2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/drivers/spi/spi-qup.c
Wang Li cec77e0a24
spi: qup: fix PM reference leak in spi_qup_remove()
pm_runtime_get_sync will increment pm usage counter even it failed.
Forgetting to putting operation will result in reference leak here.
Fix it by replacing it with pm_runtime_resume_and_get to keep usage
counter balanced.

Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Wang Li <wangli74@huawei.com>
Reviewed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Link: https://lore.kernel.org/r/20210409095458.29921-1-wangli74@huawei.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2021-04-09 13:44:03 +01:00

1313 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2008-2014, The Linux foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#define QUP_CONFIG 0x0000
#define QUP_STATE 0x0004
#define QUP_IO_M_MODES 0x0008
#define QUP_SW_RESET 0x000c
#define QUP_OPERATIONAL 0x0018
#define QUP_ERROR_FLAGS 0x001c
#define QUP_ERROR_FLAGS_EN 0x0020
#define QUP_OPERATIONAL_MASK 0x0028
#define QUP_HW_VERSION 0x0030
#define QUP_MX_OUTPUT_CNT 0x0100
#define QUP_OUTPUT_FIFO 0x0110
#define QUP_MX_WRITE_CNT 0x0150
#define QUP_MX_INPUT_CNT 0x0200
#define QUP_MX_READ_CNT 0x0208
#define QUP_INPUT_FIFO 0x0218
#define SPI_CONFIG 0x0300
#define SPI_IO_CONTROL 0x0304
#define SPI_ERROR_FLAGS 0x0308
#define SPI_ERROR_FLAGS_EN 0x030c
/* QUP_CONFIG fields */
#define QUP_CONFIG_SPI_MODE (1 << 8)
#define QUP_CONFIG_CLOCK_AUTO_GATE BIT(13)
#define QUP_CONFIG_NO_INPUT BIT(7)
#define QUP_CONFIG_NO_OUTPUT BIT(6)
#define QUP_CONFIG_N 0x001f
/* QUP_STATE fields */
#define QUP_STATE_VALID BIT(2)
#define QUP_STATE_RESET 0
#define QUP_STATE_RUN 1
#define QUP_STATE_PAUSE 3
#define QUP_STATE_MASK 3
#define QUP_STATE_CLEAR 2
#define QUP_HW_VERSION_2_1_1 0x20010001
/* QUP_IO_M_MODES fields */
#define QUP_IO_M_PACK_EN BIT(15)
#define QUP_IO_M_UNPACK_EN BIT(14)
#define QUP_IO_M_INPUT_MODE_MASK_SHIFT 12
#define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10
#define QUP_IO_M_INPUT_MODE_MASK (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
#define QUP_IO_M_OUTPUT_MODE_MASK (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
#define QUP_IO_M_OUTPUT_BLOCK_SIZE(x) (((x) & (0x03 << 0)) >> 0)
#define QUP_IO_M_OUTPUT_FIFO_SIZE(x) (((x) & (0x07 << 2)) >> 2)
#define QUP_IO_M_INPUT_BLOCK_SIZE(x) (((x) & (0x03 << 5)) >> 5)
#define QUP_IO_M_INPUT_FIFO_SIZE(x) (((x) & (0x07 << 7)) >> 7)
#define QUP_IO_M_MODE_FIFO 0
#define QUP_IO_M_MODE_BLOCK 1
#define QUP_IO_M_MODE_DMOV 2
#define QUP_IO_M_MODE_BAM 3
/* QUP_OPERATIONAL fields */
#define QUP_OP_IN_BLOCK_READ_REQ BIT(13)
#define QUP_OP_OUT_BLOCK_WRITE_REQ BIT(12)
#define QUP_OP_MAX_INPUT_DONE_FLAG BIT(11)
#define QUP_OP_MAX_OUTPUT_DONE_FLAG BIT(10)
#define QUP_OP_IN_SERVICE_FLAG BIT(9)
#define QUP_OP_OUT_SERVICE_FLAG BIT(8)
#define QUP_OP_IN_FIFO_FULL BIT(7)
#define QUP_OP_OUT_FIFO_FULL BIT(6)
#define QUP_OP_IN_FIFO_NOT_EMPTY BIT(5)
#define QUP_OP_OUT_FIFO_NOT_EMPTY BIT(4)
/* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
#define QUP_ERROR_OUTPUT_OVER_RUN BIT(5)
#define QUP_ERROR_INPUT_UNDER_RUN BIT(4)
#define QUP_ERROR_OUTPUT_UNDER_RUN BIT(3)
#define QUP_ERROR_INPUT_OVER_RUN BIT(2)
/* SPI_CONFIG fields */
#define SPI_CONFIG_HS_MODE BIT(10)
#define SPI_CONFIG_INPUT_FIRST BIT(9)
#define SPI_CONFIG_LOOPBACK BIT(8)
/* SPI_IO_CONTROL fields */
#define SPI_IO_C_FORCE_CS BIT(11)
#define SPI_IO_C_CLK_IDLE_HIGH BIT(10)
#define SPI_IO_C_MX_CS_MODE BIT(8)
#define SPI_IO_C_CS_N_POLARITY_0 BIT(4)
#define SPI_IO_C_CS_SELECT(x) (((x) & 3) << 2)
#define SPI_IO_C_CS_SELECT_MASK 0x000c
#define SPI_IO_C_TRISTATE_CS BIT(1)
