mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-15 09:03:59 +08:00
82ba4faca1
Since commit:52aec3308d
("x86/tlb: replace INVALIDATE_TLB_VECTOR by CALL_FUNCTION_VECTOR") the TLB remote shootdown is done through call function vector. That commit didn't take care of irq_tlb_count, which a later commit:fd0f586972
("x86: Distinguish TLB shootdown interrupts from other functions call interrupts") ... tried to fix. The fix assumes every increase of irq_tlb_count has a corresponding increase of irq_call_count. So the irq_call_count is always bigger than irq_tlb_count and we could substract irq_tlb_count from irq_call_count. Unfortunately this is not true for the smp_call_function_single() case. The IPI is only sent if the target CPU's call_single_queue is empty when adding a csd into it in generic_exec_single. That means if two threads are both adding flush tlb csds to the same CPU's call_single_queue, only one IPI is sent. In other words, the irq_call_count is incremented by 1 but irq_tlb_count is incremented by 2. Over time, irq_tlb_count will be bigger than irq_call_count and the substract will produce a very large irq_call_count value due to overflow. Considering that: 1) it's not worth to send more IPIs for the sake of accurate counting of irq_call_count in generic_exec_single(); 2) it's not easy to tell if the call function interrupt is for TLB shootdown in __smp_call_function_single_interrupt(). Not to exclude TLB shootdown from call function count seems to be the simplest fix and this patch just does that. This bug was found by LKP's cyclic performance regression tracking recently with the vm-scalability test suite. I have bisected to commit:3dec0ba0be
("mm/rmap: share the i_mmap_rwsem") This commit didn't do anything wrong but revealed the irq_call_count problem. IIUC, the commit makes rwc->remap_one in rmap_walk_file concurrent with multiple threads. When remap_one is try_to_unmap_one(), then multiple threads could queue flush TLB to the same CPU but only one IPI will be sent. Since the commit was added in Linux v3.19, the counting problem only shows up from v3.19 onwards. Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Alex Shi <alex.shi@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomoki Sekiyama <tomoki.sekiyama.qu@hitachi.com> Link: http://lkml.kernel.org/r/20160811074430.GA18163@aaronlu.sh.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
550 lines
15 KiB
C
550 lines
15 KiB
C
/*
|
|
* Common interrupt code for 32 and 64 bit
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/of.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
|
|
#include <asm/apic.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/desc.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <asm/trace/irq_vectors.h>
|
|
|
|
DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
|
|
EXPORT_PER_CPU_SYMBOL(irq_stat);
|
|
|
|
DEFINE_PER_CPU(struct pt_regs *, irq_regs);
|
|
EXPORT_PER_CPU_SYMBOL(irq_regs);
|
|
|
|
atomic_t irq_err_count;
|
|
|
|
/* Function pointer for generic interrupt vector handling */
|
|
void (*x86_platform_ipi_callback)(void) = NULL;
|
|
|
|
/*
|
|
* 'what should we do if we get a hw irq event on an illegal vector'.
|
|
* each architecture has to answer this themselves.
|
|
*/
|
|
void ack_bad_irq(unsigned int irq)
|
|
{
|
|
if (printk_ratelimit())
|
|
pr_err("unexpected IRQ trap at vector %02x\n", irq);
|
|
|
|
/*
|
|
* Currently unexpected vectors happen only on SMP and APIC.
|
|
* We _must_ ack these because every local APIC has only N
|
|
* irq slots per priority level, and a 'hanging, unacked' IRQ
|
|
* holds up an irq slot - in excessive cases (when multiple
|
|
* unexpected vectors occur) that might lock up the APIC
|
|
* completely.
