2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-16 01:04:08 +08:00
linux-next/lib/overflow_kunit.c
Kees Cook 4b21d25bf5 overflow: Introduce overflows_type() and castable_to_type()
Implement a robust overflows_type() macro to test if a variable or
constant value would overflow another variable or type. This can be
used as a constant expression for static_assert() (which requires a
constant expression[1][2]) when used on constant values. This must be
constructed manually, since __builtin_add_overflow() does not produce
a constant expression[3].

Additionally adds castable_to_type(), similar to __same_type(), but for
checking if a constant value would overflow if cast to a given type.

Add unit tests for overflows_type(), __same_type(), and castable_to_type()
to the existing KUnit "overflow" test:

[16:03:33] ================== overflow (21 subtests) ==================
...
[16:03:33] [PASSED] overflows_type_test
[16:03:33] [PASSED] same_type_test
[16:03:33] [PASSED] castable_to_type_test
[16:03:33] ==================== [PASSED] overflow =====================
[16:03:33] ============================================================
[16:03:33] Testing complete. Ran 21 tests: passed: 21
[16:03:33] Elapsed time: 24.022s total, 0.002s configuring, 22.598s building, 0.767s running

[1] https://en.cppreference.com/w/c/language/_Static_assert
[2] C11 standard (ISO/IEC 9899:2011): 6.7.10 Static assertions
[3] https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
    6.56 Built-in Functions to Perform Arithmetic with Overflow Checking
    Built-in Function: bool __builtin_add_overflow (type1 a, type2 b,

Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Tom Rix <trix@redhat.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: Vitor Massaru Iha <vitor@massaru.org>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: linux-hardening@vger.kernel.org
Cc: llvm@lists.linux.dev
Co-developed-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Signed-off-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221024201125.1416422-1-gwan-gyeong.mun@intel.com
2022-11-02 12:39:27 -07:00

1150 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Test cases for arithmetic overflow checks. See:
* "Running tests with kunit_tool" at Documentation/dev-tools/kunit/start.rst
* ./tools/testing/kunit/kunit.py run overflow [--raw_output]
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <kunit/test.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/overflow.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#define SKIP(cond, reason) do { \
if (cond) { \
kunit_skip(test, reason); \
return; \
} \
} while (0)
/*
* Clang 11 and earlier generate unwanted libcalls for signed output
* on unsigned input.
*/
#if defined(CONFIG_CC_IS_CLANG) && __clang_major__ <= 11
# define SKIP_SIGN_MISMATCH(t) SKIP(t, "Clang 11 unwanted libcalls")
#else
# define SKIP_SIGN_MISMATCH(t) do { } while (0)
#endif
/*
* Clang 13 and earlier generate unwanted libcalls for 64-bit tests on
* 32-bit hosts.
*/
#if defined(CONFIG_CC_IS_CLANG) && __clang_major__ <= 13 && \
BITS_PER_LONG != 64
# define SKIP_64_ON_32(t) SKIP(t, "Clang 13 unwanted libcalls")
#else
# define SKIP_64_ON_32(t) do { } while (0)
#endif
#define DEFINE_TEST_ARRAY_TYPED(t1, t2, t) \
static const struct test_ ## t1 ## _ ## t2 ## __ ## t { \
t1 a; \
t2 b; \
t sum, diff, prod; \
bool s_of, d_of, p_of; \
} t1 ## _ ## t2 ## __ ## t ## _tests[]
#define DEFINE_TEST_ARRAY(t) DEFINE_TEST_ARRAY_TYPED(t, t, t)
DEFINE_TEST_ARRAY(u8) = {
{0, 0, 0, 0, 0, false, false, false},
{1, 1, 2, 0, 1, false, false, false},
{0, 1, 1, U8_MAX, 0, false, true, false},
{1, 0, 1, 1, 0, false, false, false},
{0, U8_MAX, U8_MAX, 1, 0, false, true, false},
{U8_MAX, 0, U8_MAX, U8_MAX, 0, false, false, false},
{1, U8_MAX, 0, 2, U8_MAX, true, true, false},
{U8_MAX, 1, 0, U8_MAX-1, U8_MAX, true, false, false},
{U8_MAX, U8_MAX, U8_MAX-1, 0, 1, true, false, true},
{U8_MAX, U8_MAX-1, U8_MAX-2, 1, 2, true, false, true},
{U8_MAX-1, U8_MAX, U8_MAX-2, U8_MAX, 2, true, true, true},
{1U << 3, 1U << 3, 1U << 4, 0, 1U << 6, false, false, false},
{1U << 4, 1U << 4, 1U << 5, 0, 0, false, false, true},
{1U << 4, 1U << 3, 3*(1U << 3), 1U << 3, 1U << 7, false, false, false},
{1U << 7, 1U << 7, 0, 0, 0, true, false, true},
{48, 32, 80, 16, 0, false, false, true},
{128, 128, 0, 0, 0, true, false, true},
{123, 234, 101, 145, 110, true, true, true},
};
DEFINE_TEST_ARRAY(u16) = {
{0, 0, 0, 0, 0, false, false, false},
{1, 1, 2, 0, 1, false, false, false},
{0, 1, 1, U16_MAX, 0, false, true, false},
{1, 0, 1, 1, 0, false, false, false},
{0, U16_MAX, U16_MAX, 1, 0, false, true, false},
{U16_MAX, 0, U16_MAX, U16_MAX, 0, false, false, false},
{1, U16_MAX, 0, 2, U16_MAX, true, true, false},
{U16_MAX, 1, 0, U16_MAX-1, U16_MAX, true, false, false},
{U16_MAX, U16_MAX, U16_MAX-1, 0, 1, true, false, true},
{U16_MAX, U16_MAX-1, U16_MAX-2, 1, 2, true, false, true},
{U16_MAX-1, U16_MAX, U16_MAX-2, U16_MAX, 2, true, true, true},
{1U << 7, 1U << 7, 1U << 8, 0, 1U << 14, false, false, false},
{1U << 8, 1U << 8, 1U << 9, 0, 0, false, false, true},
{1U << 8, 1U << 7, 3*(1U << 7), 1U << 7, 1U << 15, false, false, false},
{1U << 15, 1U << 15, 0, 0, 0, true, false, true},
{123, 234, 357, 65425, 28782, false, true, false},
{1234, 2345, 3579, 64425, 10146, false, true, true},
};
DEFINE_TEST_ARRAY(u32) = {
{0, 0, 0, 0, 0, false, false, false},
{1, 1, 2, 0, 1, false, false, false},
{0, 1, 1, U32_MAX, 0, false, true, false},
{1, 0, 1, 1, 0, false, false, false},
