2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/arch/powerpc/sysdev/fsl_rmu.c
Liu Gang 1c075f9550 powerpc/rmu: Fix the error memory free parameters
There are error parameters should be corrected when
calling dma_free_coherent to free rmu rx-ring buffers
in fsl_open_inb_mbox() function.

Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
2014-05-22 18:08:13 -05:00

1108 lines
29 KiB
C

/*
* Freescale MPC85xx/MPC86xx RapidIO RMU support
*
* Copyright 2009 Sysgo AG
* Thomas Moll <thomas.moll@sysgo.com>
* - fixed maintenance access routines, check for aligned access
*
* Copyright 2009 Integrated Device Technology, Inc.
* Alex Bounine <alexandre.bounine@idt.com>
* - Added Port-Write message handling
* - Added Machine Check exception handling
*
* Copyright (C) 2007, 2008, 2010, 2011 Freescale Semiconductor, Inc.
* Zhang Wei <wei.zhang@freescale.com>
* Lian Minghuan-B31939 <Minghuan.Lian@freescale.com>
* Liu Gang <Gang.Liu@freescale.com>
*
* Copyright 2005 MontaVista Software, Inc.
* Matt Porter <mporter@kernel.crashing.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include "fsl_rio.h"
#define GET_RMM_HANDLE(mport) \
(((struct rio_priv *)(mport->priv))->rmm_handle)
/* RapidIO definition irq, which read from OF-tree */
#define IRQ_RIO_PW(m) (((struct fsl_rio_pw *)(m))->pwirq)
#define IRQ_RIO_BELL(m) (((struct fsl_rio_dbell *)(m))->bellirq)
#define IRQ_RIO_TX(m) (((struct fsl_rmu *)(GET_RMM_HANDLE(m)))->txirq)
#define IRQ_RIO_RX(m) (((struct fsl_rmu *)(GET_RMM_HANDLE(m)))->rxirq)
#define RIO_MIN_TX_RING_SIZE 2
#define RIO_MAX_TX_RING_SIZE 2048
#define RIO_MIN_RX_RING_SIZE 2
#define RIO_MAX_RX_RING_SIZE 2048
#define RIO_IPWMR_SEN 0x00100000
#define RIO_IPWMR_QFIE 0x00000100
#define RIO_IPWMR_EIE 0x00000020
#define RIO_IPWMR_CQ 0x00000002
#define RIO_IPWMR_PWE 0x00000001
#define RIO_IPWSR_QF 0x00100000
#define RIO_IPWSR_TE 0x00000080
#define RIO_IPWSR_QFI 0x00000010
#define RIO_IPWSR_PWD 0x00000008
#define RIO_IPWSR_PWB 0x00000004
#define RIO_EPWISR 0x10010
/* EPWISR Error match value */
#define RIO_EPWISR_PINT1 0x80000000
#define RIO_EPWISR_PINT2 0x40000000
#define RIO_EPWISR_MU 0x00000002
#define RIO_EPWISR_PW 0x00000001
#define IPWSR_CLEAR 0x98
#define OMSR_CLEAR 0x1cb3
#define IMSR_CLEAR 0x491
#define IDSR_CLEAR 0x91
#define ODSR_CLEAR 0x1c00
#define LTLEECSR_ENABLE_ALL 0xFFC000FC
#define RIO_LTLEECSR 0x060c
#define RIO_IM0SR 0x64
#define RIO_IM1SR 0x164
#define RIO_OM0SR 0x4
#define RIO_OM1SR 0x104
#define RIO_DBELL_WIN_SIZE 0x1000
#define RIO_MSG_OMR_MUI 0x00000002
#define RIO_MSG_OSR_TE 0x00000080
#define RIO_MSG_OSR_QOI 0x00000020
#define RIO_MSG_OSR_QFI 0x00000010
#define RIO_MSG_OSR_MUB 0x00000004
#define RIO_MSG_OSR_EOMI 0x00000002
#define RIO_MSG_OSR_QEI 0x00000001
#define RIO_MSG_IMR_MI 0x00000002
