2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 14:14:01 +08:00
linux-next/fs/dlm/plock.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

446 lines
9.8 KiB
C

/*
* Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License version 2.
*/
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/poll.h>
#include <linux/dlm.h>
#include <linux/dlm_plock.h>
#include <linux/slab.h>
#include "dlm_internal.h"
#include "lockspace.h"
static spinlock_t ops_lock;
static struct list_head send_list;
static struct list_head recv_list;
static wait_queue_head_t send_wq;
static wait_queue_head_t recv_wq;
struct plock_op {
struct list_head list;
int done;
struct dlm_plock_info info;
};
struct plock_xop {
struct plock_op xop;
void *callback;
void *fl;
void *file;
struct file_lock flc;
};
static inline void set_version(struct dlm_plock_info *info)
{
info->version[0] = DLM_PLOCK_VERSION_MAJOR;
info->version[1] = DLM_PLOCK_VERSION_MINOR;
info->version[2] = DLM_PLOCK_VERSION_PATCH;
}
static int check_version(struct dlm_plock_info *info)
{
if ((DLM_PLOCK_VERSION_MAJOR != info->version[0]) ||
(DLM_PLOCK_VERSION_MINOR < info->version[1])) {
log_print("plock device version mismatch: "
"kernel (%u.%u.%u), user (%u.%u.%u)",
DLM_PLOCK_VERSION_MAJOR,
DLM_PLOCK_VERSION_MINOR,
DLM_PLOCK_VERSION_PATCH,
info->version[0],
info->version[1],
info->version[2]);
return -EINVAL;
}
return 0;
}
static void send_op(struct plock_op *op)
{
set_version(&op->info);
INIT_LIST_HEAD(&op->list);
spin_lock(&ops_lock);
list_add_tail(&op->list, &send_list);
spin_unlock(&ops_lock);
wake_up(&send_wq);
}
int dlm_posix_lock(dlm_lockspace_t *lockspace, u64 number, struct file *file,
int cmd, struct file_lock *fl)
{
struct dlm_ls *ls;
struct plock_op *op;
struct plock_xop *xop;
int rv;
ls = dlm_find_lockspace_local(lockspace);
if (!ls)
return -EINVAL;
xop = kzalloc(sizeof(*xop), GFP_NOFS);
if (!xop) {
rv = -ENOMEM;
goto out;
}
op = &xop->xop;
op->info.optype = DLM_PLOCK_OP_LOCK;
op->info.pid = fl->fl_pid;
op->info.ex = (fl->fl_type == F_WRLCK);
op->info.wait = IS_SETLKW(cmd);
op->info.fsid = ls->ls_global_id;
op->info.number = number;
op->info.start = fl->fl_start;
op->info.end = fl->fl_end;
if (fl->fl_lmops && fl->fl_lmops->fl_grant) {
/* fl_owner is lockd which doesn't distinguish
processes on the nfs client */
op->info.owner = (__u64) fl->fl_pid;
xop->callback = fl->fl_lmops->fl_grant;
locks_init_lock(&xop->flc);
locks_copy_lock(&xop->flc, fl);
xop->fl = fl;
xop->file = file;
} else {
op->info.owner = (__u64)(long) fl->fl_owner;
xop->callback = NULL;
}
send_op(op);
if (xop->callback == NULL)
wait_event(recv_wq, (op->done != 0));
else {
rv = FILE_LOCK_DEFERRED;
goto out;
}
spin_lock(&ops_lock);
if (!list_empty(&op->list)) {
log_error(ls, "dlm_posix_lock: op on list %llx",
(unsigned long long)number);
list_del(&op->list);
}
spin_unlock(&ops_lock);
rv = op->info.rv;
if (!rv) {
if (posix_lock_file_wait(file, fl) < 0)
log_error(ls, "dlm_posix_lock: vfs lock error %llx",
(unsigned long long)number);
}
kfree(xop);
out:
dlm_put_lockspace(ls);
return rv;
}
EXPORT_SYMBOL_GPL(dlm_posix_lock);
/* Returns failure iff a successful lock operation should be canceled */
static int dlm_plock_callback(struct plock_op *op)
{
struct file *file;
struct file_lock *fl;
struct file_lock *flc;
int (*notify)(void *, void *, int) = NULL;
struct plock_xop *xop = (struct plock_xop *)op;
int rv = 0;
spin_lock(&ops_lock);
if (!list_empty(&op->list)) {
log_print("dlm_plock_callback: op on list %llx",
(unsigned long long)op->info.number);
list_del(&op->list);
}
spin_unlock(&ops_lock);
/* check if the following 2 are still valid or make a copy */
file = xop->file;
flc = &xop->flc;
fl = xop->fl;
notify = xop->callback;
if (op->info.rv) {
notify(fl, NULL, op->info.rv);
goto out;
}
/* got fs lock; bookkeep locally as well: */
flc->fl_flags &= ~FL_SLEEP;
if (posix_lock_file(file, flc, NULL)) {
/*
* This can only happen in the case of kmalloc() failure.
