2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 22:54:11 +08:00
linux-next/drivers/ata/pata_octeon_cf.c
Tejun Heo d6b0de8c28 libata-sff: kill dummy BMDMA ops from sata_qstor and pata_octeon_cf
Now that SFF and BMDMA are completely separate, sata_qstor and
pata_octeon_cf which inherit from ata_sff_port_ops don't need to worry
about BMDMA ops being called.  Kill the dummy BMDMA ops.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2010-05-25 19:40:45 -04:00

944 lines
24 KiB
C

/*
* Driver for the Octeon bootbus compact flash.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005 - 2009 Cavium Networks
* Copyright (C) 2008 Wind River Systems
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/libata.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <scsi/scsi_host.h>
#include <asm/octeon/octeon.h>
/*
* The Octeon bootbus compact flash interface is connected in at least
* 3 different configurations on various evaluation boards:
*
* -- 8 bits no irq, no DMA
* -- 16 bits no irq, no DMA
* -- 16 bits True IDE mode with DMA, but no irq.
*
* In the last case the DMA engine can generate an interrupt when the
* transfer is complete. For the first two cases only PIO is supported.
*
*/
#define DRV_NAME "pata_octeon_cf"
#define DRV_VERSION "2.1"
struct octeon_cf_port {
struct workqueue_struct *wq;
struct delayed_work delayed_finish;
struct ata_port *ap;
int dma_finished;
};
static struct scsi_host_template octeon_cf_sht = {
ATA_PIO_SHT(DRV_NAME),
};
/**
* Convert nanosecond based time to setting used in the
* boot bus timing register, based on timing multiple
*/
static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
{
unsigned int val;
/*
* Compute # of eclock periods to get desired duration in
* nanoseconds.
*/
val = DIV_ROUND_UP(nsecs * (octeon_get_clock_rate() / 1000000),
1000 * tim_mult);
return val;
}
static void octeon_cf_set_boot_reg_cfg(int cs)
{
union cvmx_mio_boot_reg_cfgx reg_cfg;
reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */
reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
reg_cfg.s.sam = 0; /* Don't combine write and output enable */
reg_cfg.s.we_ext = 0; /* No write enable extension */
reg_cfg.s.oe_ext = 0; /* No read enable extension */
reg_cfg.s.en = 1; /* Enable this region */
reg_cfg.s.orbit = 0; /* Don't combine with previous region */
reg_cfg.s.ale = 0; /* Don't do address multiplexing */
cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
}
/**
* Called after libata determines the needed PIO mode. This
* function programs the Octeon bootbus regions to support the
* timing requirements of the PIO mode.
*
* @ap: ATA port information
* @dev: ATA device
*/
static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
{
struct octeon_cf_data *ocd = ap->dev->platform_data;
union cvmx_mio_boot_reg_timx reg_tim;
int cs = ocd->base_region;
int T;
struct ata_timing timing;
int use_iordy;
int trh;
int pause;
/* These names are timing parameters from the ATA spec */
int t1;
int t2;
int t2i;
T = (int)(2000000000000LL / octeon_get_clock_rate());
if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
BUG();
t1 = timing.setup;
if (t1)
t1--;
t2 = timing.active;
if (t2)
t2--;
t2i = timing.act8b;
if (t2i)
t2i--;
trh = ns_to_tim_reg(2, 20);
if (trh)
trh--;
pause = timing.cycle - timing.active - timing.setup - trh;
if (pause)
pause--;
octeon_cf_set_boot_reg_cfg(cs);
if (ocd->dma_engine >= 0)
/* True IDE mode, program both chip selects. */
octeon_cf_set_boot_reg_cfg(cs + 1);
use_iordy = ata_pio_need_iordy(dev);
reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
/* Disable page mode */
reg_tim.s.pagem = 0;
/* Enable dynamic timing */
reg_tim.s.waitm = use_iordy;
/* Pages are disabled */
reg_tim.s.pages = 0;
/* We don't use multiplexed address mode */
reg_tim.s.ale = 0;
/* Not used */
reg_tim.s.page = 0;
/* Time after IORDY to coninue to assert the data */
reg_tim.s.wait = 0;