#define RIO_MSG_ISR_TE 0x00000080
#define RIO_MSG_ISR_QFI 0x00000010
#define RIO_MSG_ISR_DIQI 0x00000001
#define RIO_MSG_DESC_SIZE 32
#define RIO_MSG_BUFFER_SIZE 4096
#define DOORBELL_DMR_DI 0x00000002
#define DOORBELL_DSR_TE 0x00000080
#define DOORBELL_DSR_QFI 0x00000010
#define DOORBELL_DSR_DIQI 0x00000001
#define DOORBELL_MESSAGE_SIZE 0x08
struct rio_msg_regs {
u32 omr;
u32 osr;
u32 pad1;
u32 odqdpar;
u32 pad2;
u32 osar;
u32 odpr;
u32 odatr;
u32 odcr;
u32 pad3;
u32 odqepar;
u32 pad4[13];
u32 imr;
u32 isr;
u32 pad5;
u32 ifqdpar;
u32 pad6;
u32 ifqepar;
};
struct rio_dbell_regs {
u32 odmr;
u32 odsr;
u32 pad1[4];
u32 oddpr;
u32 oddatr;
u32 pad2[3];
u32 odretcr;
u32 pad3[12];
u32 dmr;
u32 dsr;
u32 pad4;
u32 dqdpar;
u32 pad5;
u32 dqepar;
};
struct rio_pw_regs {
u32 pwmr;
u32 pwsr;
u32 epwqbar;
u32 pwqbar;
};
struct rio_tx_desc {
u32 pad1;
u32 saddr;
u32 dport;
u32 dattr;
u32 pad2;
u32 pad3;
u32 dwcnt;
u32 pad4;
};
struct rio_msg_tx_ring {
void *virt;
dma_addr_t phys;
void *virt_buffer[RIO_MAX_TX_RING_SIZE];
dma_addr_t phys_buffer[RIO_MAX_TX_RING_SIZE];
int tx_slot;
int size;
void *dev_id;
};
struct rio_msg_rx_ring {
void *virt;
dma_addr_t phys;
void *virt_buffer[RIO_MAX_RX_RING_SIZE];
int rx_slot;
int size;
void *dev_id;
};
struct fsl_rmu {
struct rio_msg_regs __iomem *msg_regs;
struct rio_msg_tx_ring msg_tx_ring;
struct rio_msg_rx_ring msg_rx_ring;
int txirq;
int rxirq;
};
struct rio_dbell_msg {
u16 pad1;
u16 tid;
u16 sid;
u16 info;
};
/**
* fsl_rio_tx_handler - MPC85xx outbound message interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles outbound message interrupts. Executes a register outbound
* mailbox event handler and acks the interrupt occurrence.
*/
static irqreturn_t
fsl_rio_tx_handler(int irq, void *dev_instance)
{
int osr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct fsl_rmu *rmu = GET_RMM_HANDLE(port);
osr = in_be32(&rmu->msg_regs->osr);
if (osr & RIO_MSG_OSR_TE) {
pr_info("RIO: outbound message transmission error\n");
out_be32(&rmu->msg_regs->osr, RIO_MSG_OSR_TE);
goto out;
}
if (osr & RIO_MSG_OSR_QOI) {
pr_info("RIO: outbound message queue overflow\n");
out_be32(&rmu->msg_regs->osr, RIO_MSG_OSR_QOI);
goto out;
}
if (osr & RIO_MSG_OSR_EOMI) {
u32 dqp = in_be32(&rmu->msg_regs->odqdpar);
int slot = (dqp - rmu->msg_tx_ring.phys) >> 5;
if (port->outb_msg[0].mcback != NULL) {
port->outb_msg[0].mcback(port, rmu->msg_tx_ring.dev_id,
-1,
slot);
}
/* Ack the end-of-message interrupt */
out_be32(&rmu->msg_regs->osr, RIO_MSG_OSR_EOMI);
}
out:
return IRQ_HANDLED;
}
/**
* fsl_rio_rx_handler - MPC85xx inbound message interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles inbound message interrupts. Executes a registered inbound
* mailbox event handler and acks the interrupt occurrence.
