = {
.name = "jz4780-dma",
.of_match_table = of_match_ptr(jz4780_dma_dt_match),
},
};
static int __init jz4780_dma_init(void)
{
return platform_driver_register(&jz4780_dma_driver);
}
subsys_initcall(jz4780_dma_init);
static void __exit jz4780_dma_exit(void)
{
platform_driver_unregister(&jz4780_dma_driver);
}
module_exit(jz4780_dma_exit);
MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
MODULE_DESCRIPTION("Ingenic JZ4780 DMA controller driver");
MODULE_LICENSE("GPL");