/* Time to wait to complete the cycle. */
reg_tim.s.pause = pause;
/* How long to hold after a write to de-assert CE. */
reg_tim.s.wr_hld = trh;
/* How long to wait after a read to de-assert CE. */
reg_tim.s.rd_hld = trh;
/* How long write enable is asserted */
reg_tim.s.we = t2;
/* How long read enable is asserted */
reg_tim.s.oe = t2;
/* Time after CE that read/write starts */
reg_tim.s.ce = ns_to_tim_reg(2, 5);
/* Time before CE that address is valid */
reg_tim.s.adr = 0;
/* Program the bootbus region timing for the data port chip select. */
cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
if (ocd->dma_engine >= 0)
/* True IDE mode, program both chip selects. */
cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
}
static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
{
struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
union cvmx_mio_boot_dma_timx dma_tim;
unsigned int oe_a;
unsigned int oe_n;
unsigned int dma_ackh;
unsigned int dma_arq;
unsigned int pause;
unsigned int T0, Tkr, Td;
unsigned int tim_mult;
const struct ata_timing *timing;
timing = ata_timing_find_mode(dev->dma_mode);
T0 = timing->cycle;
Td = timing->active;
Tkr = timing->recover;
dma_ackh = timing->dmack_hold;
dma_tim.u64 = 0;
/* dma_tim.s.tim_mult = 0 --> 4x */
tim_mult = 4;
/* not spec'ed, value in eclocks, not affected by tim_mult */
dma_arq = 8;
pause = 25 - dma_arq * 1000 /
(octeon_get_clock_rate() / 1000000); /* Tz */
oe_a = Td;
/* Tkr from cf spec, lengthened to meet T0 */
oe_n = max(T0 - oe_a, Tkr);
dma_tim.s.dmack_pi = 1;
dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
/*
* This is tI, C.F. spec. says 0, but Sony CF card requires
* more, we use 20 nS.
*/
dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
dma_tim.s.dmarq = dma_arq;
dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
dma_tim.s.rd_dly = 0; /* Sample right on edge */
/* writes only */
dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
ns_to_tim_reg(tim_mult, 60));
pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
"%d, dmarq: %d, pause: %d\n",
dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
dma_tim.u64);
}
/**
* Handle an 8 bit I/O request.
*
* @dev: Device to access
* @buffer: Data buffer
* @buflen: Length of the buffer.
* @rw: True to write.
*/
static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
unsigned char *buffer,
unsigned int buflen,
int rw)
{
struct ata_port *ap = dev->link->ap;
void __iomem *data_addr = ap->ioaddr.data_addr;
unsigned long words;
int count;
words = buflen;
if (rw) {
count = 16;
while (words--) {
iowrite8(*buffer, data_addr);
buffer++;
/*
* Every 16 writes do a read so the bootbus
* FIFO doesn't fill up.
*/
if (--count == 0) {
ioread8(ap->ioaddr.altstatus_addr);
count = 16;
}
}
} else {
ioread8_rep(data_addr, buffer, words);
}
return buflen;
}
/**
* Handle a 16 bit I/O request.
*
* @dev: Device to access
* @buffer: Data buffer
* @buflen: Length of the buffer.
* @rw: True to write.
*/
static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
unsigned char *buffer,
unsigned int buflen,
int rw)
{
struct ata_port *ap = dev->link->ap;
void __iomem *data_addr = ap->ioaddr.data_addr;
unsigned long words;
int count;
words = buflen / 2;
if (rw) {
count = 16;
while (words--) {
iowrite16(*(uint16_t *)buffer, data_addr);
buffer += sizeof(uint16_t);
/*
* Every 16 writes do a read so the bootbus
* FIFO doesn't fill up.
*/
if (--count == 0) {
ioread8(ap->ioaddr.altstatus_addr);
count = 16;
}
}
} else {
while (words--) {
*(uint16_t *)buffer = ioread16(data_addr);
buffer += sizeof(uint16_t);
}
}
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
__le16 align_buf[1] = { 0 };
if (rw == READ) {
align_buf[0] = cpu_to_le16(ioread16(data_addr));
memcpy(buffer, align_buf, 1);
} else {
memcpy(align_buf, buffer, 1);
iowrite16(le16_to_cpu(align_buf[0]), data_addr);
}
words++;
}
return buflen;
}
/**
* Read the taskfile for 16bit non-True IDE only.