*/
static irqreturn_t
fsl_rio_rx_handler(int irq, void *dev_instance)
{
int isr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct fsl_rmu *rmu = GET_RMM_HANDLE(port);
isr = in_be32(&rmu->msg_regs->isr);
if (isr & RIO_MSG_ISR_TE) {
pr_info("RIO: inbound message reception error\n");
out_be32((void *)&rmu->msg_regs->isr, RIO_MSG_ISR_TE);
goto out;
}
/* XXX Need to check/dispatch until queue empty */
if (isr & RIO_MSG_ISR_DIQI) {
/*
* Can receive messages for any mailbox/letter to that
* mailbox destination. So, make the callback with an
* unknown/invalid mailbox number argument.
*/
if (port->inb_msg[0].mcback != NULL)
port->inb_msg[0].mcback(port, rmu->msg_rx_ring.dev_id,
-1,
-1);
/* Ack the queueing interrupt */
out_be32(&rmu->msg_regs->isr, RIO_MSG_ISR_DIQI);
}
out:
return IRQ_HANDLED;
}
/**
* fsl_rio_dbell_handler - MPC85xx doorbell interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles doorbell interrupts. Parses a list of registered
* doorbell event handlers and executes a matching event handler.
*/
static irqreturn_t
fsl_rio_dbell_handler(int irq, void *dev_instance)
{
int dsr;
struct fsl_rio_dbell *fsl_dbell = (struct fsl_rio_dbell *)dev_instance;
int i;
dsr = in_be32(&fsl_dbell->dbell_regs->dsr);
if (dsr & DOORBELL_DSR_TE) {
pr_info("RIO: doorbell reception error\n");
out_be32(&fsl_dbell->dbell_regs->dsr, DOORBELL_DSR_TE);
goto out;
}
if (dsr & DOORBELL_DSR_QFI) {
pr_info("RIO: doorbell queue full\n");
out_be32(&fsl_dbell->dbell_regs->dsr, DOORBELL_DSR_QFI);
}
/* XXX Need to check/dispatch until queue empty */
if (dsr & DOORBELL_DSR_DIQI) {
struct rio_dbell_msg *dmsg =
fsl_dbell->dbell_ring.virt +
(in_be32(&fsl_dbell->dbell_regs->dqdpar) & 0xfff);
struct rio_dbell *dbell;
int found = 0;
pr_debug
("RIO: processing doorbell,"
" sid %2.2x tid %2.2x info %4.4x\n",
dmsg->sid, dmsg->tid, dmsg->info);
for (i = 0; i < MAX_PORT_NUM; i++) {
if (fsl_dbell->mport[i]) {
list_for_each_entry(dbell,
&fsl_dbell->mport[i]->dbells, node) {
if ((dbell->res->start
<= dmsg->info)
&& (dbell->res->end
>= dmsg->info)) {
found = 1;
break;
}
}
if (found && dbell->dinb) {
dbell->dinb(fsl_dbell->mport[i],
dbell->dev_id, dmsg->sid,
dmsg->tid,
dmsg->info);
break;
}
}
}
if (!found) {
pr_debug
("RIO: spurious doorbell,"
" sid %2.2x tid %2.2x info %4.4x\n",
dmsg->sid, dmsg->tid,
dmsg->info);
}
setbits32(&fsl_dbell->dbell_regs->dmr, DOORBELL_DMR_DI);
out_be32(&fsl_dbell->dbell_regs->dsr, DOORBELL_DSR_DIQI);
}
out:
return IRQ_HANDLED;
}
void msg_unit_error_handler(void)
{
/*XXX: Error recovery is not implemented, we just clear errors */
out_be32((u32 *)(rio_regs_win + RIO_LTLEDCSR), 0);
out_be32((u32 *)(rmu_regs_win + RIO_IM0SR), IMSR_CLEAR);
out_be32((u32 *)(rmu_regs_win + RIO_IM1SR), IMSR_CLEAR);
out_be32((u32 *)(rmu_regs_win + RIO_OM0SR), OMSR_CLEAR);
out_be32((u32 *)(rmu_regs_win + RIO_OM1SR), OMSR_CLEAR);
out_be32(&dbell->dbell_regs->odsr, ODSR_CLEAR);
out_be32(&dbell->dbell_regs->dsr, IDSR_CLEAR);
out_be32(&pw->pw_regs->pwsr, IPWSR_CLEAR);
}
/**
* fsl_rio_port_write_handler - MPC85xx port write interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles port write interrupts. Parses a list of registered
* port write event handlers and executes a matching event handler.