* The filesystem's own lock is the authoritative lock,
* so a failure to get the lock locally is not a disaster.
* As long as the fs cannot reliably cancel locks (especially
* in a low-memory situation), we're better off ignoring
* this failure than trying to recover.
*/
log_print("dlm_plock_callback: vfs lock error %llx file %p fl %p",
(unsigned long long)op->info.number, file, fl);
}
rv = notify(fl, NULL, 0);
if (rv) {
/* XXX: We need to cancel the fs lock here: */
log_print("dlm_plock_callback: lock granted after lock request "
"failed; dangling lock!\n");
goto out;
}
out:
kfree(xop);
return rv;
}
int dlm_posix_unlock(dlm_lockspace_t *lockspace, u64 number, struct file *file,
struct file_lock *fl)
{
struct dlm_ls *ls;
struct plock_op *op;
int rv;
ls = dlm_find_lockspace_local(lockspace);
if (!ls)
return -EINVAL;
op = kzalloc(sizeof(*op), GFP_NOFS);
if (!op) {
rv = -ENOMEM;
goto out;
}
if (posix_lock_file_wait(file, fl) < 0)
log_error(ls, "dlm_posix_unlock: vfs unlock error %llx",
(unsigned long long)number);
op->info.optype = DLM_PLOCK_OP_UNLOCK;
op->info.pid = fl->fl_pid;
op->info.fsid = ls->ls_global_id;
op->info.number = number;
op->info.start = fl->fl_start;
op->info.end = fl->fl_end;
if (fl->fl_lmops && fl->fl_lmops->fl_grant)
op->info.owner = (__u64) fl->fl_pid;
else
op->info.owner = (__u64)(long) fl->fl_owner;
send_op(op);
wait_event(recv_wq, (op->done != 0));
spin_lock(&ops_lock);
if (!list_empty(&op->list)) {
log_error(ls, "dlm_posix_unlock: op on list %llx",
(unsigned long long)number);
list_del(&op->list);
}
spin_unlock(&ops_lock);
rv = op->info.rv;
if (rv == -ENOENT)
rv = 0;
kfree(op);
out:
dlm_put_lockspace(ls);
return rv;
}
EXPORT_SYMBOL_GPL(dlm_posix_unlock);
int dlm_posix_get(dlm_lockspace_t *lockspace, u64 number, struct file *file,
struct file_lock *fl)
{
struct dlm_ls *ls;
struct plock_op *op;
int rv;
ls = dlm_find_lockspace_local(lockspace);
if (!ls)
return -EINVAL;
op = kzalloc(sizeof(*op), GFP_NOFS);
if (!op) {
rv = -ENOMEM;
goto out;
}
op->info.optype = DLM_PLOCK_OP_GET;
op->info.pid = fl->fl_pid;
op->info.ex = (fl->fl_type == F_WRLCK);
op->info.fsid = ls->ls_global_id;
op->info.number = number;
op->info.start = fl->fl_start;
op->info.end = fl->fl_end;
if (fl->fl_lmops && fl->fl_lmops->fl_grant)
op->info.owner = (__u64) fl->fl_pid;
else
op->info.owner = (__u64)(long) fl->fl_owner;
send_op(op);
wait_event(recv_wq, (op->done != 0));
spin_lock(&ops_lock);
if (!list_empty(&op->list)) {
log_error(ls, "dlm_posix_get: op on list %llx",
(unsigned long long)number);
list_del(&op->list);
}
spin_unlock(&ops_lock);
/* info.rv from userspace is 1 for conflict, 0 for no-conflict,
-ENOENT if there are no locks on the file */
rv = op->info.rv;
fl->fl_type = F_UNLCK;
if (rv == -ENOENT)