#define SPI_IO_C_NO_TRI_STATE BIT(0)
/* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
#define SPI_ERROR_CLK_OVER_RUN BIT(1)
#define SPI_ERROR_CLK_UNDER_RUN BIT(0)
#define SPI_NUM_CHIPSELECTS 4
#define SPI_MAX_XFER (SZ_64K - 64)
/* high speed mode is when bus rate is greater then 26MHz */
#define SPI_HS_MIN_RATE 26000000
#define SPI_MAX_RATE 50000000
#define SPI_DELAY_THRESHOLD 1
#define SPI_DELAY_RETRY 10
struct spi_qup {
void __iomem *base;
struct device *dev;
struct clk *cclk; /* core clock */
struct clk *iclk; /* interface clock */
int irq;
spinlock_t lock;
int in_fifo_sz;
int out_fifo_sz;
int in_blk_sz;
int out_blk_sz;
struct spi_transfer *xfer;
struct completion done;
int error;
int w_size; /* bytes per SPI word */
int n_words;
int tx_bytes;
int rx_bytes;
const u8 *tx_buf;
u8 *rx_buf;
int qup_v1;
int mode;
struct dma_slave_config rx_conf;
struct dma_slave_config tx_conf;
};
static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer);
static inline bool spi_qup_is_flag_set(struct spi_qup *controller, u32 flag)
{
u32 opflag = readl_relaxed(controller->base + QUP_OPERATIONAL);
return (opflag & flag) != 0;
}
static inline bool spi_qup_is_dma_xfer(int mode)
{
if (mode == QUP_IO_M_MODE_DMOV || mode == QUP_IO_M_MODE_BAM)
return true;
return false;
}
/* get's the transaction size length */
static inline unsigned int spi_qup_len(struct spi_qup *controller)
{
return controller->n_words * controller->w_size;
}
static inline bool spi_qup_is_valid_state(struct spi_qup *controller)
{
u32 opstate = readl_relaxed(controller->base + QUP_STATE);
return opstate & QUP_STATE_VALID;
}
static int spi_qup_set_state(struct spi_qup *controller, u32 state)
{
unsigned long loop;
u32 cur_state;
loop = 0;
while (!spi_qup_is_valid_state(controller)) {
usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
if (++loop > SPI_DELAY_RETRY)
return -EIO;
}
if (loop)
dev_dbg(controller->dev, "invalid state for %ld,us %d\n",
loop, state);
cur_state = readl_relaxed(controller->base + QUP_STATE);
/*
* Per spec: for PAUSE_STATE to RESET_STATE, two writes
* of (b10) are required
*/
if (((cur_state & QUP_STATE_MASK) == QUP_STATE_PAUSE) &&
(state == QUP_STATE_RESET)) {
writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
} else {
cur_state &= ~QUP_STATE_MASK;
cur_state |= state;
writel_relaxed(cur_state, controller->base + QUP_STATE);
}
loop = 0;
while (!spi_qup_is_valid_state(controller)) {
usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
if (++loop > SPI_DELAY_RETRY)
return -EIO;
}
return 0;
}
static void spi_qup_read_from_fifo(struct spi_qup *controller, u32 num_words)
{
u8 *rx_buf = controller->rx_buf;
int i, shift, num_bytes;
u32 word;
for (; num_words; num_words--) {
word = readl_relaxed(controller->base + QUP_INPUT_FIFO);
num_bytes = min_t(int, spi_qup_len(controller) -
controller->rx_bytes,
controller->w_size);
if (!rx_buf) {
controller->rx_bytes += num_bytes;
continue;
}
for (i = 0; i < num_bytes; i++, controller->rx_bytes++) {
/*
* The data format depends on bytes per SPI word:
* 4 bytes: 0x12345678
* 2 bytes: 0x00001234
* 1 byte : 0x00000012
*/
shift = BITS_PER_BYTE;
shift *= (controller->w_size - i - 1);
rx_buf[controller->rx_bytes] = word >> shift;
}
}
}
static void spi_qup_read(struct spi_qup *controller, u32 *opflags)
{
u32 remainder, words_per_block, num_words;
bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes,
controller->w_size);
words_per_block = controller->in_blk_sz >> 2;
do {
/* ACK by clearing service flag */
writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
controller->base + QUP_OPERATIONAL);
if (!remainder)
goto exit;
if (is_block_mode) {
num_words = (remainder > words_per_block) ?