*/
static irqreturn_t
fsl_rio_port_write_handler(int irq, void *dev_instance)
{
u32 ipwmr, ipwsr;
struct fsl_rio_pw *pw = (struct fsl_rio_pw *)dev_instance;
u32 epwisr, tmp;
epwisr = in_be32(rio_regs_win + RIO_EPWISR);
if (!(epwisr & RIO_EPWISR_PW))
goto pw_done;
ipwmr = in_be32(&pw->pw_regs->pwmr);
ipwsr = in_be32(&pw->pw_regs->pwsr);
#ifdef DEBUG_PW
pr_debug("PW Int->IPWMR: 0x%08x IPWSR: 0x%08x (", ipwmr, ipwsr);
if (ipwsr & RIO_IPWSR_QF)
pr_debug(" QF");
if (ipwsr & RIO_IPWSR_TE)
pr_debug(" TE");
if (ipwsr & RIO_IPWSR_QFI)
pr_debug(" QFI");
if (ipwsr & RIO_IPWSR_PWD)
pr_debug(" PWD");
if (ipwsr & RIO_IPWSR_PWB)
pr_debug(" PWB");
pr_debug(" )\n");
#endif
/* Schedule deferred processing if PW was received */
if (ipwsr & RIO_IPWSR_QFI) {
/* Save PW message (if there is room in FIFO),
* otherwise discard it.
*/
if (kfifo_avail(&pw->pw_fifo) >= RIO_PW_MSG_SIZE) {
pw->port_write_msg.msg_count++;
kfifo_in(&pw->pw_fifo, pw->port_write_msg.virt,
RIO_PW_MSG_SIZE);
} else {
pw->port_write_msg.discard_count++;
pr_debug("RIO: ISR Discarded Port-Write Msg(s) (%d)\n",
pw->port_write_msg.discard_count);
}
/* Clear interrupt and issue Clear Queue command. This allows
* another port-write to be received.