{0, U32_MAX, U32_MAX, 1, 0, false, true, false},
{U32_MAX, 0, U32_MAX, U32_MAX, 0, false, false, false},
{1, U32_MAX, 0, 2, U32_MAX, true, true, false},
{U32_MAX, 1, 0, U32_MAX-1, U32_MAX, true, false, false},
{U32_MAX, U32_MAX, U32_MAX-1, 0, 1, true, false, true},
{U32_MAX, U32_MAX-1, U32_MAX-2, 1, 2, true, false, true},
{U32_MAX-1, U32_MAX, U32_MAX-2, U32_MAX, 2, true, true, true},
{1U << 15, 1U << 15, 1U << 16, 0, 1U << 30, false, false, false},
{1U << 16, 1U << 16, 1U << 17, 0, 0, false, false, true},
{1U << 16, 1U << 15, 3*(1U << 15), 1U << 15, 1U << 31, false, false, false},
{1U << 31, 1U << 31, 0, 0, 0, true, false, true},
{-2U, 1U, -1U, -3U, -2U, false, false, false},
{-4U, 5U, 1U, -9U, -20U, true, false, true},
};
DEFINE_TEST_ARRAY(u64) = {
{0, 0, 0, 0, 0, false, false, false},
{1, 1, 2, 0, 1, false, false, false},
{0, 1, 1, U64_MAX, 0, false, true, false},
{1, 0, 1, 1, 0, false, false, false},
{0, U64_MAX, U64_MAX, 1, 0, false, true, false},
{U64_MAX, 0, U64_MAX, U64_MAX, 0, false, false, false},
{1, U64_MAX, 0, 2, U64_MAX, true, true, false},
{U64_MAX, 1, 0, U64_MAX-1, U64_MAX, true, false, false},
{U64_MAX, U64_MAX, U64_MAX-1, 0, 1, true, false, true},
{U64_MAX, U64_MAX-1, U64_MAX-2, 1, 2, true, false, true},
{U64_MAX-1, U64_MAX, U64_MAX-2, U64_MAX, 2, true, true, true},
{1ULL << 31, 1ULL << 31, 1ULL << 32, 0, 1ULL << 62, false, false, false},
{1ULL << 32, 1ULL << 32, 1ULL << 33, 0, 0, false, false, true},
{1ULL << 32, 1ULL << 31, 3*(1ULL << 31), 1ULL << 31, 1ULL << 63, false, false, false},
{1ULL << 63, 1ULL << 63, 0, 0, 0, true, false, true},
{1000000000ULL /* 10^9 */, 10000000000ULL /* 10^10 */,
11000000000ULL, 18446744064709551616ULL, 10000000000000000000ULL,
false, true, false},
{-15ULL, 10ULL, -5ULL, -25ULL, -150ULL, false, false, true},
};
DEFINE_TEST_ARRAY(s8) = {
{0, 0, 0, 0, 0, false, false, false},
{0, S8_MAX, S8_MAX, -S8_MAX, 0, false, false, false},
{S8_MAX, 0, S8_MAX, S8_MAX, 0, false, false, false},
{0, S8_MIN, S8_MIN, S8_MIN, 0, false, true, false},
{S8_MIN, 0, S8_MIN, S8_MIN, 0, false, false, false},
{-1, S8_MIN, S8_MAX, S8_MAX, S8_MIN, true, false, true},
{S8_MIN, -1, S8_MAX, -S8_MAX, S8_MIN, true, false, true},
{-1, S8_MAX, S8_MAX-1, S8_MIN, -S8_MAX, false, false, false},
{S8_MAX, -1, S8_MAX-1, S8_MIN, -S8_MAX, false, true, false},
{-1, -S8_MAX, S8_MIN, S8_MAX-1, S8_MAX, false, false, false},
{-S8_MAX, -1, S8_MIN, S8_MIN+2, S8_MAX, false, false, false},
{1, S8_MIN, -S8_MAX, -S8_MAX, S8_MIN, false, true, false},
{S8_MIN, 1, -S8_MAX, S8_MAX, S8_MIN, false, true, false},
{1, S8_MAX, S8_MIN, S8_MIN+2, S8_MAX, true, false, false},
{S8_MAX, 1, S8_MIN, S8_MAX-1, S8_MAX, true, false, false},
{S8_MIN, S8_MIN, 0, 0, 0, true, false, true},
{S8_MAX, S8_MAX, -2, 0, 1, true, false, true},
{-4, -32, -36, 28, -128, false, false, true},
{-4, 32, 28, -36, -128, false, false, false},
};
DEFINE_TEST_ARRAY(s16) = {
{0, 0, 0, 0, 0, false, false, false},
{0, S16_MAX, S16_MAX, -S16_MAX, 0, false, false, false},
{S16_MAX, 0, S16_MAX, S16_MAX, 0, false, false, false},
{0, S16_MIN, S16_MIN, S16_MIN, 0, false, true, false},
{S16_MIN, 0, S16_MIN, S16_MIN, 0, false, false, false},
{-1, S16_MIN, S16_MAX, S16_MAX, S16_MIN, true, false, true},
{S16_MIN, -1, S16_MAX, -S16_MAX, S16_MIN, true, false, true},
{-1, S16_MAX, S16_MAX-1, S16_MIN, -S16_MAX, false, false, false},
{S16_MAX, -1, S16_MAX-1, S16_MIN, -S16_MAX, false, true, false},
{-1, -S16_MAX, S16_MIN, S16_MAX-1, S16_MAX, false, false, false},
{-S16_MAX, -1, S16_MIN, S16_MIN+2, S16_MAX, false, false, false},
{1, S16_MIN, -S16_MAX, -S16_MAX, S16_MIN, false, true, false},
{S16_MIN, 1, -S16_MAX, S16_MAX, S16_MIN, false, true, false},
{1, S16_MAX, S16_MIN, S16_MIN+2, S16_MAX, true, false, false},
{S16_MAX, 1, S16_MIN, S16_MAX-1, S16_MAX, true, false, false},
{S16_MIN, S16_MIN, 0, 0, 0, true, false, true},
{S16_MAX, S16_MAX, -2, 0, 1, true, false, true},
};
DEFINE_TEST_ARRAY(s32) = {
{0, 0, 0, 0, 0, false, false, false},
{0, S32_MAX, S32_MAX, -S32_MAX, 0, false, false, false},
{S32_MAX, 0, S32_MAX, S32_MAX, 0, false, false, false},
{0, S32_MIN, S32_MIN, S32_MIN, 0, false, true, false},
{S32_MIN, 0, S32_MIN, S32_MIN, 0, false, false, false},
{-1, S32_MIN, S32_MAX, S32_MAX, S32_MIN, true, false, true},
{S32_MIN, -1, S32_MAX, -S32_MAX, S32_MIN, true, false, true},
{-1, S32_MAX, S32_MAX-1, S32_MIN, -S32_MAX, false, false, false},
{S32_MAX, -1, S32_MAX-1, S32_MIN, -S32_MAX, false, true, false},
{-1, -S32_MAX, S32_MIN, S32_MAX-1, S32_MAX, false, false, false},
{-S32_MAX, -1, S32_MIN, S32_MIN+2, S32_MAX, false, false, false},
{1, S32_MIN, -S32_MAX, -S32_MAX, S32_MIN, false, true, false},
{S32_MIN, 1, -S32_MAX, S32_MAX, S32_MIN, false, true, false},
{1, S32_MAX, S32_MIN, S32_MIN+2, S32_MAX, true, false, false},
{S32_MAX, 1, S32_MIN, S32_MAX-1, S32_MAX, true, false, false},
{S32_MIN, S32_MIN, 0, 0, 0, true, false, true},
{S32_MAX, S32_MAX, -2, 0, 1, true, false, true},
};
DEFINE_TEST_ARRAY(s64) = {
{0, 0, 0, 0, 0, false, false, false},
{0, S64_MAX, S64_MAX, -S64_MAX, 0, false, false, false},
{S64_MAX, 0, S64_MAX, S64_MAX, 0, false, false, false},
{0, S64_MIN, S64_MIN, S64_MIN, 0, false, true, false},
{S64_MIN, 0, S64_MIN, S64_MIN, 0, false, false, false},
{-1, S64_MIN, S64_MAX, S64_MAX, S64_MIN, true, false, true},
{S64_MIN, -1, S64_MAX, -S64_MAX, S64_MIN, true, false, true},
{-1, S64_MAX, S64_MAX-1, S64_MIN, -S64_MAX, false, false, false},
{S64_MAX, -1, S64_MAX-1, S64_MIN, -S64_MAX, false, true, false},
{-1, -S64_MAX, S64_MIN, S64_MAX-1, S64_MAX, false, false, false},