*/
static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
{
u16 blob;
/* The base of the registers is at ioaddr.data_addr. */
void __iomem *base = ap->ioaddr.data_addr;
blob = __raw_readw(base + 0xc);
tf->feature = blob >> 8;
blob = __raw_readw(base + 2);
tf->nsect = blob & 0xff;
tf->lbal = blob >> 8;
blob = __raw_readw(base + 4);
tf->lbam = blob & 0xff;
tf->lbah = blob >> 8;
blob = __raw_readw(base + 6);
tf->device = blob & 0xff;
tf->command = blob >> 8;
if (tf->flags & ATA_TFLAG_LBA48) {
if (likely(ap->ioaddr.ctl_addr)) {
iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
blob = __raw_readw(base + 0xc);
tf->hob_feature = blob >> 8;
blob = __raw_readw(base + 2);
tf->hob_nsect = blob & 0xff;
tf->hob_lbal = blob >> 8;
blob = __raw_readw(base + 4);
tf->hob_lbam = blob & 0xff;
tf->hob_lbah = blob >> 8;
iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
ap->last_ctl = tf->ctl;
} else {
WARN_ON(1);
}
}
}
static u8 octeon_cf_check_status16(struct ata_port *ap)
{
u16 blob;
void __iomem *base = ap->ioaddr.data_addr;
blob = __raw_readw(base + 6);
return blob >> 8;
}
static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
void __iomem *base = ap->ioaddr.data_addr;
int rc;
u8 err;
DPRINTK("about to softreset\n");
__raw_writew(ap->ctl, base + 0xe);
udelay(20);
__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
udelay(20);
__raw_writew(ap->ctl, base + 0xe);
rc = ata_sff_wait_after_reset(link, 1, deadline);
if (rc) {
ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
return rc;
}
/* determine by signature whether we have ATA or ATAPI devices */
classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
return 0;
}
/**
* Load the taskfile for 16bit non-True IDE only. The device_addr is
* not loaded, we do this as part of octeon_cf_exec_command16.
*/
static void octeon_cf_tf_load16(struct ata_port *ap,
const struct ata_taskfile *tf)
{
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
/* The base of the registers is at ioaddr.data_addr. */
void __iomem *base = ap->ioaddr.data_addr;
if (tf->ctl != ap->last_ctl) {
iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
__raw_writew(tf->hob_feature << 8, base + 0xc);
__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->hob_feature,
tf->hob_nsect,
tf->hob_lbal,
tf->hob_lbam,
tf->hob_lbah);
}
if (is_addr) {
__raw_writew(tf->feature << 8, base + 0xc);
__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->feature,
tf->nsect,
tf->lbal,
tf->lbam,
tf->lbah);
}
ata_wait_idle(ap);
}
static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
{
/* There is only one device, do nothing. */
return;
}
/*
* Issue ATA command to host controller. The device_addr is also sent
* as it must be written in a combined write with the command.
*/
static void octeon_cf_exec_command16(struct ata_port *ap,
const struct ata_taskfile *tf)
{
/* The base of the registers is at ioaddr.data_addr. */
void __iomem *base = ap->ioaddr.data_addr;
u16 blob;
if (tf->flags & ATA_TFLAG_DEVICE) {
VPRINTK("device 0x%X\n", tf->device);
blob = tf->device;
} else {
blob = 0;
}
DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
blob |= (tf->command << 8);
__raw_writew(blob, base + 6);
ata_wait_idle(ap);
}
static void octeon_cf_irq_on(struct ata_port *ap)
{
}
static void octeon_cf_irq_clear(struct ata_port *ap)
{
return;
}
static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct octeon_cf_port *cf_port;
cf_port = ap->private_data;
DPRINTK("ENTER\n");
/* issue r/w command */
qc->cursg = qc->sg;
cf_port->dma_finished = 0;
ap->ops->sff_exec_command(ap, &qc->tf);
DPRINTK("EXIT\n");
}
/**
* Start a DMA transfer that was already setup
*
* @qc: Information about the DMA
*/
static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
{
struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
union cvmx_mio_boot_dma_intx mio_boot_dma_int;
struct scatterlist *sg;
VPRINTK("%d scatterlists\n", qc->n_elem);
/* Get the scatter list entry we need to DMA into */
sg = qc->cursg;
BUG_ON(!sg);
/*
* Clear the DMA complete status.
*/
mio_boot_dma_int.u64 = 0;
mio_boot_dma_int.s.done = 1;
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
mio_boot_dma_int.u64);
/* Enable the interrupt. */
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
mio_boot_dma_int.u64);
/* Set the direction of the DMA */
mio_boot_dma_cfg.u64 = 0;
mio_boot_dma_cfg.s.en = 1;
mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
/*
* Don't stop the DMA if the device deasserts DMARQ. Many
* compact flashes deassert DMARQ for a short time between
* sectors. Instead of stopping and restarting the DMA, we'll
* let the hardware do it. If the DMA is really stopped early
* due to an error condition, a later timeout will force us to
* stop.