*/
out_be32(&pw->pw_regs->pwsr, RIO_IPWSR_QFI);
out_be32(&pw->pw_regs->pwmr, ipwmr | RIO_IPWMR_CQ);
schedule_work(&pw->pw_work);
}
if ((ipwmr & RIO_IPWMR_EIE) && (ipwsr & RIO_IPWSR_TE)) {
pw->port_write_msg.err_count++;
pr_debug("RIO: Port-Write Transaction Err (%d)\n",
pw->port_write_msg.err_count);
/* Clear Transaction Error: port-write controller should be
* disabled when clearing this error
*/
out_be32(&pw->pw_regs->pwmr, ipwmr & ~RIO_IPWMR_PWE);
out_be32(&pw->pw_regs->pwsr, RIO_IPWSR_TE);
out_be32(&pw->pw_regs->pwmr, ipwmr);
}
if (ipwsr & RIO_IPWSR_PWD) {
pw->port_write_msg.discard_count++;
pr_debug("RIO: Port Discarded Port-Write Msg(s) (%d)\n",
pw->port_write_msg.discard_count);
out_be32(&pw->pw_regs->pwsr, RIO_IPWSR_PWD);
}
pw_done:
if (epwisr & RIO_EPWISR_PINT1) {
tmp = in_be32(rio_regs_win + RIO_LTLEDCSR);
pr_debug("RIO_LTLEDCSR = 0x%x\n", tmp);
fsl_rio_port_error_handler(0);
}
if (epwisr & RIO_EPWISR_PINT2) {
tmp = in_be32(rio_regs_win + RIO_LTLEDCSR);
pr_debug("RIO_LTLEDCSR = 0x%x\n", tmp);
fsl_rio_port_error_handler(1);
}
if (epwisr & RIO_EPWISR_MU) {
tmp = in_be32(rio_regs_win + RIO_LTLEDCSR);
pr_debug("RIO_LTLEDCSR = 0x%x\n", tmp);
msg_unit_error_handler();
}
return IRQ_HANDLED;
}
static void fsl_pw_dpc(struct work_struct *work)
{
struct fsl_rio_pw *pw = container_of(work, struct fsl_rio_pw, pw_work);
u32 msg_buffer[RIO_PW_MSG_SIZE/sizeof(u32)];
/*
* Process port-write messages
*/
while (kfifo_out_spinlocked(&pw->pw_fifo, (unsigned char *)msg_buffer,
RIO_PW_MSG_SIZE, &pw->pw_fifo_lock)) {
/* Process one message */
#ifdef DEBUG_PW
{
u32 i;
pr_debug("%s : Port-Write Message:", __func__);
for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32); i++) {
if ((i%4) == 0)
pr_debug("\n0x%02x: 0x%08x", i*4,
msg_buffer[i]);
else
pr_debug(" 0x%08x", msg_buffer[i]);
}
pr_debug("\n");
}
#endif
/* Pass the port-write message to RIO core for processing */
rio_inb_pwrite_handler((union rio_pw_msg *)msg_buffer);
}
}
/**
* fsl_rio_pw_enable - enable/disable port-write interface init
* @mport: Master port implementing the port write unit
* @enable: 1=enable; 0=disable port-write message handling
*/
int fsl_rio_pw_enable(struct rio_mport *mport, int enable)
{
u32 rval;
rval = in_be32(&pw->pw_regs->pwmr);
if (enable)
rval |= RIO_IPWMR_PWE;
else
rval &= ~RIO_IPWMR_PWE;
out_be32(&pw->pw_regs->pwmr, rval);
return 0;
}
/**
* fsl_rio_port_write_init - MPC85xx port write interface init
* @mport: Master port implementing the port write unit
*
* Initializes port write unit hardware and DMA buffer
* ring. Called from fsl_rio_setup(). Returns %0 on success
* or %-ENOMEM on failure.