words_per_block : remainder;
} else {
if (!spi_qup_is_flag_set(controller,
QUP_OP_IN_FIFO_NOT_EMPTY))
break;
num_words = 1;
}
/* read up to the maximum transfer size available */
spi_qup_read_from_fifo(controller, num_words);
remainder -= num_words;
/* if block mode, check to see if next block is available */
if (is_block_mode && !spi_qup_is_flag_set(controller,
QUP_OP_IN_BLOCK_READ_REQ))
break;
} while (remainder);
/*
* Due to extra stickiness of the QUP_OP_IN_SERVICE_FLAG during block
* reads, it has to be cleared again at the very end. However, be sure
* to refresh opflags value because MAX_INPUT_DONE_FLAG may now be
* present and this is used to determine if transaction is complete
*/
exit:
if (!remainder) {
*opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
if (is_block_mode && *opflags & QUP_OP_MAX_INPUT_DONE_FLAG)
writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
controller->base + QUP_OPERATIONAL);
}
}
static void spi_qup_write_to_fifo(struct spi_qup *controller, u32 num_words)
{
const u8 *tx_buf = controller->tx_buf;
int i, num_bytes;
u32 word, data;
for (; num_words; num_words--) {
word = 0;
num_bytes = min_t(int, spi_qup_len(controller) -
controller->tx_bytes,
controller->w_size);
if (tx_buf)
for (i = 0; i < num_bytes; i++) {
data = tx_buf[controller->tx_bytes + i];
word |= data << (BITS_PER_BYTE * (3 - i));
}
controller->tx_bytes += num_bytes;
writel_relaxed(word, controller->base + QUP_OUTPUT_FIFO);
}
}
static void spi_qup_dma_done(void *data)
{
struct spi_qup *qup = data;
complete(&qup->done);
}
static void spi_qup_write(struct spi_qup *controller)
{
bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
u32 remainder, words_per_block, num_words;
remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes,
controller->w_size);
words_per_block = controller->out_blk_sz >> 2;
do {
/* ACK by clearing service flag */
writel_relaxed(QUP_OP_OUT_SERVICE_FLAG,
controller->base + QUP_OPERATIONAL);
/* make sure the interrupt is valid */
if (!remainder)
return;
if (is_block_mode) {
num_words = (remainder > words_per_block) ?
words_per_block : remainder;
} else {
if (spi_qup_is_flag_set(controller,
QUP_OP_OUT_FIFO_FULL))
break;
num_words = 1;
}
spi_qup_write_to_fifo(controller, num_words);
remainder -= num_words;
/* if block mode, check to see if next block is available */
if (is_block_mode && !spi_qup_is_flag_set(controller,
QUP_OP_OUT_BLOCK_WRITE_REQ))
break;
} while (remainder);
}
static int spi_qup_prep_sg(struct spi_master *master, struct scatterlist *sgl,
unsigned int nents, enum dma_transfer_direction dir,
dma_async_tx_callback callback)
{
struct spi_qup *qup = spi_master_get_devdata(master);
unsigned long flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
struct dma_async_tx_descriptor *desc;
struct dma_chan *chan;
dma_cookie_t cookie;
if (dir == DMA_MEM_TO_DEV)
chan = master->dma_tx;
else
chan = master->dma_rx;
desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
if (IS_ERR_OR_NULL(desc))
return desc ? PTR_ERR(desc) : -EINVAL;
desc->callback = callback;
desc->callback_param = qup;
cookie = dmaengine_submit(desc);
return dma_submit_error(cookie);
}
static void spi_qup_dma_terminate(struct spi_master *master,
struct spi_transfer *xfer)
{
if (xfer->tx_buf)
dmaengine_terminate_all(master->dma_tx);
if (xfer->rx_buf)
dmaengine_terminate_all(master->dma_rx);
}
static u32 spi_qup_sgl_get_nents_len(struct scatterlist *sgl, u32 max,
u32 *nents)
{
struct scatterlist *sg;
u32 total = 0;
for (sg = sgl; sg; sg = sg_next(sg)) {
unsigned int len = sg_dma_len(sg);
/* check for overflow as well as limit */
if (((total + len) < total) || ((total + len) > max))
break;
total += len;
(*nents)++;
}
return total;
}
static int spi_qup_do_dma(struct spi_device *spi, struct spi_transfer *xfer,
unsigned long timeout)
{
dma_async_tx_callback rx_done = NULL, tx_done = NULL;
struct spi_master *master = spi->master;
struct spi_qup *qup = spi_master_get_devdata(master);
struct scatterlist *tx_sgl, *rx_sgl;
int ret;
if (xfer->rx_buf)
rx_done = spi_qup_dma_done;
else if (xfer->tx_buf)
tx_done = spi_qup_dma_done;
rx_sgl = xfer->rx_sg.sgl;
tx_sgl = xfer->tx_sg.sgl;
do {
u32 rx_nents = 0, tx_nents = 0;
if (rx_sgl)
qup->n_words = spi_qup_sgl_get_nents_len(rx_sgl,
SPI_MAX_XFER, &rx_nents) / qup->w_size;