rv = 0;
else if (rv > 0) {
locks_init_lock(fl);
fl->fl_type = (op->info.ex) ? F_WRLCK : F_RDLCK;
fl->fl_flags = FL_POSIX;
fl->fl_pid = op->info.pid;
fl->fl_start = op->info.start;
fl->fl_end = op->info.end;
rv = 0;
}
kfree(op);
out:
dlm_put_lockspace(ls);
return rv;
}
EXPORT_SYMBOL_GPL(dlm_posix_get);
/* a read copies out one plock request from the send list */
static ssize_t dev_read(struct file *file, char __user *u, size_t count,
loff_t *ppos)
{
struct dlm_plock_info info;
struct plock_op *op = NULL;
if (count < sizeof(info))
return -EINVAL;
spin_lock(&ops_lock);
if (!list_empty(&send_list)) {
op = list_entry(send_list.next, struct plock_op, list);
list_move(&op->list, &recv_list);
memcpy(&info, &op->info, sizeof(info));
}
spin_unlock(&ops_lock);
if (!op)
return -EAGAIN;
if (copy_to_user(u, &info, sizeof(info)))
return -EFAULT;
return sizeof(info);
}
/* a write copies in one plock result that should match a plock_op
on the recv list */
static ssize_t dev_write(struct file *file, const char __user *u, size_t count,
loff_t *ppos)
{
struct dlm_plock_info info;
struct plock_op *op;
int found = 0, do_callback = 0;
if (count != sizeof(info))
return -EINVAL;
if (copy_from_user(&info, u, sizeof(info)))
return -EFAULT;
if (check_version(&info))
return -EINVAL;
spin_lock(&ops_lock);
list_for_each_entry(op, &recv_list, list) {
if (op->info.fsid == info.fsid &&
op->info.number == info.number &&
op->info.owner == info.owner) {
struct plock_xop *xop = (struct plock_xop *)op;
list_del_init(&op->list);
memcpy(&op->info, &info, sizeof(info));
if (xop->callback)
do_callback = 1;
else
op->done = 1;
found = 1;
break;
}
}
spin_unlock(&ops_lock);
if (found) {
if (do_callback)
dlm_plock_callback(op);
else
wake_up(&recv_wq);
} else
log_print("dev_write no op %x %llx", info.fsid,
(unsigned long long)info.number);
return count;
}
static unsigned int dev_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &send_wq, wait);
spin_lock(&ops_lock);
if (!list_empty(&send_list))
mask = POLLIN | POLLRDNORM;
spin_unlock(&ops_lock);
return mask;
}
static const struct file_operations dev_fops = {
.read = dev_read,
.write = dev_write,
.poll = dev_poll,
.owner = THIS_MODULE
};
static struct miscdevice plock_dev_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = DLM_PLOCK_MISC_NAME,
.fops = &dev_fops
};
int dlm_plock_init(void)
{
int rv;
spin_lock_init(&ops_lock);
INIT_LIST_HEAD(&send_list);
INIT_LIST_HEAD(&recv_list);
init_waitqueue_head(&send_wq);
init_waitqueue_head(&recv_wq);
rv = misc_register(&plock_dev_misc);
if (rv)
log_print("dlm_plock_init: misc_register failed %d", rv);
return rv;
}
void dlm_plock_exit(void)
{
if (misc_deregister(&plock_dev_misc) < 0)
log_print("dlm_plock_exit: misc_deregister failed");
}