*/
int fsl_rio_port_write_init(struct fsl_rio_pw *pw)
{
int rc = 0;
/* Following configurations require a disabled port write controller */
out_be32(&pw->pw_regs->pwmr,
in_be32(&pw->pw_regs->pwmr) & ~RIO_IPWMR_PWE);
/* Initialize port write */
pw->port_write_msg.virt = dma_alloc_coherent(pw->dev,
RIO_PW_MSG_SIZE,
&pw->port_write_msg.phys, GFP_KERNEL);
if (!pw->port_write_msg.virt) {
pr_err("RIO: unable allocate port write queue\n");
return -ENOMEM;
}
pw->port_write_msg.err_count = 0;
pw->port_write_msg.discard_count = 0;
/* Point dequeue/enqueue pointers at first entry */
out_be32(&pw->pw_regs->epwqbar, 0);
out_be32(&pw->pw_regs->pwqbar, (u32) pw->port_write_msg.phys);
pr_debug("EIPWQBAR: 0x%08x IPWQBAR: 0x%08x\n",
in_be32(&pw->pw_regs->epwqbar),
in_be32(&pw->pw_regs->pwqbar));
/* Clear interrupt status IPWSR */
out_be32(&pw->pw_regs->pwsr,
(RIO_IPWSR_TE | RIO_IPWSR_QFI | RIO_IPWSR_PWD));
/* Configure port write contoller for snooping enable all reporting,
clear queue full */
out_be32(&pw->pw_regs->pwmr,
RIO_IPWMR_SEN | RIO_IPWMR_QFIE | RIO_IPWMR_EIE | RIO_IPWMR_CQ);
/* Hook up port-write handler */
rc = request_irq(IRQ_RIO_PW(pw), fsl_rio_port_write_handler,
IRQF_SHARED, "port-write", (void *)pw);
if (rc < 0) {
pr_err("MPC85xx RIO: unable to request inbound doorbell irq");
goto err_out;
}
/* Enable Error Interrupt */
out_be32((u32 *)(rio_regs_win + RIO_LTLEECSR), LTLEECSR_ENABLE_ALL);
INIT_WORK(&pw->pw_work, fsl_pw_dpc);
spin_lock_init(&pw->pw_fifo_lock);
if (kfifo_alloc(&pw->pw_fifo, RIO_PW_MSG_SIZE * 32, GFP_KERNEL)) {
pr_err("FIFO allocation failed\n");
rc = -ENOMEM;
goto err_out_irq;
}
pr_debug("IPWMR: 0x%08x IPWSR: 0x%08x\n",
in_be32(&pw->pw_regs->pwmr),
in_be32(&pw->pw_regs->pwsr));
return rc;
err_out_irq:
free_irq(IRQ_RIO_PW(pw), (void *)pw);
err_out:
dma_free_coherent(pw->dev, RIO_PW_MSG_SIZE,
pw->port_write_msg.virt,
pw->port_write_msg.phys);
return rc;
}
/**
* fsl_rio_doorbell_send - Send a MPC85xx doorbell message
* @mport: RapidIO master port info
* @index: ID of RapidIO interface
* @destid: Destination ID of target device
* @data: 16-bit info field of RapidIO doorbell message
*
* Sends a MPC85xx doorbell message. Returns %0 on success or
* %-EINVAL on failure.
*/
int fsl_rio_doorbell_send(struct rio_mport *mport,
int index, u16 destid, u16 data)
{
pr_debug("fsl_doorbell_send: index %d destid %4.4x data %4.4x\n",
index, destid, data);
/* In the serial version silicons, such as MPC8548, MPC8641,
* below operations is must be.
*/
out_be32(&dbell->dbell_regs->odmr, 0x00000000);
out_be32(&dbell->dbell_regs->odretcr, 0x00000004);
out_be32(&dbell->dbell_regs->oddpr, destid << 16);
out_be32(&dbell->dbell_regs->oddatr, (index << 20) | data);
out_be32(&dbell->dbell_regs->odmr, 0x00000001);
return 0;
}
/**
* fsl_add_outb_message - Add message to the MPC85xx outbound message queue
* @mport: Master port with outbound message queue
* @rdev: Target of outbound message
* @mbox: Outbound mailbox
* @buffer: Message to add to outbound queue
* @len: Length of message
*
* Adds the @buffer message to the MPC85xx outbound message queue. Returns
* %0 on success or %-EINVAL on failure.