{-S64_MAX, -1, S64_MIN, S64_MIN+2, S64_MAX, false, false, false},
{1, S64_MIN, -S64_MAX, -S64_MAX, S64_MIN, false, true, false},
{S64_MIN, 1, -S64_MAX, S64_MAX, S64_MIN, false, true, false},
{1, S64_MAX, S64_MIN, S64_MIN+2, S64_MAX, true, false, false},
{S64_MAX, 1, S64_MIN, S64_MAX-1, S64_MAX, true, false, false},
{S64_MIN, S64_MIN, 0, 0, 0, true, false, true},
{S64_MAX, S64_MAX, -2, 0, 1, true, false, true},
{-1, -1, -2, 0, 1, false, false, false},
{-1, -128, -129, 127, 128, false, false, false},
{-128, -1, -129, -127, 128, false, false, false},
{0, -S64_MAX, -S64_MAX, S64_MAX, 0, false, false, false},
};
#define check_one_op(t, fmt, op, sym, a, b, r, of) do { \
int _a_orig = a, _a_bump = a + 1; \
int _b_orig = b, _b_bump = b + 1; \
bool _of; \
t _r; \
\
_of = check_ ## op ## _overflow(a, b, &_r); \
KUNIT_EXPECT_EQ_MSG(test, _of, of, \
"expected "fmt" "sym" "fmt" to%s overflow (type %s)\n", \
a, b, of ? "" : " not", #t); \
KUNIT_EXPECT_EQ_MSG(test, _r, r, \
"expected "fmt" "sym" "fmt" == "fmt", got "fmt" (type %s)\n", \
a, b, r, _r, #t); \
/* Check for internal macro side-effects. */ \
_of = check_ ## op ## _overflow(_a_orig++, _b_orig++, &_r); \
KUNIT_EXPECT_EQ_MSG(test, _a_orig, _a_bump, "Unexpected " #op " macro side-effect!\n"); \
KUNIT_EXPECT_EQ_MSG(test, _b_orig, _b_bump, "Unexpected " #op " macro side-effect!\n"); \
} while (0)
#define DEFINE_TEST_FUNC_TYPED(n, t, fmt) \
static void do_test_ ## n(struct kunit *test, const struct test_ ## n *p) \
{ \
check_one_op(t, fmt, add, "+", p->a, p->b, p->sum, p->s_of); \
check_one_op(t, fmt, add, "+", p->b, p->a, p->sum, p->s_of); \
check_one_op(t, fmt, sub, "-", p->a, p->b, p->diff, p->d_of); \
check_one_op(t, fmt, mul, "*", p->a, p->b, p->prod, p->p_of); \
check_one_op(t, fmt, mul, "*", p->b, p->a, p->prod, p->p_of); \
} \
\
static void n ## _overflow_test(struct kunit *test) { \
unsigned i; \
\
SKIP_64_ON_32(__same_type(t, u64)); \
SKIP_64_ON_32(__same_type(t, s64)); \
SKIP_SIGN_MISMATCH(__same_type(n ## _tests[0].a, u32) && \
__same_type(n ## _tests[0].b, u32) && \
__same_type(n ## _tests[0].sum, int)); \
\
for (i = 0; i < ARRAY_SIZE(n ## _tests); ++i) \
do_test_ ## n(test, &n ## _tests[i]); \
kunit_info(test, "%zu %s arithmetic tests finished\n", \
ARRAY_SIZE(n ## _tests), #n); \
}
#define DEFINE_TEST_FUNC(t, fmt) \
DEFINE_TEST_FUNC_TYPED(t ## _ ## t ## __ ## t, t, fmt)
DEFINE_TEST_FUNC(u8, "%d");
DEFINE_TEST_FUNC(s8, "%d");
DEFINE_TEST_FUNC(u16, "%d");
DEFINE_TEST_FUNC(s16, "%d");
DEFINE_TEST_FUNC(u32, "%u");
DEFINE_TEST_FUNC(s32, "%d");
DEFINE_TEST_FUNC(u64, "%llu");
DEFINE_TEST_FUNC(s64, "%lld");
DEFINE_TEST_ARRAY_TYPED(u32, u32, u8) = {
{0, 0, 0, 0, 0, false, false, false},
{U8_MAX, 2, 1, U8_MAX - 2, U8_MAX - 1, true, false, true},
{U8_MAX + 1, 0, 0, 0, 0, true, true, false},
};
DEFINE_TEST_FUNC_TYPED(u32_u32__u8, u8, "%d");
DEFINE_TEST_ARRAY_TYPED(u32, u32, int) = {
{0, 0, 0, 0, 0, false, false, false},
{U32_MAX, 0, -1, -1, 0, true, true, false},
};
DEFINE_TEST_FUNC_TYPED(u32_u32__int, int, "%d");
DEFINE_TEST_ARRAY_TYPED(u8, u8, int) = {
{0, 0, 0, 0, 0, false, false, false},
{U8_MAX, U8_MAX, 2 * U8_MAX, 0, U8_MAX * U8_MAX, false, false, false},
{1, 2, 3, -1, 2, false, false, false},
};
DEFINE_TEST_FUNC_TYPED(u8_u8__int, int, "%d");
DEFINE_TEST_ARRAY_TYPED(int, int, u8) = {
{0, 0, 0, 0, 0, false, false, false},
{1, 2, 3, U8_MAX, 2, false, true, false},
{-1, 0, U8_MAX, U8_MAX, 0, true, true, false},
};
DEFINE_TEST_FUNC_TYPED(int_int__u8, u8, "%d");
/* Args are: value, shift, type, expected result, overflow expected */
#define TEST_ONE_SHIFT(a, s, t, expect, of) do { \
typeof(a) __a = (a); \
typeof(s) __s = (s); \
t __e = (expect); \
t __d; \
bool __of = check_shl_overflow(__a, __s, &__d); \
if (__of != of) { \
KUNIT_EXPECT_EQ_MSG(test, __of, of, \
"expected (%s)(%s << %s) to%s overflow\n", \
#t, #a, #s, of ? "" : " not"); \
} else if (!__of && __d != __e) { \
KUNIT_EXPECT_EQ_MSG(test, __d, __e, \
"expected (%s)(%s << %s) == %s\n", \
#t, #a, #s, #expect); \
if ((t)-1 < 0) \
kunit_info(test, "got %lld\n", (s64)__d); \
else \
kunit_info(test, "got %llu\n", (u64)__d); \
} \
count++; \
} while (0)
static void shift_sane_test(struct kunit *test)
{
int count = 0;
/* Sane shifts. */
TEST_ONE_SHIFT(1, 0, u8, 1 << 0, false);
TEST_ONE_SHIFT(1, 4, u8, 1 << 4, false);
TEST_ONE_SHIFT(1, 7, u8, 1 << 7, false);
TEST_ONE_SHIFT(0xF, 4, u8, 0xF << 4, false);
TEST_ONE_SHIFT(1, 0, u16, 1 << 0, false);
TEST_ONE_SHIFT(1, 10, u16, 1 << 10, false);
TEST_ONE_SHIFT(1, 15, u16, 1 << 15, false);
TEST_ONE_SHIFT(0xFF, 8, u16, 0xFF << 8, false);
TEST_ONE_SHIFT(1, 0, int, 1 << 0, false);
TEST_ONE_SHIFT(1, 16, int, 1 << 16, false);
TEST_ONE_SHIFT(1, 30, int, 1 << 30, false);
TEST_ONE_SHIFT(1, 0, s32, 1 << 0, false);
TEST_ONE_SHIFT(1, 16, s32, 1 << 16, false);
TEST_ONE_SHIFT(1, 30, s32, 1 << 30, false);
TEST_ONE_SHIFT(1, 0, unsigned int, 1U << 0, false);
TEST_ONE_SHIFT(1, 20, unsigned int, 1U << 20, false);
TEST_ONE_SHIFT(1, 31, unsigned int, 1U << 31, false);
TEST_ONE_SHIFT(0xFFFFU, 16, unsigned int, 0xFFFFU << 16, false);
TEST_ONE_SHIFT(1, 0, u32, 1U << 0, false);
TEST_ONE_SHIFT(1, 20, u32, 1U << 20, false);
TEST_ONE_SHIFT(1, 31, u32, 1U << 31, false);
TEST_ONE_SHIFT(0xFFFFU, 16, u32, 0xFFFFU << 16, false);
TEST_ONE_SHIFT(1, 0, u64, 1ULL << 0, false);
TEST_ONE_SHIFT(1, 40, u64, 1ULL << 40, false);
TEST_ONE_SHIFT(1, 63, u64, 1ULL << 63, false);
TEST_ONE_SHIFT(0xFFFFFFFFULL, 32, u64, 0xFFFFFFFFULL << 32, false);
/* Sane shift: start and end with 0, without a too-wide shift. */