if (tx_sgl)
qup->n_words = spi_qup_sgl_get_nents_len(tx_sgl,
SPI_MAX_XFER, &tx_nents) / qup->w_size;
if (!qup->n_words)
return -EIO;
ret = spi_qup_io_config(spi, xfer);
if (ret)
return ret;
/* before issuing the descriptors, set the QUP to run */
ret = spi_qup_set_state(qup, QUP_STATE_RUN);
if (ret) {
dev_warn(qup->dev, "cannot set RUN state\n");
return ret;
}
if (rx_sgl) {
ret = spi_qup_prep_sg(master, rx_sgl, rx_nents,
DMA_DEV_TO_MEM, rx_done);
if (ret)
return ret;
dma_async_issue_pending(master->dma_rx);
}
if (tx_sgl) {
ret = spi_qup_prep_sg(master, tx_sgl, tx_nents,
DMA_MEM_TO_DEV, tx_done);
if (ret)
return ret;
dma_async_issue_pending(master->dma_tx);
}
if (!wait_for_completion_timeout(&qup->done, timeout))
return -ETIMEDOUT;
for (; rx_sgl && rx_nents--; rx_sgl = sg_next(rx_sgl))
;
for (; tx_sgl && tx_nents--; tx_sgl = sg_next(tx_sgl))
;
} while (rx_sgl || tx_sgl);
return 0;
}
static int spi_qup_do_pio(struct spi_device *spi, struct spi_transfer *xfer,
unsigned long timeout)
{
struct spi_master *master = spi->master;
struct spi_qup *qup = spi_master_get_devdata(master);
int ret, n_words, iterations, offset = 0;
n_words = qup->n_words;
iterations = n_words / SPI_MAX_XFER; /* round down */
qup->rx_buf = xfer->rx_buf;
qup->tx_buf = xfer->tx_buf;
do {
if (iterations)
qup->n_words = SPI_MAX_XFER;
else
qup->n_words = n_words % SPI_MAX_XFER;
if (qup->tx_buf && offset)
qup->tx_buf = xfer->tx_buf + offset * SPI_MAX_XFER;
if (qup->rx_buf && offset)
qup->rx_buf = xfer->rx_buf + offset * SPI_MAX_XFER;
/*
* if the transaction is small enough, we need
* to fallback to FIFO mode
*/
if (qup->n_words <= (qup->in_fifo_sz / sizeof(u32)))
qup->mode = QUP_IO_M_MODE_FIFO;
ret = spi_qup_io_config(spi, xfer);
if (ret)
return ret;
ret = spi_qup_set_state(qup, QUP_STATE_RUN);
if (ret) {
dev_warn(qup->dev, "cannot set RUN state\n");
return ret;
}
ret = spi_qup_set_state(qup, QUP_STATE_PAUSE);
if (ret) {
dev_warn(qup->dev, "cannot set PAUSE state\n");
return ret;
}
if (qup->mode == QUP_IO_M_MODE_FIFO)
spi_qup_write(qup);
ret = spi_qup_set_state(qup, QUP_STATE_RUN);
if (ret) {
dev_warn(qup->dev, "cannot set RUN state\n");
return ret;
}
if (!wait_for_completion_timeout(&qup->done, timeout))
return -ETIMEDOUT;
offset++;
} while (iterations--);
return 0;
}
static bool spi_qup_data_pending(struct spi_qup *controller)
{
unsigned int remainder_tx, remainder_rx;
remainder_tx = DIV_ROUND_UP(spi_qup_len(controller) -
controller->tx_bytes, controller->w_size);
remainder_rx = DIV_ROUND_UP(spi_qup_len(controller) -
controller->rx_bytes, controller->w_size);
return remainder_tx || remainder_rx;
}
static irqreturn_t spi_qup_qup_irq(int irq, void *dev_id)
{
struct spi_qup *controller = dev_id;
u32 opflags, qup_err, spi_err;
unsigned long flags;
int error = 0;
qup_err = readl_relaxed(controller->base + QUP_ERROR_FLAGS);
spi_err = readl_relaxed(controller->base + SPI_ERROR_FLAGS);
opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
writel_relaxed(qup_err, controller->base + QUP_ERROR_FLAGS);
writel_relaxed(spi_err, controller->base + SPI_ERROR_FLAGS);
if (qup_err) {
if (qup_err & QUP_ERROR_OUTPUT_OVER_RUN)
dev_warn(controller->dev, "OUTPUT_OVER_RUN\n");
if (qup_err & QUP_ERROR_INPUT_UNDER_RUN)
dev_warn(controller->dev, "INPUT_UNDER_RUN\n");
if (qup_err & QUP_ERROR_OUTPUT_UNDER_RUN)
dev_warn(controller->dev, "OUTPUT_UNDER_RUN\n");
if (qup_err & QUP_ERROR_INPUT_OVER_RUN)
dev_warn(controller->dev, "INPUT_OVER_RUN\n");
error = -EIO;
}
if (spi_err) {
if (spi_err & SPI_ERROR_CLK_OVER_RUN)
dev_warn(controller->dev, "CLK_OVER_RUN\n");
if (spi_err & SPI_ERROR_CLK_UNDER_RUN)
dev_warn(controller->dev, "CLK_UNDER_RUN\n");
error = -EIO;
}
spin_lock_irqsave(&controller->lock, flags);
if (!controller->error)
controller->error = error;
spin_unlock_irqrestore(&controller->lock, flags);
if (spi_qup_is_dma_xfer(controller->mode)) {
writel_relaxed(opflags, controller->base + QUP_OPERATIONAL);
} else {
if (opflags & QUP_OP_IN_SERVICE_FLAG)
spi_qup_read(controller, &opflags);
if (opflags & QUP_OP_OUT_SERVICE_FLAG)
spi_qup_write(controller);
if (!spi_qup_data_pending(controller))
complete(&controller->done);
}
if (error)
complete(&controller->done);
if (opflags & QUP_OP_MAX_INPUT_DONE_FLAG) {
if (!spi_qup_is_dma_xfer(controller->mode)) {
