mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-02 02:34:05 +08:00
760d765b2b
Apparently, people do build microcode into the kernel image, i.e. CONFIG_FIRMWARE_IN_KERNEL=y. Make that work in the early loader which is where microcode should be preferably loaded anyway. Note that you need to specify the microcode filename with the path relative to the toplevel firmware directory (the same like the late loading method) in CONFIG_EXTRA_FIRMWARE=y so that early loader can find it. I.e., something like this (Intel variant): CONFIG_FIRMWARE_IN_KERNEL=y CONFIG_EXTRA_FIRMWARE="intel-ucode/06-3a-09" CONFIG_EXTRA_FIRMWARE_DIR="/lib/firmware/" While at it, add me to the loader copyright boilerplate. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Daniel J Blueman <daniel@numascale.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
172 lines
4.1 KiB
C
172 lines
4.1 KiB
C
#ifndef _ASM_X86_MICROCODE_H
|
|
#define _ASM_X86_MICROCODE_H
|
|
|
|
#include <linux/earlycpio.h>
|
|
|
|
#define native_rdmsr(msr, val1, val2) \
|
|
do { \
|
|
u64 __val = native_read_msr((msr)); \
|
|
(void)((val1) = (u32)__val); \
|
|
(void)((val2) = (u32)(__val >> 32)); \
|
|
} while (0)
|
|
|
|
#define native_wrmsr(msr, low, high) \
|
|
native_write_msr(msr, low, high)
|
|
|
|
#define native_wrmsrl(msr, val) \
|
|
native_write_msr((msr), \
|
|
(u32)((u64)(val)), \
|
|
(u32)((u64)(val) >> 32))
|
|
|
|
struct cpu_signature {
|
|
unsigned int sig;
|
|
unsigned int pf;
|
|
unsigned int rev;
|
|
};
|
|
|
|
struct device;
|
|
|
|
enum ucode_state { UCODE_ERROR, UCODE_OK, UCODE_NFOUND };
|
|
extern bool dis_ucode_ldr;
|
|
|
|
struct microcode_ops {
|
|
enum ucode_state (*request_microcode_user) (int cpu,
|
|
const void __user *buf, size_t size);
|
|
|
|
enum ucode_state (*request_microcode_fw) (int cpu, struct device *,
|
|
bool refresh_fw);
|
|
|
|
void (*microcode_fini_cpu) (int cpu);
|
|
|
|
/*
|
|
* The generic 'microcode_core' part guarantees that
|
|
* the callbacks below run on a target cpu when they
|
|
* are being called.
|
|
* See also the "Synchronization" section in microcode_core.c.
|
|
*/
|
|
int (*apply_microcode) (int cpu);
|
|
int (*collect_cpu_info) (int cpu, struct cpu_signature *csig);
|
|
};
|
|
|
|
struct ucode_cpu_info {
|
|
struct cpu_signature cpu_sig;
|
|
int valid;
|
|
void *mc;
|
|
};
|
|
extern struct ucode_cpu_info ucode_cpu_info[];
|
|
|
|
#ifdef CONFIG_MICROCODE_INTEL
|
|
extern struct microcode_ops * __init init_intel_microcode(void);
|
|
#else
|
|
static inline struct microcode_ops * __init init_intel_microcode(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_MICROCODE_INTEL */
|
|
|
|
#ifdef CONFIG_MICROCODE_AMD
|
|
extern struct microcode_ops * __init init_amd_microcode(void);
|
|
extern void __exit exit_amd_microcode(void);
|
|
#else
|
|
static inline struct microcode_ops * __init init_amd_microcode(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline void __exit exit_amd_microcode(void) {}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MICROCODE_EARLY
|
|
#define MAX_UCODE_COUNT 128
|
|
|
|
#define QCHAR(a, b, c, d) ((a) + ((b) << 8) + ((c) << 16) + ((d) << 24))
|
|
#define CPUID_INTEL1 QCHAR('G', 'e', 'n', 'u')
|
|
#define CPUID_INTEL2 QCHAR('i', 'n', 'e', 'I')
|
|
#define CPUID_INTEL3 QCHAR('n', 't', 'e', 'l')
|
|
#define CPUID_AMD1 QCHAR('A', 'u', 't', 'h')
|
|
#define CPUID_AMD2 QCHAR('e', 'n', 't', 'i')
|
|
#define CPUID_AMD3 QCHAR('c', 'A', 'M', 'D')
|
|
|
|
#define CPUID_IS(a, b, c, ebx, ecx, edx) \
|
|
(!((ebx ^ (a))|(edx ^ (b))|(ecx ^ (c))))
|
|
|
|
/*
|
|
* In early loading microcode phase on BSP, boot_cpu_data is not set up yet.
|
|
* x86_vendor() gets vendor id for BSP.
|
|
*
|
|
* In 32 bit AP case, accessing boot_cpu_data needs linear address. To simplify
|
|
* coding, we still use x86_vendor() to get vendor id for AP.
|
|
*
|
|
* x86_vendor() gets vendor information directly from CPUID.
|
|
*/
|
|
static inline int x86_vendor(void)
|
|
{
|
|
u32 eax = 0x00000000;
|
|
u32 ebx, ecx = 0, edx;
|
|
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
if (CPUID_IS(CPUID_INTEL1, CPUID_INTEL2, CPUID_INTEL3, ebx, ecx, edx))
|
|
return X86_VENDOR_INTEL;
|
|
|
|
if (CPUID_IS(CPUID_AMD1, CPUID_AMD2, CPUID_AMD3, ebx, ecx, edx))
|
|
return X86_VENDOR_AMD;
|
|
|
|
return X86_VENDOR_UNKNOWN;
|
|
}
|
|
|
|
static inline unsigned int __x86_family(unsigned int sig)
|
|
{
|
|
unsigned int x86;
|
|
|
|
x86 = (sig >> 8) & 0xf;
|
|
|
|
if (x86 == 0xf)
|
|
x86 += (sig >> 20) & 0xff;
|
|
|
|
return x86;
|
|
}
|
|
|
|
static inline unsigned int x86_family(void)
|
|
{
|
|
u32 eax = 0x00000001;
|
|
u32 ebx, ecx = 0, edx;
|
|
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
return __x86_family(eax);
|
|
}
|
|
|
|
static inline unsigned int x86_model(unsigned int sig)
|
|
{
|
|
unsigned int x86, model;
|
|
|
|
x86 = __x86_family(sig);
|
|
|
|
model = (sig >> 4) & 0xf;
|
|
|
|
if (x86 == 0x6 || x86 == 0xf)
|
|
model += ((sig >> 16) & 0xf) << 4;
|
|
|
|
return model;
|
|
}
|
|
|
|
extern void __init load_ucode_bsp(void);
|
|
extern void load_ucode_ap(void);
|
|
extern int __init save_microcode_in_initrd(void);
|
|
void reload_early_microcode(void);
|
|
extern bool get_builtin_firmware(struct cpio_data *cd, const char *name);
|
|
#else
|
|
static inline void __init load_ucode_bsp(void) {}
|
|
static inline void load_ucode_ap(void) {}
|
|
static inline int __init save_microcode_in_initrd(void)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void reload_early_microcode(void) {}
|
|
static inline bool get_builtin_firmware(struct cpio_data *cd, const char *name)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
#endif /* _ASM_X86_MICROCODE_H */
|