TEST_ONE_SHIFT(0, 7, u8, 0, false);
TEST_ONE_SHIFT(0, 15, u16, 0, false);
TEST_ONE_SHIFT(0, 31, unsigned int, 0, false);
TEST_ONE_SHIFT(0, 31, u32, 0, false);
TEST_ONE_SHIFT(0, 63, u64, 0, false);
/* Sane shift: start and end with 0, without reaching signed bit. */
TEST_ONE_SHIFT(0, 6, s8, 0, false);
TEST_ONE_SHIFT(0, 14, s16, 0, false);
TEST_ONE_SHIFT(0, 30, int, 0, false);
TEST_ONE_SHIFT(0, 30, s32, 0, false);
TEST_ONE_SHIFT(0, 62, s64, 0, false);
kunit_info(test, "%d sane shift tests finished\n", count);
}
static void shift_overflow_test(struct kunit *test)
{
int count = 0;
/* Overflow: shifted the bit off the end. */
TEST_ONE_SHIFT(1, 8, u8, 0, true);
TEST_ONE_SHIFT(1, 16, u16, 0, true);
TEST_ONE_SHIFT(1, 32, unsigned int, 0, true);
TEST_ONE_SHIFT(1, 32, u32, 0, true);
TEST_ONE_SHIFT(1, 64, u64, 0, true);
/* Overflow: shifted into the signed bit. */
TEST_ONE_SHIFT(1, 7, s8, 0, true);
TEST_ONE_SHIFT(1, 15, s16, 0, true);
TEST_ONE_SHIFT(1, 31, int, 0, true);
TEST_ONE_SHIFT(1, 31, s32, 0, true);
TEST_ONE_SHIFT(1, 63, s64, 0, true);
/* Overflow: high bit falls off unsigned types. */
/* 10010110 */
TEST_ONE_SHIFT(150, 1, u8, 0, true);
/* 1000100010010110 */
TEST_ONE_SHIFT(34966, 1, u16, 0, true);
/* 10000100000010001000100010010110 */
TEST_ONE_SHIFT(2215151766U, 1, u32, 0, true);
TEST_ONE_SHIFT(2215151766U, 1, unsigned int, 0, true);
/* 1000001000010000010000000100000010000100000010001000100010010110 */
TEST_ONE_SHIFT(9372061470395238550ULL, 1, u64, 0, true);
/* Overflow: bit shifted into signed bit on signed types. */
/* 01001011 */
TEST_ONE_SHIFT(75, 1, s8, 0, true);
/* 0100010001001011 */
TEST_ONE_SHIFT(17483, 1, s16, 0, true);
/* 01000010000001000100010001001011 */
TEST_ONE_SHIFT(1107575883, 1, s32, 0, true);
TEST_ONE_SHIFT(1107575883, 1, int, 0, true);
/* 0100000100001000001000000010000001000010000001000100010001001011 */
TEST_ONE_SHIFT(4686030735197619275LL, 1, s64, 0, true);
/* Overflow: bit shifted past signed bit on signed types. */
/* 01001011 */
TEST_ONE_SHIFT(75, 2, s8, 0, true);
/* 0100010001001011 */
TEST_ONE_SHIFT(17483, 2, s16, 0, true);
/* 01000010000001000100010001001011 */
TEST_ONE_SHIFT(1107575883, 2, s32, 0, true);
TEST_ONE_SHIFT(1107575883, 2, int, 0, true);
/* 0100000100001000001000000010000001000010000001000100010001001011 */
TEST_ONE_SHIFT(4686030735197619275LL, 2, s64, 0, true);
kunit_info(test, "%d overflow shift tests finished\n", count);
}
static void shift_truncate_test(struct kunit *test)
{
int count = 0;
/* Overflow: values larger than destination type. */
TEST_ONE_SHIFT(0x100, 0, u8, 0, true);
TEST_ONE_SHIFT(0xFF, 0, s8, 0, true);
TEST_ONE_SHIFT(0x10000U, 0, u16, 0, true);
TEST_ONE_SHIFT(0xFFFFU, 0, s16, 0, true);
TEST_ONE_SHIFT(0x100000000ULL, 0, u32, 0, true);
TEST_ONE_SHIFT(0x100000000ULL, 0, unsigned int, 0, true);
TEST_ONE_SHIFT(0xFFFFFFFFUL, 0, s32, 0, true);
TEST_ONE_SHIFT(0xFFFFFFFFUL, 0, int, 0, true);
TEST_ONE_SHIFT(0xFFFFFFFFFFFFFFFFULL, 0, s64, 0, true);
/* Overflow: shifted at or beyond entire type's bit width. */
TEST_ONE_SHIFT(0, 8, u8, 0, true);
TEST_ONE_SHIFT(0, 9, u8, 0, true);
TEST_ONE_SHIFT(0, 8, s8, 0, true);
TEST_ONE_SHIFT(0, 9, s8, 0, true);
TEST_ONE_SHIFT(0, 16, u16, 0, true);
TEST_ONE_SHIFT(0, 17, u16, 0, true);
TEST_ONE_SHIFT(0, 16, s16, 0, true);
TEST_ONE_SHIFT(0, 17, s16, 0, true);
TEST_ONE_SHIFT(0, 32, u32, 0, true);
TEST_ONE_SHIFT(0, 33, u32, 0, true);
TEST_ONE_SHIFT(0, 32, int, 0, true);
TEST_ONE_SHIFT(0, 33, int, 0, true);
TEST_ONE_SHIFT(0, 32, s32, 0, true);
TEST_ONE_SHIFT(0, 33, s32, 0, true);
TEST_ONE_SHIFT(0, 64, u64, 0, true);
TEST_ONE_SHIFT(0, 65, u64, 0, true);
TEST_ONE_SHIFT(0, 64, s64, 0, true);
TEST_ONE_SHIFT(0, 65, s64, 0, true);
kunit_info(test, "%d truncate shift tests finished\n", count);
}
static void shift_nonsense_test(struct kunit *test)
{
int count = 0;
/* Nonsense: negative initial value. */
TEST_ONE_SHIFT(-1, 0, s8, 0, true);
TEST_ONE_SHIFT(-1, 0, u8, 0, true);
TEST_ONE_SHIFT(-5, 0, s16, 0, true);
TEST_ONE_SHIFT(-5, 0, u16, 0, true);
TEST_ONE_SHIFT(-10, 0, int, 0, true);
TEST_ONE_SHIFT(-10, 0, unsigned int, 0, true);
TEST_ONE_SHIFT(-100, 0, s32, 0, true);
TEST_ONE_SHIFT(-100, 0, u32, 0, true);
TEST_ONE_SHIFT(-10000, 0, s64, 0, true);
TEST_ONE_SHIFT(-10000, 0, u64, 0, true);
/* Nonsense: negative shift values. */
TEST_ONE_SHIFT(0, -5, s8, 0, true);
TEST_ONE_SHIFT(0, -5, u8, 0, true);
TEST_ONE_SHIFT(0, -10, s16, 0, true);
TEST_ONE_SHIFT(0, -10, u16, 0, true);
TEST_ONE_SHIFT(0, -15, int, 0, true);
TEST_ONE_SHIFT(0, -15, unsigned int, 0, true);
TEST_ONE_SHIFT(0, -20, s32, 0, true);
TEST_ONE_SHIFT(0, -20, u32, 0, true);
TEST_ONE_SHIFT(0, -30, s64, 0, true);
TEST_ONE_SHIFT(0, -30, u64, 0, true);
/*
* Corner case: for unsigned types, we fail when we've shifted
* through the entire width of bits. For signed types, we might
* want to match this behavior, but that would mean noticing if
* we shift through all but the signed bit, and this is not
* currently detected (but we'll notice an overflow into the
* signed bit). So, for now, we will test this condition but
* mark it as not expected to overflow.
*/
TEST_ONE_SHIFT(0, 7, s8, 0, false);
TEST_ONE_SHIFT(0, 15, s16, 0, false);
TEST_ONE_SHIFT(0, 31, int, 0, false);
TEST_ONE_SHIFT(0, 31, s32, 0, false);
TEST_ONE_SHIFT(0, 63, s64, 0, false);
kunit_info(test, "%d nonsense shift tests finished\n", count);
}
#undef TEST_ONE_SHIFT
/*
* Deal with the various forms of allocator arguments. See comments above
* the DEFINE_TEST_ALLOC() instances for mapping of the "bits".