*/
mio_boot_dma_cfg.s.clr = 0;
/* Size is specified in 16bit words and minus one notation */
mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
/* We need to swap the high and low bytes of every 16 bits */
mio_boot_dma_cfg.s.swap8 = 1;
mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
VPRINTK("%s %d bytes address=%p\n",
(mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
(void *)(unsigned long)mio_boot_dma_cfg.s.adr);
cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
mio_boot_dma_cfg.u64);
}
/**
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
*/
static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
struct ata_queued_cmd *qc)
{
struct ata_eh_info *ehi = &ap->link.eh_info;
struct octeon_cf_data *ocd = ap->dev->platform_data;
union cvmx_mio_boot_dma_cfgx dma_cfg;
union cvmx_mio_boot_dma_intx dma_int;
struct octeon_cf_port *cf_port;
u8 status;
VPRINTK("ata%u: protocol %d task_state %d\n",
ap->print_id, qc->tf.protocol, ap->hsm_task_state);
if (ap->hsm_task_state != HSM_ST_LAST)
return 0;
cf_port = ap->private_data;
dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
if (dma_cfg.s.size != 0xfffff) {
/* Error, the transfer was not complete. */
qc->err_mask |= AC_ERR_HOST_BUS;
ap->hsm_task_state = HSM_ST_ERR;
}
/* Stop and clear the dma engine. */
dma_cfg.u64 = 0;
dma_cfg.s.size = -1;
cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
/* Disable the interrupt. */
dma_int.u64 = 0;
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
/* Clear the DMA complete status */
dma_int.s.done = 1;
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
status = ap->ops->sff_check_status(ap);
ata_sff_hsm_move(ap, qc, status, 0);
if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
return 1;
}
/*
* Check if any queued commands have more DMAs, if so start the next
* transfer, else do end of transfer handling.
*/
static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct octeon_cf_port *cf_port;
int i;
unsigned int handled = 0;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
DPRINTK("ENTER\n");
for (i = 0; i < host->n_ports; i++) {
u8 status;
struct ata_port *ap;
struct ata_queued_cmd *qc;
union cvmx_mio_boot_dma_intx dma_int;
union cvmx_mio_boot_dma_cfgx dma_cfg;
struct octeon_cf_data *ocd;
ap = host->ports[i];
ocd = ap->dev->platform_data;
ocd = ap->dev->platform_data;
cf_port = ap->private_data;
dma_int.u64 =
cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
dma_cfg.u64 =
cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) {
if (dma_int.s.done && !dma_cfg.s.en) {
if (!sg_is_last(qc->cursg)) {
qc->cursg = sg_next(qc->cursg);
handled = 1;
octeon_cf_dma_start(qc);
continue;
} else {
cf_port->dma_finished = 1;
}
}
if (!cf_port->dma_finished)
continue;
status = ioread8(ap->ioaddr.altstatus_addr);
if (status & (ATA_BUSY | ATA_DRQ)) {
/*
* We are busy, try to handle it
* later. This is the DMA finished
* interrupt, and it could take a
* little while for the card to be
* ready for more commands.
*/
/* Clear DMA irq. */
dma_int.u64 = 0;
dma_int.s.done = 1;
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
dma_int.u64);
queue_delayed_work(cf_port->wq,
&cf_port->delayed_finish, 1);
handled = 1;
} else {
handled |= octeon_cf_dma_finished(ap, qc);
}
}
}
spin_unlock_irqrestore(&host->lock, flags);
DPRINTK("EXIT\n");
return IRQ_RETVAL(handled);
}
static void octeon_cf_delayed_finish(struct work_struct *work)
{
struct octeon_cf_port *cf_port = container_of(work,
struct octeon_cf_port,
delayed_finish.work);
struct ata_port *ap = cf_port->ap;
struct ata_host *host = ap->host;
struct ata_queued_cmd *qc;
unsigned long flags;
u8 status;
spin_lock_irqsave(&host->lock, flags);
/*
* If the port is not waiting for completion, it must have
* handled it previously. The hsm_task_state is
* protected by host->lock.