*/
int
fsl_add_outb_message(struct rio_mport *mport, struct rio_dev *rdev, int mbox,
void *buffer, size_t len)
{
struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
u32 omr;
struct rio_tx_desc *desc = (struct rio_tx_desc *)rmu->msg_tx_ring.virt
+ rmu->msg_tx_ring.tx_slot;
int ret = 0;
pr_debug("RIO: fsl_add_outb_message(): destid %4.4x mbox %d buffer " \
"%p len %8.8zx\n", rdev->destid, mbox, buffer, len);
if ((len < 8) || (len > RIO_MAX_MSG_SIZE)) {
ret = -EINVAL;
goto out;
}
/* Copy and clear rest of buffer */
memcpy(rmu->msg_tx_ring.virt_buffer[rmu->msg_tx_ring.tx_slot], buffer,
len);
if (len < (RIO_MAX_MSG_SIZE - 4))
memset(rmu->msg_tx_ring.virt_buffer[rmu->msg_tx_ring.tx_slot]
+ len, 0, RIO_MAX_MSG_SIZE - len);
/* Set mbox field for message, and set destid */
desc->dport = (rdev->destid << 16) | (mbox & 0x3);
/* Enable EOMI interrupt and priority */
desc->dattr = 0x28000000 | ((mport->index) << 20);
/* Set transfer size aligned to next power of 2 (in double words) */
desc->dwcnt = is_power_of_2(len) ? len : 1 << get_bitmask_order(len);
/* Set snooping and source buffer address */
desc->saddr = 0x00000004
| rmu->msg_tx_ring.phys_buffer[rmu->msg_tx_ring.tx_slot];
/* Increment enqueue pointer */
omr = in_be32(&rmu->msg_regs->omr);
out_be32(&rmu->msg_regs->omr, omr | RIO_MSG_OMR_MUI);
/* Go to next descriptor */
if (++rmu->msg_tx_ring.tx_slot == rmu->msg_tx_ring.size)
rmu->msg_tx_ring.tx_slot = 0;
out:
return ret;
}
/**
* fsl_open_outb_mbox - Initialize MPC85xx outbound mailbox
* @mport: Master port implementing the outbound message unit
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox to open
* @entries: Number of entries in the outbound mailbox ring
*
* Initializes buffer ring, request the outbound message interrupt,
* and enables the outbound message unit. Returns %0 on success and
* %-EINVAL or %-ENOMEM on failure.
*/
int
fsl_open_outb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries)
{
int i, j, rc = 0;
struct rio_priv *priv = mport->priv;
struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
if ((entries < RIO_MIN_TX_RING_SIZE) ||
(entries > RIO_MAX_TX_RING_SIZE) || (!is_power_of_2(entries))) {
rc = -EINVAL;
goto out;
}
/* Initialize shadow copy ring */
rmu->msg_tx_ring.dev_id = dev_id;
rmu->msg_tx_ring.size = entries;
for (i = 0; i < rmu->msg_tx_ring.size; i++) {
rmu->msg_tx_ring.virt_buffer[i] =
dma_alloc_coherent(priv->dev, RIO_MSG_BUFFER_SIZE,
&rmu->msg_tx_ring.phys_buffer[i], GFP_KERNEL);
if (!rmu->msg_tx_ring.virt_buffer[i]) {
rc = -ENOMEM;
for (j = 0; j < rmu->msg_tx_ring.size; j++)
if (rmu->msg_tx_ring.virt_buffer[j])
dma_free_coherent(priv->dev,
RIO_MSG_BUFFER_SIZE,
rmu->msg_tx_ring.
virt_buffer[j],
rmu->msg_tx_ring.