*/
#define alloc_GFP (GFP_KERNEL | __GFP_NOWARN)
#define alloc010(alloc, arg, sz) alloc(sz, alloc_GFP)
#define alloc011(alloc, arg, sz) alloc(sz, alloc_GFP, NUMA_NO_NODE)
#define alloc000(alloc, arg, sz) alloc(sz)
#define alloc001(alloc, arg, sz) alloc(sz, NUMA_NO_NODE)
#define alloc110(alloc, arg, sz) alloc(arg, sz, alloc_GFP)
#define free0(free, arg, ptr) free(ptr)
#define free1(free, arg, ptr) free(arg, ptr)
/* Wrap around to 16K */
#define TEST_SIZE (5 * 4096)
#define DEFINE_TEST_ALLOC(func, free_func, want_arg, want_gfp, want_node)\
static void test_ ## func (struct kunit *test, void *arg) \
{ \
volatile size_t a = TEST_SIZE; \
volatile size_t b = (SIZE_MAX / TEST_SIZE) + 1; \
void *ptr; \
\
/* Tiny allocation test. */ \
ptr = alloc ## want_arg ## want_gfp ## want_node (func, arg, 1);\
KUNIT_ASSERT_NOT_ERR_OR_NULL_MSG(test, ptr, \
#func " failed regular allocation?!\n"); \
free ## want_arg (free_func, arg, ptr); \
\
/* Wrapped allocation test. */ \
ptr = alloc ## want_arg ## want_gfp ## want_node (func, arg, \
a * b); \
KUNIT_ASSERT_NOT_ERR_OR_NULL_MSG(test, ptr, \
#func " unexpectedly failed bad wrapping?!\n"); \
free ## want_arg (free_func, arg, ptr); \
\
/* Saturated allocation test. */ \
ptr = alloc ## want_arg ## want_gfp ## want_node (func, arg, \
array_size(a, b)); \
if (ptr) { \
KUNIT_FAIL(test, #func " missed saturation!\n"); \
free ## want_arg (free_func, arg, ptr); \
} \
}
/*
* Allocator uses a trailing node argument --------+ (e.g. kmalloc_node())
* Allocator uses the gfp_t argument -----------+ | (e.g. kmalloc())
* Allocator uses a special leading argument + | | (e.g. devm_kmalloc())
* | | |
*/
DEFINE_TEST_ALLOC(kmalloc, kfree, 0, 1, 0);
DEFINE_TEST_ALLOC(kmalloc_node, kfree, 0, 1, 1);
DEFINE_TEST_ALLOC(kzalloc, kfree, 0, 1, 0);
DEFINE_TEST_ALLOC(kzalloc_node, kfree, 0, 1, 1);
DEFINE_TEST_ALLOC(__vmalloc, vfree, 0, 1, 0);
DEFINE_TEST_ALLOC(kvmalloc, kvfree, 0, 1, 0);
DEFINE_TEST_ALLOC(kvmalloc_node, kvfree, 0, 1, 1);
DEFINE_TEST_ALLOC(kvzalloc, kvfree, 0, 1, 0);
DEFINE_TEST_ALLOC(kvzalloc_node, kvfree, 0, 1, 1);
DEFINE_TEST_ALLOC(devm_kmalloc, devm_kfree, 1, 1, 0);
DEFINE_TEST_ALLOC(devm_kzalloc, devm_kfree, 1, 1, 0);
static void overflow_allocation_test(struct kunit *test)
{
const char device_name[] = "overflow-test";
struct device *dev;
int count = 0;
#define check_allocation_overflow(alloc) do { \
count++; \
test_ ## alloc(test, dev); \
} while (0)
/* Create dummy device for devm_kmalloc()-family tests. */
dev = root_device_register(device_name);
KUNIT_ASSERT_FALSE_MSG(test, IS_ERR(dev),
"Cannot register test device\n");
check_allocation_overflow(kmalloc);
check_allocation_overflow(kmalloc_node);
check_allocation_overflow(kzalloc);
check_allocation_overflow(kzalloc_node);
check_allocation_overflow(__vmalloc);
check_allocation_overflow(kvmalloc);
check_allocation_overflow(kvmalloc_node);
check_allocation_overflow(kvzalloc);
check_allocation_overflow(kvzalloc_node);
check_allocation_overflow(devm_kmalloc);
check_allocation_overflow(devm_kzalloc);
device_unregister(dev);
kunit_info(test, "%d allocation overflow tests finished\n", count);
#undef check_allocation_overflow
}
struct __test_flex_array {
unsigned long flags;
size_t count;
unsigned long data[];
};
static void overflow_size_helpers_test(struct kunit *test)
{
/* Make sure struct_size() can be used in a constant expression. */
u8 ce_array[struct_size((struct __test_flex_array *)0, data, 55)];
struct __test_flex_array *obj;
int count = 0;
int var;
volatile int unconst = 0;
/* Verify constant expression against runtime version. */
var = 55;
OPTIMIZER_HIDE_VAR(var);
KUNIT_EXPECT_EQ(test, sizeof(ce_array), struct_size(obj, data, var));
#define check_one_size_helper(expected, func, args...) do { \
size_t _r = func(args); \
KUNIT_EXPECT_EQ_MSG(test, _r, expected, \
"expected " #func "(" #args ") to return %zu but got %zu instead\n", \
(size_t)(expected), _r); \
count++; \
} while (0)
var = 4;
check_one_size_helper(20, size_mul, var++, 5);
check_one_size_helper(20, size_mul, 4, var++);
check_one_size_helper(0, size_mul, 0, 3);
check_one_size_helper(0, size_mul, 3, 0);
check_one_size_helper(6, size_mul, 2, 3);
check_one_size_helper(SIZE_MAX, size_mul, SIZE_MAX, 1);
check_one_size_helper(SIZE_MAX, size_mul, SIZE_MAX, 3);
check_one_size_helper(SIZE_MAX, size_mul, SIZE_MAX, -3);
var = 4;
check_one_size_helper(9, size_add, var++, 5);
check_one_size_helper(9, size_add, 4, var++);
check_one_size_helper(9, size_add, 9, 0);
check_one_size_helper(9, size_add, 0, 9);
check_one_size_helper(5, size_add, 2, 3);
check_one_size_helper(SIZE_MAX, size_add, SIZE_MAX, 1);
check_one_size_helper(SIZE_MAX, size_add, SIZE_MAX, 3);
check_one_size_helper(SIZE_MAX, size_add, SIZE_MAX, -3);
var = 4;
check_one_size_helper(1, size_sub, var--, 3);
check_one_size_helper(1, size_sub, 4, var--);
check_one_size_helper(1, size_sub, 3, 2);
check_one_size_helper(9, size_sub, 9, 0);
check_one_size_helper(SIZE_MAX, size_sub, 9, -3);
check_one_size_helper(SIZE_MAX, size_sub, 0, 9);
check_one_size_helper(SIZE_MAX, size_sub, 2, 3);
check_one_size_helper(SIZE_MAX, size_sub, SIZE_MAX, 0);
check_one_size_helper(SIZE_MAX, size_sub, SIZE_MAX, 10);
check_one_size_helper(SIZE_MAX, size_sub, 0, SIZE_MAX);
check_one_size_helper(SIZE_MAX, size_sub, 14, SIZE_MAX);
check_one_size_helper(SIZE_MAX - 2, size_sub, SIZE_MAX - 1, 1);
check_one_size_helper(SIZE_MAX - 4, size_sub, SIZE_MAX - 1, 3);
check_one_size_helper(1, size_sub, SIZE_MAX - 1, -3);
var = 4;
check_one_size_helper(4 * sizeof(*obj->data),
flex_array_size, obj, data, var++);
check_one_size_helper(5 * sizeof(*obj->data),
flex_array_size, obj, data, var++);
check_one_size_helper(0, flex_array_size, obj, data, 0 + unconst);
check_one_size_helper(sizeof(*obj->data),
flex_array_size, obj, data, 1 + unconst);
check_one_size_helper(7 * sizeof(*obj->data),
flex_array_size, obj, data, 7 + unconst);
check_one_size_helper(SIZE_MAX,
flex_array_size, obj, data, -1 + unconst);