if (spi_qup_data_pending(controller))
return IRQ_HANDLED;
}
complete(&controller->done);
}
return IRQ_HANDLED;
}
/* set clock freq ... bits per word, determine mode */
static int spi_qup_io_prep(struct spi_device *spi, struct spi_transfer *xfer)
{
struct spi_qup *controller = spi_master_get_devdata(spi->master);
int ret;
if (spi->mode & SPI_LOOP && xfer->len > controller->in_fifo_sz) {
dev_err(controller->dev, "too big size for loopback %d > %d\n",
xfer->len, controller->in_fifo_sz);
return -EIO;
}
ret = clk_set_rate(controller->cclk, xfer->speed_hz);
if (ret) {
dev_err(controller->dev, "fail to set frequency %d",
xfer->speed_hz);
return -EIO;
}
controller->w_size = DIV_ROUND_UP(xfer->bits_per_word, 8);
controller->n_words = xfer->len / controller->w_size;
if (controller->n_words <= (controller->in_fifo_sz / sizeof(u32)))
controller->mode = QUP_IO_M_MODE_FIFO;
else if (spi->master->can_dma &&
spi->master->can_dma(spi->master, spi, xfer) &&
spi->master->cur_msg_mapped)
controller->mode = QUP_IO_M_MODE_BAM;
else
controller->mode = QUP_IO_M_MODE_BLOCK;
return 0;
}
/* prep qup for another spi transaction of specific type */
static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer)
{
struct spi_qup *controller = spi_master_get_devdata(spi->master);
u32 config, iomode, control;
unsigned long flags;
spin_lock_irqsave(&controller->lock, flags);
controller->xfer = xfer;
controller->error = 0;
controller->rx_bytes = 0;
controller->tx_bytes = 0;
spin_unlock_irqrestore(&controller->lock, flags);
if (spi_qup_set_state(controller, QUP_STATE_RESET)) {
dev_err(controller->dev, "cannot set RESET state\n");
return -EIO;
}
switch (controller->mode) {
case QUP_IO_M_MODE_FIFO:
writel_relaxed(controller->n_words,
controller->base + QUP_MX_READ_CNT);
writel_relaxed(controller->n_words,
controller->base + QUP_MX_WRITE_CNT);
/* must be zero for FIFO */
writel_relaxed(0, controller->base + QUP_MX_INPUT_CNT);
writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
break;
case QUP_IO_M_MODE_BAM:
writel_relaxed(controller->n_words,
controller->base + QUP_MX_INPUT_CNT);
writel_relaxed(controller->n_words,
controller->base + QUP_MX_OUTPUT_CNT);
/* must be zero for BLOCK and BAM */
writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
if (!controller->qup_v1) {
void __iomem *input_cnt;
input_cnt = controller->base + QUP_MX_INPUT_CNT;
/*
* for DMA transfers, both QUP_MX_INPUT_CNT and
* QUP_MX_OUTPUT_CNT must be zero to all cases but one.
* That case is a non-balanced transfer when there is
* only a rx_buf.
*/
if (xfer->tx_buf)
writel_relaxed(0, input_cnt);
else
writel_relaxed(controller->n_words, input_cnt);
writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
}
break;
case QUP_IO_M_MODE_BLOCK:
reinit_completion(&controller->done);
writel_relaxed(controller->n_words,
controller->base + QUP_MX_INPUT_CNT);
writel_relaxed(controller->n_words,
controller->base + QUP_MX_OUTPUT_CNT);
/* must be zero for BLOCK and BAM */
writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
break;
default:
dev_err(controller->dev, "unknown mode = %d\n",
controller->mode);
return -EIO;
}
iomode = readl_relaxed(controller->base + QUP_IO_M_MODES);
/* Set input and output transfer mode */
iomode &= ~(QUP_IO_M_INPUT_MODE_MASK | QUP_IO_M_OUTPUT_MODE_MASK);
if (!spi_qup_is_dma_xfer(controller->mode))
iomode &= ~(QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN);
else
iomode |= QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN;
iomode |= (controller->mode << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT);
iomode |= (controller->mode << QUP_IO_M_INPUT_MODE_MASK_SHIFT);
writel_relaxed(iomode, controller->base + QUP_IO_M_MODES);
control = readl_relaxed(controller->base + SPI_IO_CONTROL);
if (spi->mode & SPI_CPOL)
control |= SPI_IO_C_CLK_IDLE_HIGH;
else
control &= ~SPI_IO_C_CLK_IDLE_HIGH;
writel_relaxed(control, controller->base + SPI_IO_CONTROL);
config = readl_relaxed(controller->base + SPI_CONFIG);
if (spi->mode & SPI_LOOP)
config |= SPI_CONFIG_LOOPBACK;
else
config &= ~SPI_CONFIG_LOOPBACK;
if (spi->mode & SPI_CPHA)
config &= ~SPI_CONFIG_INPUT_FIRST;
else
config |= SPI_CONFIG_INPUT_FIRST;
/*
* HS_MODE improves signal stability for spi-clk high rates,
* but is invalid in loop back mode.