*/
if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
goto out;
status = ioread8(ap->ioaddr.altstatus_addr);
if (status & (ATA_BUSY | ATA_DRQ)) {
/* Still busy, try again. */
queue_delayed_work(cf_port->wq,
&cf_port->delayed_finish, 1);
goto out;
}
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
octeon_cf_dma_finished(ap, qc);
out:
spin_unlock_irqrestore(&host->lock, flags);
}
static void octeon_cf_dev_config(struct ata_device *dev)
{
/*
* A maximum of 2^20 - 1 16 bit transfers are possible with
* the bootbus DMA. So we need to throttle max_sectors to
* (2^12 - 1 == 4095) to assure that this can never happen.
*/
dev->max_sectors = min(dev->max_sectors, 4095U);
}
/*
* We don't do ATAPI DMA so return 0.
*/
static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
{
return 0;
}
static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
octeon_cf_dma_setup(qc); /* set up dma */
octeon_cf_dma_start(qc); /* initiate dma */
ap->hsm_task_state = HSM_ST_LAST;
break;
case ATAPI_PROT_DMA:
dev_err(ap->dev, "Error, ATAPI not supported\n");
BUG();
default:
return ata_sff_qc_issue(qc);
}
return 0;
}
static struct ata_port_operations octeon_cf_ops = {
.inherits = &ata_sff_port_ops,
.check_atapi_dma = octeon_cf_check_atapi_dma,
.qc_prep = ata_noop_qc_prep,
.qc_issue = octeon_cf_qc_issue,
.sff_dev_select = octeon_cf_dev_select,
.sff_irq_on = octeon_cf_irq_on,
.sff_irq_clear = octeon_cf_irq_clear,
.cable_detect = ata_cable_40wire,
.set_piomode = octeon_cf_set_piomode,
.set_dmamode = octeon_cf_set_dmamode,
.dev_config = octeon_cf_dev_config,
};
static int __devinit octeon_cf_probe(struct platform_device *pdev)
{
struct resource *res_cs0, *res_cs1;
void __iomem *cs0;
void __iomem *cs1 = NULL;
struct ata_host *host;
struct ata_port *ap;
struct octeon_cf_data *ocd;
int irq = 0;
irq_handler_t irq_handler = NULL;
void __iomem *base;
struct octeon_cf_port *cf_port;
res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res_cs0)
return -EINVAL;
ocd = pdev->dev.platform_data;
cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
resource_size(res_cs0));
if (!cs0)
return -ENOMEM;
/* Determine from availability of DMA if True IDE mode or not */
if (ocd->dma_engine >= 0) {
res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res_cs1)
return -EINVAL;
cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
resource_size(res_cs1));
if (!cs1)
return -ENOMEM;
}
cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
if (!cf_port)
return -ENOMEM;
/* allocate host */
host = ata_host_alloc(&pdev->dev, 1);
if (!host)
goto free_cf_port;
ap = host->ports[0];
ap->private_data = cf_port;
cf_port->ap = ap;
ap->ops = &octeon_cf_ops;
ap->pio_mask = ATA_PIO6;
ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY
| ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
base = cs0 + ocd->base_region_bias;
if (!ocd->is16bit) {
ap->ioaddr.cmd_addr = base;
ata_sff_std_ports(&ap->ioaddr);
ap->ioaddr.altstatus_addr = base + 0xe;
ap->ioaddr.ctl_addr = base + 0xe;
octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
} else if (cs1) {
/* Presence of cs1 indicates True IDE mode. */
ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
ap->mwdma_mask = ATA_MWDMA4;
irq = platform_get_irq(pdev, 0);
irq_handler = octeon_cf_interrupt;
/* True IDE mode needs delayed work to poll for not-busy. */
cf_port->wq = create_singlethread_workqueue(DRV_NAME);
if (!cf_port->wq)
goto free_cf_port;
INIT_DELAYED_WORK(&cf_port->delayed_finish,
octeon_cf_delayed_finish);
} else {
/* 16 bit but not True IDE */
octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
octeon_cf_ops.softreset = octeon_cf_softreset16;
octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
ap->ioaddr.data_addr = base + ATA_REG_DATA;
ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
ap->ioaddr.ctl_addr = base + 0xe;
ap->ioaddr.altstatus_addr = base + 0xe;
}
ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
(ocd->is16bit) ? 16 : 8,
(cs1) ? ", True IDE" : "");
return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
free_cf_port:
kfree(cf_port);
return -ENOMEM;
}
static struct platform_driver octeon_cf_driver = {
.probe = octeon_cf_probe,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init octeon_cf_init(void)
{
return platform_driver_register(&octeon_cf_driver);
}
MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_ALIAS("platform:" DRV_NAME);
module_init(octeon_cf_init);