check_one_size_helper(SIZE_MAX,
flex_array_size, obj, data, SIZE_MAX - 4 + unconst);
var = 4;
check_one_size_helper(sizeof(*obj) + (4 * sizeof(*obj->data)),
struct_size, obj, data, var++);
check_one_size_helper(sizeof(*obj) + (5 * sizeof(*obj->data)),
struct_size, obj, data, var++);
check_one_size_helper(sizeof(*obj), struct_size, obj, data, 0 + unconst);
check_one_size_helper(sizeof(*obj) + sizeof(*obj->data),
struct_size, obj, data, 1 + unconst);
check_one_size_helper(SIZE_MAX,
struct_size, obj, data, -3 + unconst);
check_one_size_helper(SIZE_MAX,
struct_size, obj, data, SIZE_MAX - 3 + unconst);
kunit_info(test, "%d overflow size helper tests finished\n", count);
#undef check_one_size_helper
}
static void overflows_type_test(struct kunit *test)
{
int count = 0;
unsigned int var;
#define __TEST_OVERFLOWS_TYPE(func, arg1, arg2, of) do { \
bool __of = func(arg1, arg2); \
KUNIT_EXPECT_EQ_MSG(test, __of, of, \
"expected " #func "(" #arg1 ", " #arg2 " to%s overflow\n",\
of ? "" : " not"); \
count++; \
} while (0)
/* Args are: first type, second type, value, overflow expected */
#define TEST_OVERFLOWS_TYPE(__t1, __t2, v, of) do { \
__t1 t1 = (v); \
__t2 t2; \
__TEST_OVERFLOWS_TYPE(__overflows_type, t1, t2, of); \
__TEST_OVERFLOWS_TYPE(__overflows_type, t1, __t2, of); \
__TEST_OVERFLOWS_TYPE(__overflows_type_constexpr, t1, t2, of); \
__TEST_OVERFLOWS_TYPE(__overflows_type_constexpr, t1, __t2, of);\
} while (0)
TEST_OVERFLOWS_TYPE(u8, u8, U8_MAX, false);
TEST_OVERFLOWS_TYPE(u8, u16, U8_MAX, false);
TEST_OVERFLOWS_TYPE(u8, s8, U8_MAX, true);
TEST_OVERFLOWS_TYPE(u8, s8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(u8, s8, (u8)S8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u8, s16, U8_MAX, false);
TEST_OVERFLOWS_TYPE(s8, u8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s8, u8, -1, true);
TEST_OVERFLOWS_TYPE(s8, u8, S8_MIN, true);
TEST_OVERFLOWS_TYPE(s8, u16, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s8, u16, -1, true);
TEST_OVERFLOWS_TYPE(s8, u16, S8_MIN, true);
TEST_OVERFLOWS_TYPE(s8, u32, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s8, u32, -1, true);
TEST_OVERFLOWS_TYPE(s8, u32, S8_MIN, true);
#if BITS_PER_LONG == 64
TEST_OVERFLOWS_TYPE(s8, u64, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s8, u64, -1, true);
TEST_OVERFLOWS_TYPE(s8, u64, S8_MIN, true);
#endif
TEST_OVERFLOWS_TYPE(s8, s8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s8, s8, S8_MIN, false);
TEST_OVERFLOWS_TYPE(s8, s16, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s8, s16, S8_MIN, false);
TEST_OVERFLOWS_TYPE(u16, u8, U8_MAX, false);
TEST_OVERFLOWS_TYPE(u16, u8, (u16)U8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u16, u8, U16_MAX, true);
TEST_OVERFLOWS_TYPE(u16, s8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(u16, s8, (u16)S8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u16, s8, U16_MAX, true);
TEST_OVERFLOWS_TYPE(u16, s16, S16_MAX, false);
TEST_OVERFLOWS_TYPE(u16, s16, (u16)S16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u16, s16, U16_MAX, true);
TEST_OVERFLOWS_TYPE(u16, u32, U16_MAX, false);
TEST_OVERFLOWS_TYPE(u16, s32, U16_MAX, false);
TEST_OVERFLOWS_TYPE(s16, u8, U8_MAX, false);
TEST_OVERFLOWS_TYPE(s16, u8, (s16)U8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s16, u8, -1, true);
TEST_OVERFLOWS_TYPE(s16, u8, S16_MIN, true);
TEST_OVERFLOWS_TYPE(s16, u16, S16_MAX, false);
TEST_OVERFLOWS_TYPE(s16, u16, -1, true);
TEST_OVERFLOWS_TYPE(s16, u16, S16_MIN, true);
TEST_OVERFLOWS_TYPE(s16, u32, S16_MAX, false);
TEST_OVERFLOWS_TYPE(s16, u32, -1, true);
TEST_OVERFLOWS_TYPE(s16, u32, S16_MIN, true);
#if BITS_PER_LONG == 64
TEST_OVERFLOWS_TYPE(s16, u64, S16_MAX, false);
TEST_OVERFLOWS_TYPE(s16, u64, -1, true);
TEST_OVERFLOWS_TYPE(s16, u64, S16_MIN, true);
#endif
TEST_OVERFLOWS_TYPE(s16, s8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s16, s8, S8_MIN, false);
TEST_OVERFLOWS_TYPE(s16, s8, (s16)S8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s16, s8, (s16)S8_MIN - 1, true);
TEST_OVERFLOWS_TYPE(s16, s8, S16_MAX, true);
TEST_OVERFLOWS_TYPE(s16, s8, S16_MIN, true);
TEST_OVERFLOWS_TYPE(s16, s16, S16_MAX, false);
TEST_OVERFLOWS_TYPE(s16, s16, S16_MIN, false);
TEST_OVERFLOWS_TYPE(s16, s32, S16_MAX, false);
TEST_OVERFLOWS_TYPE(s16, s32, S16_MIN, false);
TEST_OVERFLOWS_TYPE(u32, u8, U8_MAX, false);
TEST_OVERFLOWS_TYPE(u32, u8, (u32)U8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u32, u8, U32_MAX, true);
TEST_OVERFLOWS_TYPE(u32, s8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(u32, s8, (u32)S8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u32, s8, U32_MAX, true);
TEST_OVERFLOWS_TYPE(u32, u16, U16_MAX, false);
TEST_OVERFLOWS_TYPE(u32, u16, U16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u32, u16, U32_MAX, true);
TEST_OVERFLOWS_TYPE(u32, s16, S16_MAX, false);
TEST_OVERFLOWS_TYPE(u32, s16, (u32)S16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u32, s16, U32_MAX, true);
TEST_OVERFLOWS_TYPE(u32, u32, U32_MAX, false);
TEST_OVERFLOWS_TYPE(u32, s32, S32_MAX, false);
TEST_OVERFLOWS_TYPE(u32, s32, U32_MAX, true);
TEST_OVERFLOWS_TYPE(u32, s32, (u32)S32_MAX + 1, true);
#if BITS_PER_LONG == 64
TEST_OVERFLOWS_TYPE(u32, u64, U32_MAX, false);
TEST_OVERFLOWS_TYPE(u32, s64, U32_MAX, false);
#endif
TEST_OVERFLOWS_TYPE(s32, u8, U8_MAX, false);
TEST_OVERFLOWS_TYPE(s32, u8, (s32)U8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s32, u16, S32_MAX, true);
TEST_OVERFLOWS_TYPE(s32, u8, -1, true);
TEST_OVERFLOWS_TYPE(s32, u8, S32_MIN, true);
TEST_OVERFLOWS_TYPE(s32, u16, U16_MAX, false);
TEST_OVERFLOWS_TYPE(s32, u16, (s32)U16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s32, u16, S32_MAX, true);
TEST_OVERFLOWS_TYPE(s32, u16, -1, true);
TEST_OVERFLOWS_TYPE(s32, u16, S32_MIN, true);
TEST_OVERFLOWS_TYPE(s32, u32, S32_MAX, false);
TEST_OVERFLOWS_TYPE(s32, u32, -1, true);
TEST_OVERFLOWS_TYPE(s32, u32, S32_MIN, true);
#if BITS_PER_LONG == 64
TEST_OVERFLOWS_TYPE(s32, u64, S32_MAX, false);