*/
if ((xfer->speed_hz >= SPI_HS_MIN_RATE) && !(spi->mode & SPI_LOOP))
config |= SPI_CONFIG_HS_MODE;
else
config &= ~SPI_CONFIG_HS_MODE;
writel_relaxed(config, controller->base + SPI_CONFIG);
config = readl_relaxed(controller->base + QUP_CONFIG);
config &= ~(QUP_CONFIG_NO_INPUT | QUP_CONFIG_NO_OUTPUT | QUP_CONFIG_N);
config |= xfer->bits_per_word - 1;
config |= QUP_CONFIG_SPI_MODE;
if (spi_qup_is_dma_xfer(controller->mode)) {
if (!xfer->tx_buf)
config |= QUP_CONFIG_NO_OUTPUT;
if (!xfer->rx_buf)
config |= QUP_CONFIG_NO_INPUT;
}
writel_relaxed(config, controller->base + QUP_CONFIG);
/* only write to OPERATIONAL_MASK when register is present */
if (!controller->qup_v1) {
u32 mask = 0;
/*
* mask INPUT and OUTPUT service flags to prevent IRQs on FIFO
* status change in BAM mode
*/
if (spi_qup_is_dma_xfer(controller->mode))
mask = QUP_OP_IN_SERVICE_FLAG | QUP_OP_OUT_SERVICE_FLAG;
writel_relaxed(mask, controller->base + QUP_OPERATIONAL_MASK);
}
return 0;
}
static int spi_qup_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct spi_qup *controller = spi_master_get_devdata(master);
unsigned long timeout, flags;
int ret;
ret = spi_qup_io_prep(spi, xfer);
if (ret)
return ret;
timeout = DIV_ROUND_UP(xfer->speed_hz, MSEC_PER_SEC);
timeout = DIV_ROUND_UP(min_t(unsigned long, SPI_MAX_XFER,
xfer->len) * 8, timeout);
timeout = 100 * msecs_to_jiffies(timeout);
reinit_completion(&controller->done);
spin_lock_irqsave(&controller->lock, flags);
controller->xfer = xfer;
controller->error = 0;
controller->rx_bytes = 0;
controller->tx_bytes = 0;
spin_unlock_irqrestore(&controller->lock, flags);
if (spi_qup_is_dma_xfer(controller->mode))
ret = spi_qup_do_dma(spi, xfer, timeout);
else
ret = spi_qup_do_pio(spi, xfer, timeout);
spi_qup_set_state(controller, QUP_STATE_RESET);
spin_lock_irqsave(&controller->lock, flags);
if (!ret)
ret = controller->error;
spin_unlock_irqrestore(&controller->lock, flags);
if (ret && spi_qup_is_dma_xfer(controller->mode))
spi_qup_dma_terminate(master, xfer);
return ret;
}
static bool spi_qup_can_dma(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer)
{
struct spi_qup *qup = spi_master_get_devdata(master);
size_t dma_align = dma_get_cache_alignment();
int n_words;
if (xfer->rx_buf) {
if (!IS_ALIGNED((size_t)xfer->rx_buf, dma_align) ||
IS_ERR_OR_NULL(master->dma_rx))
return false;
if (qup->qup_v1 && (xfer->len % qup->in_blk_sz))
return false;
}
if (xfer->tx_buf) {
if (!IS_ALIGNED((size_t)xfer->tx_buf, dma_align) ||
IS_ERR_OR_NULL(master->dma_tx))
return false;
if (qup->qup_v1 && (xfer->len % qup->out_blk_sz))
return false;
}
n_words = xfer->len / DIV_ROUND_UP(xfer->bits_per_word, 8);
if (n_words <= (qup->in_fifo_sz / sizeof(u32)))
return false;
return true;
}
static void spi_qup_release_dma(struct spi_master *master)
{
if (!IS_ERR_OR_NULL(master->dma_rx))
dma_release_channel(master->dma_rx);
if (!IS_ERR_OR_NULL(master->dma_tx))
dma_release_channel(master->dma_tx);
}
static int spi_qup_init_dma(struct spi_master *master, resource_size_t base)
{
struct spi_qup *spi = spi_master_get_devdata(master);
struct dma_slave_config *rx_conf = &spi->rx_conf,
*tx_conf = &spi->tx_conf;
struct device *dev = spi->dev;
int ret;
/* allocate dma resources, if available */
master->dma_rx = dma_request_chan(dev, "rx");
if (IS_ERR(master->dma_rx))
return PTR_ERR(master->dma_rx);
master->dma_tx = dma_request_chan(dev, "tx");
if (IS_ERR(master->dma_tx)) {
ret = PTR_ERR(master->dma_tx);
goto err_tx;
}
/* set DMA parameters */
rx_conf->direction = DMA_DEV_TO_MEM;
rx_conf->device_fc = 1;
rx_conf->src_addr = base + QUP_INPUT_FIFO;
rx_conf->src_maxburst = spi->in_blk_sz;
tx_conf->direction = DMA_MEM_TO_DEV;
tx_conf->device_fc = 1;
tx_conf->dst_addr = base + QUP_OUTPUT_FIFO;
tx_conf->dst_maxburst = spi->out_blk_sz;
ret = dmaengine_slave_config(master->dma_rx, rx_conf);
if (ret) {
dev_err(dev, "failed to configure RX channel\n");
goto err;
}