|
|
* But only ack when the APIC is enabled -AK
|
|
*/
|
|
ack_APIC_irq();
|
|
}
|
|
|
|
#define irq_stats(x) (&per_cpu(irq_stat, x))
|
|
/*
|
|
* /proc/interrupts printing for arch specific interrupts
|
|
*/
|
|
int arch_show_interrupts(struct seq_file *p, int prec)
|
|
{
|
|
int j;
|
|
|
|
seq_printf(p, "%*s: ", prec, "NMI");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
|
|
seq_puts(p, " Non-maskable interrupts\n");
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
seq_printf(p, "%*s: ", prec, "LOC");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
|
|
seq_puts(p, " Local timer interrupts\n");
|
|
|
|
seq_printf(p, "%*s: ", prec, "SPU");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
|
|
seq_puts(p, " Spurious interrupts\n");
|
|
seq_printf(p, "%*s: ", prec, "PMI");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
|
|
seq_puts(p, " Performance monitoring interrupts\n");
|
|
seq_printf(p, "%*s: ", prec, "IWI");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
|
|
seq_puts(p, " IRQ work interrupts\n");
|
|
seq_printf(p, "%*s: ", prec, "RTR");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
|
|
seq_puts(p, " APIC ICR read retries\n");
|
|
#endif
|
|
if (x86_platform_ipi_callback) {
|
|
seq_printf(p, "%*s: ", prec, "PLT");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
|
|
seq_puts(p, " Platform interrupts\n");
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
seq_printf(p, "%*s: ", prec, "RES");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
|
|
seq_puts(p, " Rescheduling interrupts\n");
|
|
seq_printf(p, "%*s: ", prec, "CAL");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
|
|
seq_puts(p, " Function call interrupts\n");
|
|
seq_printf(p, "%*s: ", prec, "TLB");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
|
|
seq_puts(p, " TLB shootdowns\n");
|
|
#endif
|
|
#ifdef CONFIG_X86_THERMAL_VECTOR
|
|
seq_printf(p, "%*s: ", prec, "TRM");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
|
|
seq_puts(p, " Thermal event interrupts\n");
|
|
#endif
|
|
#ifdef CONFIG_X86_MCE_THRESHOLD
|
|
seq_printf(p, "%*s: ", prec, "THR");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
|
|
seq_puts(p, " Threshold APIC interrupts\n");
|
|
#endif
|
|
#ifdef CONFIG_X86_MCE_AMD
|
|
seq_printf(p, "%*s: ", prec, "DFR");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
|
|
seq_puts(p, " Deferred Error APIC interrupts\n");
|
|
#endif
|
|
#ifdef CONFIG_X86_MCE
|
|
seq_printf(p, "%*s: ", prec, "MCE");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
|
|
seq_puts(p, " Machine check exceptions\n");
|
|
seq_printf(p, "%*s: ", prec, "MCP");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
|
|
seq_puts(p, " Machine check polls\n");
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
|
|
if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
|
|
seq_printf(p, "%*s: ", prec, "HYP");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ",
|
|
irq_stats(j)->irq_hv_callback_count);
|
|
seq_puts(p, " Hypervisor callback interrupts\n");
|
|
}
|
|
#endif
|
|
seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
|
|
#if defined(CONFIG_X86_IO_APIC)
|
|
seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
|
|
#endif
|
|
#ifdef CONFIG_HAVE_KVM
|
|
seq_printf(p, "%*s: ", prec, "PIN");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
|
|
seq_puts(p, " Posted-interrupt notification event\n");
|
|
|
|
seq_printf(p, "%*s: ", prec, "PIW");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ",
|
|