TEST_OVERFLOWS_TYPE(s32, u64, -1, true);
TEST_OVERFLOWS_TYPE(s32, u64, S32_MIN, true);
#endif
TEST_OVERFLOWS_TYPE(s32, s8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s32, s8, S8_MIN, false);
TEST_OVERFLOWS_TYPE(s32, s8, (s32)S8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s32, s8, (s32)S8_MIN - 1, true);
TEST_OVERFLOWS_TYPE(s32, s8, S32_MAX, true);
TEST_OVERFLOWS_TYPE(s32, s8, S32_MIN, true);
TEST_OVERFLOWS_TYPE(s32, s16, S16_MAX, false);
TEST_OVERFLOWS_TYPE(s32, s16, S16_MIN, false);
TEST_OVERFLOWS_TYPE(s32, s16, (s32)S16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s32, s16, (s32)S16_MIN - 1, true);
TEST_OVERFLOWS_TYPE(s32, s16, S32_MAX, true);
TEST_OVERFLOWS_TYPE(s32, s16, S32_MIN, true);
TEST_OVERFLOWS_TYPE(s32, s32, S32_MAX, false);
TEST_OVERFLOWS_TYPE(s32, s32, S32_MIN, false);
#if BITS_PER_LONG == 64
TEST_OVERFLOWS_TYPE(s32, s64, S32_MAX, false);
TEST_OVERFLOWS_TYPE(s32, s64, S32_MIN, false);
TEST_OVERFLOWS_TYPE(u64, u8, U64_MAX, true);
TEST_OVERFLOWS_TYPE(u64, u8, U8_MAX, false);
TEST_OVERFLOWS_TYPE(u64, u8, (u64)U8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u64, u16, U64_MAX, true);
TEST_OVERFLOWS_TYPE(u64, u16, U16_MAX, false);
TEST_OVERFLOWS_TYPE(u64, u16, (u64)U16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u64, u32, U64_MAX, true);
TEST_OVERFLOWS_TYPE(u64, u32, U32_MAX, false);
TEST_OVERFLOWS_TYPE(u64, u32, (u64)U32_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u64, u64, U64_MAX, false);
TEST_OVERFLOWS_TYPE(u64, s8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(u64, s8, (u64)S8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u64, s8, U64_MAX, true);
TEST_OVERFLOWS_TYPE(u64, s16, S16_MAX, false);
TEST_OVERFLOWS_TYPE(u64, s16, (u64)S16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u64, s16, U64_MAX, true);
TEST_OVERFLOWS_TYPE(u64, s32, S32_MAX, false);
TEST_OVERFLOWS_TYPE(u64, s32, (u64)S32_MAX + 1, true);
TEST_OVERFLOWS_TYPE(u64, s32, U64_MAX, true);
TEST_OVERFLOWS_TYPE(u64, s64, S64_MAX, false);
TEST_OVERFLOWS_TYPE(u64, s64, U64_MAX, true);
TEST_OVERFLOWS_TYPE(u64, s64, (u64)S64_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s64, u8, S64_MAX, true);
TEST_OVERFLOWS_TYPE(s64, u8, S64_MIN, true);
TEST_OVERFLOWS_TYPE(s64, u8, -1, true);
TEST_OVERFLOWS_TYPE(s64, u8, U8_MAX, false);
TEST_OVERFLOWS_TYPE(s64, u8, (s64)U8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s64, u16, S64_MAX, true);
TEST_OVERFLOWS_TYPE(s64, u16, S64_MIN, true);
TEST_OVERFLOWS_TYPE(s64, u16, -1, true);
TEST_OVERFLOWS_TYPE(s64, u16, U16_MAX, false);
TEST_OVERFLOWS_TYPE(s64, u16, (s64)U16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s64, u32, S64_MAX, true);
TEST_OVERFLOWS_TYPE(s64, u32, S64_MIN, true);
TEST_OVERFLOWS_TYPE(s64, u32, -1, true);
TEST_OVERFLOWS_TYPE(s64, u32, U32_MAX, false);
TEST_OVERFLOWS_TYPE(s64, u32, (s64)U32_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s64, u64, S64_MAX, false);
TEST_OVERFLOWS_TYPE(s64, u64, S64_MIN, true);
TEST_OVERFLOWS_TYPE(s64, u64, -1, true);
TEST_OVERFLOWS_TYPE(s64, s8, S8_MAX, false);
TEST_OVERFLOWS_TYPE(s64, s8, S8_MIN, false);
TEST_OVERFLOWS_TYPE(s64, s8, (s64)S8_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s64, s8, (s64)S8_MIN - 1, true);
TEST_OVERFLOWS_TYPE(s64, s8, S64_MAX, true);
TEST_OVERFLOWS_TYPE(s64, s16, S16_MAX, false);
TEST_OVERFLOWS_TYPE(s64, s16, S16_MIN, false);
TEST_OVERFLOWS_TYPE(s64, s16, (s64)S16_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s64, s16, (s64)S16_MIN - 1, true);
TEST_OVERFLOWS_TYPE(s64, s16, S64_MAX, true);
TEST_OVERFLOWS_TYPE(s64, s32, S32_MAX, false);
TEST_OVERFLOWS_TYPE(s64, s32, S32_MIN, false);
TEST_OVERFLOWS_TYPE(s64, s32, (s64)S32_MAX + 1, true);
TEST_OVERFLOWS_TYPE(s64, s32, (s64)S32_MIN - 1, true);
TEST_OVERFLOWS_TYPE(s64, s32, S64_MAX, true);
TEST_OVERFLOWS_TYPE(s64, s64, S64_MAX, false);
TEST_OVERFLOWS_TYPE(s64, s64, S64_MIN, false);
#endif
/* Check for macro side-effects. */
var = INT_MAX - 1;
__TEST_OVERFLOWS_TYPE(__overflows_type, var++, int, false);
__TEST_OVERFLOWS_TYPE(__overflows_type, var++, int, false);
__TEST_OVERFLOWS_TYPE(__overflows_type, var++, int, true);
var = INT_MAX - 1;
__TEST_OVERFLOWS_TYPE(overflows_type, var++, int, false);
__TEST_OVERFLOWS_TYPE(overflows_type, var++, int, false);
__TEST_OVERFLOWS_TYPE(overflows_type, var++, int, true);
kunit_info(test, "%d overflows_type() tests finished\n", count);
#undef TEST_OVERFLOWS_TYPE
#undef __TEST_OVERFLOWS_TYPE
}
static void same_type_test(struct kunit *test)
{
int count = 0;
int var;
#define TEST_SAME_TYPE(t1, t2, same) do { \
typeof(t1) __t1h = type_max(t1); \
typeof(t1) __t1l = type_min(t1); \
typeof(t2) __t2h = type_max(t2); \
typeof(t2) __t2l = type_min(t2); \
KUNIT_EXPECT_EQ(test, true, __same_type(t1, __t1h)); \
KUNIT_EXPECT_EQ(test, true, __same_type(t1, __t1l)); \
KUNIT_EXPECT_EQ(test, true, __same_type(__t1h, t1)); \
KUNIT_EXPECT_EQ(test, true, __same_type(__t1l, t1)); \
KUNIT_EXPECT_EQ(test, true, __same_type(t2, __t2h)); \
KUNIT_EXPECT_EQ(test, true, __same_type(t2, __t2l)); \
KUNIT_EXPECT_EQ(test, true, __same_type(__t2h, t2)); \
KUNIT_EXPECT_EQ(test, true, __same_type(__t2l, t2)); \
KUNIT_EXPECT_EQ(test, same, __same_type(t1, t2)); \
KUNIT_EXPECT_EQ(test, same, __same_type(t2, __t1h)); \
KUNIT_EXPECT_EQ(test, same, __same_type(t2, __t1l)); \
KUNIT_EXPECT_EQ(test, same, __same_type(__t1h, t2)); \
KUNIT_EXPECT_EQ(test, same, __same_type(__t1l, t2)); \
KUNIT_EXPECT_EQ(test, same, __same_type(t1, __t2h)); \
KUNIT_EXPECT_EQ(test, same, __same_type(t1, __t2l)); \
KUNIT_EXPECT_EQ(test, same, __same_type(__t2h, t1)); \
KUNIT_EXPECT_EQ(test, same, __same_type(__t2l, t1)); \
} while (0)
#if BITS_PER_LONG == 64
# define TEST_SAME_TYPE64(base, t, m) TEST_SAME_TYPE(base, t, m)
#else
# define TEST_SAME_TYPE64(base, t, m) do { } while (0)
#endif
#define TEST_TYPE_SETS(base, mu8, mu16, mu32, ms8, ms16, ms32, mu64, ms64) \
do { \
TEST_SAME_TYPE(base, u8, mu8); \
TEST_SAME_TYPE(base, u16, mu16); \