ret = dmaengine_slave_config(master->dma_tx, tx_conf);
if (ret) {
dev_err(dev, "failed to configure TX channel\n");
goto err;
}
return 0;
err:
dma_release_channel(master->dma_tx);
err_tx:
dma_release_channel(master->dma_rx);
return ret;
}
static void spi_qup_set_cs(struct spi_device *spi, bool val)
{
struct spi_qup *controller;
u32 spi_ioc;
u32 spi_ioc_orig;
controller = spi_master_get_devdata(spi->master);
spi_ioc = readl_relaxed(controller->base + SPI_IO_CONTROL);
spi_ioc_orig = spi_ioc;
if (!val)
spi_ioc |= SPI_IO_C_FORCE_CS;
else
spi_ioc &= ~SPI_IO_C_FORCE_CS;
if (spi_ioc != spi_ioc_orig)
writel_relaxed(spi_ioc, controller->base + SPI_IO_CONTROL);
}
static int spi_qup_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct clk *iclk, *cclk;
struct spi_qup *controller;
struct resource *res;
struct device *dev;
void __iomem *base;
u32 max_freq, iomode, num_cs;
int ret, irq, size;
dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
cclk = devm_clk_get(dev, "core");
if (IS_ERR(cclk))
return PTR_ERR(cclk);
iclk = devm_clk_get(dev, "iface");
if (IS_ERR(iclk))
return PTR_ERR(iclk);
/* This is optional parameter */
if (of_property_read_u32(dev->of_node, "spi-max-frequency", &max_freq))
max_freq = SPI_MAX_RATE;
if (!max_freq || max_freq > SPI_MAX_RATE) {
dev_err(dev, "invalid clock frequency %d\n", max_freq);
return -ENXIO;
}
ret = clk_prepare_enable(cclk);
if (ret) {
dev_err(dev, "cannot enable core clock\n");
return ret;
}
ret = clk_prepare_enable(iclk);
if (ret) {
clk_disable_unprepare(cclk);
dev_err(dev, "cannot enable iface clock\n");
return ret;
}
master = spi_alloc_master(dev, sizeof(struct spi_qup));
if (!master) {
clk_disable_unprepare(cclk);
clk_disable_unprepare(iclk);
dev_err(dev, "cannot allocate master\n");
return -ENOMEM;
}
/* use num-cs unless not present or out of range */
if (of_property_read_u32(dev->of_node, "num-cs", &num_cs) ||
num_cs > SPI_NUM_CHIPSELECTS)
master->num_chipselect = SPI_NUM_CHIPSELECTS;
else
master->num_chipselect = num_cs;
master->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
master->max_speed_hz = max_freq;
master->transfer_one = spi_qup_transfer_one;
master->dev.of_node = pdev->dev.of_node;
master->auto_runtime_pm = true;
master->dma_alignment = dma_get_cache_alignment();
master->max_dma_len = SPI_MAX_XFER;
platform_set_drvdata(pdev, master);
controller = spi_master_get_devdata(master);
controller->dev = dev;
controller->base = base;
controller->iclk = iclk;
controller->cclk = cclk;
controller->irq = irq;
ret = spi_qup_init_dma(master, res->start);
if (ret == -EPROBE_DEFER)
goto error;
else if (!ret)
master->can_dma = spi_qup_can_dma;
controller->qup_v1 = (uintptr_t)of_device_get_match_data(dev);
if (!controller->qup_v1)
master->set_cs = spi_qup_set_cs;
spin_lock_init(&controller->lock);
init_completion(&controller->done);
iomode = readl_relaxed(base + QUP_IO_M_MODES);
size = QUP_IO_M_OUTPUT_BLOCK_SIZE(iomode);
if (size)
controller->out_blk_sz = size * 16;
else
controller->out_blk_sz = 4;
size = QUP_IO_M_INPUT_BLOCK_SIZE(iomode);
if (size)
controller->in_blk_sz = size * 16;
else
controller->in_blk_sz = 4;
size = QUP_IO_M_OUTPUT_FIFO_SIZE(iomode);
controller->out_fifo_sz = controller->out_blk_sz * (2 << size);
size = QUP_IO_M_INPUT_FIFO_SIZE(iomode);
controller->in_fifo_sz = controller->in_blk_sz * (2 << size);
dev_info(dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
controller->in_blk_sz, controller->in_fifo_sz,
controller->out_blk_sz, controller->out_fifo_sz);
writel_relaxed(1, base + QUP_SW_RESET);
ret = spi_qup_set_state(controller, QUP_STATE_RESET);
if (ret) {
dev_err(dev, "cannot set RESET state\n");
goto error_dma;
}
writel_relaxed(0, base + QUP_OPERATIONAL);
writel_relaxed(0, base + QUP_IO_M_MODES);
if (!controller->qup_v1)
writel_relaxed(0, base + QUP_OPERATIONAL_MASK);
writel_relaxed(SPI_ERROR_CLK_UNDER_RUN | SPI_ERROR_CLK_OVER_RUN,
base + SPI_ERROR_FLAGS_EN);
/* if earlier version of the QUP, disable INPUT_OVERRUN */