irq_stats(j)->kvm_posted_intr_wakeup_ipis);
|
|
seq_puts(p, " Posted-interrupt wakeup event\n");
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* /proc/stat helpers
|
|
*/
|
|
u64 arch_irq_stat_cpu(unsigned int cpu)
|
|
{
|
|
u64 sum = irq_stats(cpu)->__nmi_count;
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
sum += irq_stats(cpu)->apic_timer_irqs;
|
|
sum += irq_stats(cpu)->irq_spurious_count;
|
|
sum += irq_stats(cpu)->apic_perf_irqs;
|
|
sum += irq_stats(cpu)->apic_irq_work_irqs;
|
|
sum += irq_stats(cpu)->icr_read_retry_count;
|
|
#endif
|
|
if (x86_platform_ipi_callback)
|
|
sum += irq_stats(cpu)->x86_platform_ipis;
|
|
#ifdef CONFIG_SMP
|
|
sum += irq_stats(cpu)->irq_resched_count;
|
|
sum += irq_stats(cpu)->irq_call_count;
|
|
#endif
|
|
#ifdef CONFIG_X86_THERMAL_VECTOR
|
|
sum += irq_stats(cpu)->irq_thermal_count;
|
|
#endif
|
|
#ifdef CONFIG_X86_MCE_THRESHOLD
|
|
sum += irq_stats(cpu)->irq_threshold_count;
|
|
#endif
|
|
#ifdef CONFIG_X86_MCE
|
|
sum += per_cpu(mce_exception_count, cpu);
|
|
sum += per_cpu(mce_poll_count, cpu);
|
|
#endif
|
|
return sum;
|
|
}
|
|
|
|
u64 arch_irq_stat(void)
|
|
{
|
|
u64 sum = atomic_read(&irq_err_count);
|
|
return sum;
|
|
}
|
|
|
|
|
|
/*
|
|
* do_IRQ handles all normal device IRQ's (the special
|
|
* SMP cross-CPU interrupts have their own specific
|
|
* handlers).
|
|
*/
|
|
__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
struct irq_desc * desc;
|
|
/* high bit used in ret_from_ code */
|
|
unsigned vector = ~regs->orig_ax;
|
|
|
|
/*
|
|
* NB: Unlike exception entries, IRQ entries do not reliably
|
|
* handle context tracking in the low-level entry code. This is
|
|
* because syscall entries execute briefly with IRQs on before
|
|
* updating context tracking state, so we can take an IRQ from
|
|
* kernel mode with CONTEXT_USER. The low-level entry code only
|
|
* updates the context if we came from user mode, so we won't
|
|
* switch to CONTEXT_KERNEL. We'll fix that once the syscall
|
|
* code is cleaned up enough that we can cleanly defer enabling
|
|
* IRQs.
|
|
*/
|
|
|
|
entering_irq();
|
|
|
|
/* entering_irq() tells RCU that we're not quiescent. Check it. */
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
|
|
|
|
desc = __this_cpu_read(vector_irq[vector]);
|
|
|
|
if (!handle_irq(desc, regs)) {
|
|
ack_APIC_irq();
|
|
|
|
if (desc != VECTOR_RETRIGGERED) {
|
|
pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
|
|
__func__, smp_processor_id(),
|
|
vector);
|
|
} else {
|
|
__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
|
|
}
|
|
}
|
|
|
|
exiting_irq();
|
|
|
|
set_irq_regs(old_regs);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Handler for X86_PLATFORM_IPI_VECTOR.
|
|
*/
|
|
void __smp_x86_platform_ipi(void)
|
|
{
|
|
inc_irq_stat(x86_platform_ipis);
|
|
|
|
if (x86_platform_ipi_callback)
|
|
x86_platform_ipi_callback();
|
|
}
|
|
|
|
__visible void smp_x86_platform_ipi(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
|
|
entering_ack_irq();
|
|
__smp_x86_platform_ipi();
|
|
exiting_irq();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_KVM
|
|
static void dummy_handler(void) {}
|
|
static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
|
|
|
|
void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
|
|
{
|
|
if (handler)
|
|
kvm_posted_intr_wakeup_handler = handler;
|
|
else
|
|
kvm_posted_intr_wakeup_handler = dummy_handler;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
|
|
|
|
/*
|
|
* Handler for POSTED_INTERRUPT_VECTOR.