TEST_SAME_TYPE(base, u32, mu32); \
TEST_SAME_TYPE(base, s8, ms8); \
TEST_SAME_TYPE(base, s16, ms16); \
TEST_SAME_TYPE(base, s32, ms32); \
TEST_SAME_TYPE64(base, u64, mu64); \
TEST_SAME_TYPE64(base, s64, ms64); \
} while (0)
TEST_TYPE_SETS(u8, true, false, false, false, false, false, false, false);
TEST_TYPE_SETS(u16, false, true, false, false, false, false, false, false);
TEST_TYPE_SETS(u32, false, false, true, false, false, false, false, false);
TEST_TYPE_SETS(s8, false, false, false, true, false, false, false, false);
TEST_TYPE_SETS(s16, false, false, false, false, true, false, false, false);
TEST_TYPE_SETS(s32, false, false, false, false, false, true, false, false);
#if BITS_PER_LONG == 64
TEST_TYPE_SETS(u64, false, false, false, false, false, false, true, false);
TEST_TYPE_SETS(s64, false, false, false, false, false, false, false, true);
#endif
/* Check for macro side-effects. */
var = 4;
KUNIT_EXPECT_EQ(test, var, 4);
KUNIT_EXPECT_TRUE(test, __same_type(var++, int));
KUNIT_EXPECT_EQ(test, var, 4);
KUNIT_EXPECT_TRUE(test, __same_type(int, var++));
KUNIT_EXPECT_EQ(test, var, 4);
KUNIT_EXPECT_TRUE(test, __same_type(var++, var++));
KUNIT_EXPECT_EQ(test, var, 4);
kunit_info(test, "%d __same_type() tests finished\n", count);
#undef TEST_TYPE_SETS
#undef TEST_SAME_TYPE64
#undef TEST_SAME_TYPE
}
static void castable_to_type_test(struct kunit *test)
{
int count = 0;
#define TEST_CASTABLE_TO_TYPE(arg1, arg2, pass) do { \
bool __pass = castable_to_type(arg1, arg2); \
KUNIT_EXPECT_EQ_MSG(test, __pass, pass, \
"expected castable_to_type(" #arg1 ", " #arg2 ") to%s pass\n",\
pass ? "" : " not"); \
count++; \
} while (0)
TEST_CASTABLE_TO_TYPE(16, u8, true);
TEST_CASTABLE_TO_TYPE(16, u16, true);
TEST_CASTABLE_TO_TYPE(16, u32, true);
TEST_CASTABLE_TO_TYPE(16, s8, true);
TEST_CASTABLE_TO_TYPE(16, s16, true);
TEST_CASTABLE_TO_TYPE(16, s32, true);
TEST_CASTABLE_TO_TYPE(-16, s8, true);
TEST_CASTABLE_TO_TYPE(-16, s16, true);
TEST_CASTABLE_TO_TYPE(-16, s32, true);
#if BITS_PER_LONG == 64
TEST_CASTABLE_TO_TYPE(16, u64, true);
TEST_CASTABLE_TO_TYPE(-16, s64, true);
#endif
#define TEST_CASTABLE_TO_TYPE_VAR(width) do { \
u ## width u ## width ## var = 0; \
s ## width s ## width ## var = 0; \
\
/* Constant expressions that fit types. */ \
TEST_CASTABLE_TO_TYPE(type_max(u ## width), u ## width, true); \
TEST_CASTABLE_TO_TYPE(type_min(u ## width), u ## width, true); \
TEST_CASTABLE_TO_TYPE(type_max(u ## width), u ## width ## var, true); \
TEST_CASTABLE_TO_TYPE(type_min(u ## width), u ## width ## var, true); \
TEST_CASTABLE_TO_TYPE(type_max(s ## width), s ## width, true); \
TEST_CASTABLE_TO_TYPE(type_min(s ## width), s ## width, true); \
TEST_CASTABLE_TO_TYPE(type_max(s ## width), s ## width ## var, true); \
TEST_CASTABLE_TO_TYPE(type_min(u ## width), s ## width ## var, true); \
/* Constant expressions that do not fit types. */ \
TEST_CASTABLE_TO_TYPE(type_max(u ## width), s ## width, false); \
TEST_CASTABLE_TO_TYPE(type_max(u ## width), s ## width ## var, false); \
TEST_CASTABLE_TO_TYPE(type_min(s ## width), u ## width, false); \
TEST_CASTABLE_TO_TYPE(type_min(s ## width), u ## width ## var, false); \
/* Non-constant expression with mismatched type. */ \
TEST_CASTABLE_TO_TYPE(s ## width ## var, u ## width, false); \
TEST_CASTABLE_TO_TYPE(u ## width ## var, s ## width, false); \
} while (0)
#define TEST_CASTABLE_TO_TYPE_RANGE(width) do { \
unsigned long big = U ## width ## _MAX; \
signed long small = S ## width ## _MIN; \
u ## width u ## width ## var = 0; \
s ## width s ## width ## var = 0; \
\
/* Constant expression in range. */ \
TEST_CASTABLE_TO_TYPE(U ## width ## _MAX, u ## width, true); \
TEST_CASTABLE_TO_TYPE(U ## width ## _MAX, u ## width ## var, true); \
TEST_CASTABLE_TO_TYPE(S ## width ## _MIN, s ## width, true); \
TEST_CASTABLE_TO_TYPE(S ## width ## _MIN, s ## width ## var, true); \
/* Constant expression out of range. */ \
TEST_CASTABLE_TO_TYPE((unsigned long)U ## width ## _MAX + 1, u ## width, false); \
TEST_CASTABLE_TO_TYPE((unsigned long)U ## width ## _MAX + 1, u ## width ## var, false); \
TEST_CASTABLE_TO_TYPE((signed long)S ## width ## _MIN - 1, s ## width, false); \
TEST_CASTABLE_TO_TYPE((signed long)S ## width ## _MIN - 1, s ## width ## var, false); \
/* Non-constant expression with mismatched type. */ \
TEST_CASTABLE_TO_TYPE(big, u ## width, false); \
TEST_CASTABLE_TO_TYPE(big, u ## width ## var, false); \
TEST_CASTABLE_TO_TYPE(small, s ## width, false); \
TEST_CASTABLE_TO_TYPE(small, s ## width ## var, false); \
} while (0)
TEST_CASTABLE_TO_TYPE_VAR(8);
TEST_CASTABLE_TO_TYPE_VAR(16);
TEST_CASTABLE_TO_TYPE_VAR(32);
#if BITS_PER_LONG == 64
TEST_CASTABLE_TO_TYPE_VAR(64);
#endif
TEST_CASTABLE_TO_TYPE_RANGE(8);
TEST_CASTABLE_TO_TYPE_RANGE(16);
#if BITS_PER_LONG == 64
TEST_CASTABLE_TO_TYPE_RANGE(32);
#endif
kunit_info(test, "%d castable_to_type() tests finished\n", count);
#undef TEST_CASTABLE_TO_TYPE_RANGE
#undef TEST_CASTABLE_TO_TYPE_VAR
#undef TEST_CASTABLE_TO_TYPE
}
static struct kunit_case overflow_test_cases[] = {
KUNIT_CASE(u8_u8__u8_overflow_test),
KUNIT_CASE(s8_s8__s8_overflow_test),
KUNIT_CASE(u16_u16__u16_overflow_test),
KUNIT_CASE(s16_s16__s16_overflow_test),
KUNIT_CASE(u32_u32__u32_overflow_test),
KUNIT_CASE(s32_s32__s32_overflow_test),
KUNIT_CASE(u64_u64__u64_overflow_test),
KUNIT_CASE(s64_s64__s64_overflow_test),
KUNIT_CASE(u32_u32__int_overflow_test),
KUNIT_CASE(u32_u32__u8_overflow_test),
KUNIT_CASE(u8_u8__int_overflow_test),
KUNIT_CASE(int_int__u8_overflow_test),
KUNIT_CASE(shift_sane_test),
KUNIT_CASE(shift_overflow_test),
KUNIT_CASE(shift_truncate_test),
KUNIT_CASE(shift_nonsense_test),
KUNIT_CASE(overflow_allocation_test),
KUNIT_CASE(overflow_size_helpers_test),
KUNIT_CASE(overflows_type_test),
KUNIT_CASE(same_type_test),
KUNIT_CASE(castable_to_type_test),
{}
};
static struct kunit_suite overflow_test_suite = {
.name = "overflow",
.test_cases = overflow_test_cases,
};
kunit_test_suite(overflow_test_suite);
MODULE_LICENSE("Dual MIT/GPL");