if (controller->qup_v1)
writel_relaxed(QUP_ERROR_OUTPUT_OVER_RUN |
QUP_ERROR_INPUT_UNDER_RUN | QUP_ERROR_OUTPUT_UNDER_RUN,
base + QUP_ERROR_FLAGS_EN);
writel_relaxed(0, base + SPI_CONFIG);
writel_relaxed(SPI_IO_C_NO_TRI_STATE, base + SPI_IO_CONTROL);
ret = devm_request_irq(dev, irq, spi_qup_qup_irq,
IRQF_TRIGGER_HIGH, pdev->name, controller);
if (ret)
goto error_dma;
pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
ret = devm_spi_register_master(dev, master);
if (ret)
goto disable_pm;
return 0;
disable_pm:
pm_runtime_disable(&pdev->dev);
error_dma:
spi_qup_release_dma(master);
error:
clk_disable_unprepare(cclk);
clk_disable_unprepare(iclk);
spi_master_put(master);
return ret;
}
#ifdef CONFIG_PM
static int spi_qup_pm_suspend_runtime(struct device *device)
{
struct spi_master *master = dev_get_drvdata(device);
struct spi_qup *controller = spi_master_get_devdata(master);
u32 config;
/* Enable clocks auto gaiting */
config = readl(controller->base + QUP_CONFIG);
config |= QUP_CONFIG_CLOCK_AUTO_GATE;
writel_relaxed(config, controller->base + QUP_CONFIG);
clk_disable_unprepare(controller->cclk);
clk_disable_unprepare(controller->iclk);
return 0;
}
static int spi_qup_pm_resume_runtime(struct device *device)
{
struct spi_master *master = dev_get_drvdata(device);
struct spi_qup *controller = spi_master_get_devdata(master);
u32 config;
int ret;
ret = clk_prepare_enable(controller->iclk);
if (ret)
return ret;
ret = clk_prepare_enable(controller->cclk);
if (ret)
return ret;
/* Disable clocks auto gaiting */
config = readl_relaxed(controller->base + QUP_CONFIG);
config &= ~QUP_CONFIG_CLOCK_AUTO_GATE;
writel_relaxed(config, controller->base + QUP_CONFIG);
return 0;
}
#endif /* CONFIG_PM */
#ifdef CONFIG_PM_SLEEP
static int spi_qup_suspend(struct device *device)
{
struct spi_master *master = dev_get_drvdata(device);
struct spi_qup *controller = spi_master_get_devdata(master);
int ret;
if (pm_runtime_suspended(device)) {
ret = spi_qup_pm_resume_runtime(device);
if (ret)
return ret;
}
ret = spi_master_suspend(master);
if (ret)
return ret;
ret = spi_qup_set_state(controller, QUP_STATE_RESET);
if (ret)
return ret;
clk_disable_unprepare(controller->cclk);
clk_disable_unprepare(controller->iclk);
return 0;
}
static int spi_qup_resume(struct device *device)
{
struct spi_master *master = dev_get_drvdata(device);
struct spi_qup *controller = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(controller->iclk);
if (ret)
return ret;
ret = clk_prepare_enable(controller->cclk);
if (ret)
return ret;
ret = spi_qup_set_state(controller, QUP_STATE_RESET);
if (ret)
return ret;
return spi_master_resume(master);
}
#endif /* CONFIG_PM_SLEEP */
static int spi_qup_remove(struct platform_device *pdev)
{
struct spi_master *master = dev_get_drvdata(&pdev->dev);
struct spi_qup *controller = spi_master_get_devdata(master);
int ret;
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0)
return ret;
ret = spi_qup_set_state(controller, QUP_STATE_RESET);
if (ret)
return ret;
spi_qup_release_dma(master);
clk_disable_unprepare(controller->cclk);
clk_disable_unprepare(controller->iclk);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id spi_qup_dt_match[] = {
{ .compatible = "qcom,spi-qup-v1.1.1", .data = (void *)1, },
{ .compatible = "qcom,spi-qup-v2.1.1", },
{ .compatible = "qcom,spi-qup-v2.2.1", },
{ }
};
MODULE_DEVICE_TABLE(of, spi_qup_dt_match);
static const struct dev_pm_ops spi_qup_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(spi_qup_suspend, spi_qup_resume)
SET_RUNTIME_PM_OPS(spi_qup_pm_suspend_runtime,
spi_qup_pm_resume_runtime,
NULL)
};
static struct platform_driver spi_qup_driver = {
.driver = {
.name = "spi_qup",
.pm = &spi_qup_dev_pm_ops,
.of_match_table = spi_qup_dt_match,
},
.probe = spi_qup_probe,
.remove = spi_qup_remove,
};
module_platform_driver(spi_qup_driver);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_qup");