|
|
*/
|
|
__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
|
|
entering_ack_irq();
|
|
inc_irq_stat(kvm_posted_intr_ipis);
|
|
exiting_irq();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
/*
|
|
* Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
|
|
*/
|
|
__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
|
|
entering_ack_irq();
|
|
inc_irq_stat(kvm_posted_intr_wakeup_ipis);
|
|
kvm_posted_intr_wakeup_handler();
|
|
exiting_irq();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
#endif
|
|
|
|
__visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
|
|
entering_ack_irq();
|
|
trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
|
|
__smp_x86_platform_ipi();
|
|
trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
|
|
exiting_irq();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
|
|
* below, which is protected by stop_machine(). Putting them on the stack
|
|
* results in a stack frame overflow. Dynamically allocating could result in a
|
|
* failure so declare these two cpumasks as global.
|
|
*/
|
|
static struct cpumask affinity_new, online_new;
|
|
|
|
/*
|
|
* This cpu is going to be removed and its vectors migrated to the remaining
|
|
* online cpus. Check to see if there are enough vectors in the remaining cpus.
|
|
* This function is protected by stop_machine().
|
|
*/
|
|
int check_irq_vectors_for_cpu_disable(void)
|
|
{
|
|
unsigned int this_cpu, vector, this_count, count;
|
|
struct irq_desc *desc;
|
|
struct irq_data *data;
|
|
int cpu;
|
|
|
|
this_cpu = smp_processor_id();
|
|
cpumask_copy(&online_new, cpu_online_mask);
|
|
cpumask_clear_cpu(this_cpu, &online_new);
|
|
|
|
this_count = 0;
|
|
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
|
|
desc = __this_cpu_read(vector_irq[vector]);
|
|
if (IS_ERR_OR_NULL(desc))
|
|
continue;
|
|
/*
|
|
* Protect against concurrent action removal, affinity
|
|
* changes etc.
|
|
*/
|
|
raw_spin_lock(&desc->lock);
|
|
data = irq_desc_get_irq_data(desc);
|
|
cpumask_copy(&affinity_new,
|
|
irq_data_get_affinity_mask(data));
|
|
cpumask_clear_cpu(this_cpu, &affinity_new);
|
|
|
|
/* Do not count inactive or per-cpu irqs. */
|
|
if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
|
|
raw_spin_unlock(&desc->lock);
|
|
continue;
|
|
}
|
|
|
|
raw_spin_unlock(&desc->lock);
|
|
/*
|
|
* A single irq may be mapped to multiple cpu's
|
|
* vector_irq[] (for example IOAPIC cluster mode). In
|
|
* this case we have two possibilities:
|
|
*
|
|
* 1) the resulting affinity mask is empty; that is
|
|
* this the down'd cpu is the last cpu in the irq's
|
|
* affinity mask, or
|
|
*
|
|
* 2) the resulting affinity mask is no longer a
|
|
* subset of the online cpus but the affinity mask is
|
|
* not zero; that is the down'd cpu is the last online
|
|
* cpu in a user set affinity mask.
|
|
*/
|
|
if (cpumask_empty(&affinity_new) ||
|
|
!cpumask_subset(&affinity_new, &online_new))
|
|
this_count++;
|
|
}
|
|
|
|
count = 0;
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu == this_cpu)
|
|
continue;
|
|
/*
|
|
* We scan from FIRST_EXTERNAL_VECTOR to first system
|
|
* vector. If the vector is marked in the used vectors
|
|
* bitmap or an irq is assigned to it, we don't count
|
|
* it as available.
|
|
*
|
|
* As this is an inaccurate snapshot anyway, we can do
|
|
* this w/o holding vector_lock.
|
|
*/
|
|
for (vector = FIRST_EXTERNAL_VECTOR;
|
|
vector < first_system_vector; vector++) {
|
|
if (!test_bit(vector, used_vectors) &&
|
|
IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (count < this_count) {
|
|
pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
|
|
this_cpu, this_count, count);
|
|
return -ERANGE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
|
|
void fixup_irqs(void)
|
|
{
|
|
unsigned int irq, vector;
|
|
static int warned;
|
|
struct irq_desc *desc;
|
|
struct irq_data *data;
|
|
struct irq_chip *chip;
|
|
int ret;
|
|
|
|
for_each_irq_desc(irq, desc) {
|
|
int break_affinity = 0;
|
|
int set_affinity = 1;
|
|
const struct cpumask *affinity;
|
|
|
|
if (!desc)
|
|
continue;
|
|
if (irq == 2)
|
|
continue;
|
|
|
|
/* interrupt's are disabled at this point */
|
|
raw_spin_lock(&desc->lock);
|
|
|
|
data = irq_desc_get_irq_data(desc);
|
|
affinity = irq_data_get_affinity_mask(data);
|
|
if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
|
|
cpumask_subset(affinity, cpu_online_mask)) {
|
|
raw_spin_unlock(&desc->lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Complete the irq move. This cpu is going down and for
|
|
* non intr-remapping case, we can't wait till this interrupt
|
|
* arrives at this cpu before completing the irq move.
|
|
*/
|
|
irq_force_complete_move(desc);
|
|
|
|
if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
|
|
break_affinity = 1;
|
|
affinity = cpu_online_mask;
|
|
}
|
|
|
|
chip = irq_data_get_irq_chip(data);
|
|
/*
|
|
* The interrupt descriptor might have been cleaned up
|
|
* already, but it is not yet removed from the radix tree
|
|
*/
|
|
if (!chip) {
|
|
raw_spin_unlock(&desc->lock);
|
|
continue;
|
|
}
|
|
|
|
if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
|
|
chip->irq_mask(data);
|
|
|
|
if (chip->irq_set_affinity) {
|
|
ret = chip->irq_set_affinity(data, affinity, true);
|
|
if (ret == -ENOSPC)
|
|
pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq);
|
|
} else {
|
|
if (!(warned++))
|
|
set_affinity = 0;
|
|
}
|
|
|
|
/*
|
|
* We unmask if the irq was not marked masked by the
|
|
* core code. That respects the lazy irq disable
|
|
* behaviour.
|
|
*/
|
|
if (!irqd_can_move_in_process_context(data) &&
|
|
!irqd_irq_masked(data) && chip->irq_unmask)
|
|
chip->irq_unmask(data);
|
|
|
|
raw_spin_unlock(&desc->lock);
|
|
|
|
if (break_affinity && set_affinity)
|
|
pr_notice("Broke affinity for irq %i\n", irq);
|
|
else if (!set_affinity)
|
|
pr_notice("Cannot set affinity for irq %i\n", irq);
|
|
}
|
|
|
|
/*
|
|
* We can remove mdelay() and then send spuriuous interrupts to
|
|
* new cpu targets for all the irqs that were handled previously by
|
|
* this cpu. While it works, I have seen spurious interrupt messages
|
|
* (nothing wrong but still...).
|
|
*
|
|
* So for now, retain mdelay(1) and check the IRR and then send those
|
|
* interrupts to new targets as this cpu is already offlined...
|
|
*/
|
|
mdelay(1);
|
|
|
|
/*
|
|
* We can walk the vector array of this cpu without holding
|
|
* vector_lock because the cpu is already marked !online, so
|
|
* nothing else will touch it.
|
|
*/
|
|
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
|
|
unsigned int irr;
|
|
|
|
if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
|
|
continue;
|
|
|
|
irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
|
|
if (irr & (1 << (vector % 32))) {
|
|
desc = __this_cpu_read(vector_irq[vector]);
|
|
|
|
raw_spin_lock(&desc->lock);
|
|
data = irq_desc_get_irq_data(desc);
|
|
chip = irq_data_get_irq_chip(data);
|
|
if (chip->irq_retrigger) {
|
|
chip->irq_retrigger(data);
|
|
__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
|
|
}
|
|
raw_spin_unlock(&desc->lock);
|
|
}
|
|
if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
|
|
__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
|
|
}
|
|
}
|
|
#endif
|