phys_buffer[j]);
goto out;
}
}
/* Initialize outbound message descriptor ring */
rmu->msg_tx_ring.virt = dma_alloc_coherent(priv->dev,
rmu->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
&rmu->msg_tx_ring.phys, GFP_KERNEL);
if (!rmu->msg_tx_ring.virt) {
rc = -ENOMEM;
goto out_dma;
}
memset(rmu->msg_tx_ring.virt, 0,
rmu->msg_tx_ring.size * RIO_MSG_DESC_SIZE);
rmu->msg_tx_ring.tx_slot = 0;
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&rmu->msg_regs->odqdpar, rmu->msg_tx_ring.phys);
out_be32(&rmu->msg_regs->odqepar, rmu->msg_tx_ring.phys);
/* Configure for snooping */
out_be32(&rmu->msg_regs->osar, 0x00000004);
/* Clear interrupt status */
out_be32(&rmu->msg_regs->osr, 0x000000b3);
/* Hook up outbound message handler */
rc = request_irq(IRQ_RIO_TX(mport), fsl_rio_tx_handler, 0,
"msg_tx", (void *)mport);
if (rc < 0)
goto out_irq;
/*
* Configure outbound message unit
* Snooping
* Interrupts (all enabled, except QEIE)
* Chaining mode
* Disable
*/
out_be32(&rmu->msg_regs->omr, 0x00100220);
/* Set number of entries */
out_be32(&rmu->msg_regs->omr,
in_be32(&rmu->msg_regs->omr) |
((get_bitmask_order(entries) - 2) << 12));
/* Now enable the unit */
out_be32(&rmu->msg_regs->omr, in_be32(&rmu->msg_regs->omr) | 0x1);
out:
return rc;
out_irq:
dma_free_coherent(priv->dev,
rmu->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
rmu->msg_tx_ring.virt, rmu->msg_tx_ring.phys);
out_dma:
for (i = 0; i < rmu->msg_tx_ring.size; i++)
dma_free_coherent(priv->dev, RIO_MSG_BUFFER_SIZE,
rmu->msg_tx_ring.virt_buffer[i],
rmu->msg_tx_ring.phys_buffer[i]);
return rc;
}
/**
* fsl_close_outb_mbox - Shut down MPC85xx outbound mailbox
* @mport: Master port implementing the outbound message unit
* @mbox: Mailbox to close
*
* Disables the outbound message unit, free all buffers, and
* frees the outbound message interrupt.
*/
void fsl_close_outb_mbox(struct rio_mport *mport, int mbox)
{
struct rio_priv *priv = mport->priv;
struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
/* Disable inbound message unit */
out_be32(&rmu->msg_regs->omr, 0);
/* Free ring */
dma_free_coherent(priv->dev,
rmu->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
rmu->msg_tx_ring.virt, rmu->msg_tx_ring.phys);
/* Free interrupt */
free_irq(IRQ_RIO_TX(mport), (void *)mport);
}
/**
* fsl_open_inb_mbox - Initialize MPC85xx inbound mailbox
* @mport: Master port implementing the inbound message unit
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox to open
* @entries: Number of entries in the inbound mailbox ring
*
* Initializes buffer ring, request the inbound message interrupt,
* and enables the inbound message unit. Returns %0 on success
* and %-EINVAL or %-ENOMEM on failure.
*/
int
fsl_open_inb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries)
{
int i, rc = 0;
struct rio_priv *priv = mport->priv;
struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
if ((entries < RIO_MIN_RX_RING_SIZE) ||
(entries > RIO_MAX_RX_RING_SIZE) || (!is_power_of_2(entries))) {
rc = -EINVAL;
goto out;
}
/* Initialize client buffer ring */
rmu->msg_rx_ring.dev_id = dev_id;
rmu->msg_rx_ring.size = entries;
rmu->msg_rx_ring.rx_slot = 0;
for (i = 0; i < rmu->msg_rx_ring.size; i++)
rmu->msg_rx_ring.virt_buffer[i] = NULL;
/* Initialize inbound message ring */
rmu->msg_rx_ring.virt = dma_alloc_coherent(priv->dev,
rmu->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
&rmu->msg_rx_ring.phys, GFP_KERNEL);
if (!rmu->msg_rx_ring.virt) {
rc = -ENOMEM;
goto out;
}
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&rmu->msg_regs->ifqdpar, (u32) rmu->msg_rx_ring.phys);
out_be32(&rmu->msg_regs->ifqepar, (u32) rmu->msg_rx_ring.phys);
/* Clear interrupt status */
out_be32(&rmu->msg_regs->isr, 0x00000091);
/* Hook up inbound message handler */
rc = request_irq(IRQ_RIO_RX(mport), fsl_rio_rx_handler, 0,
"msg_rx", (void *)mport);
if (rc < 0) {
dma_free_coherent(priv->dev,
rmu->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
rmu->msg_rx_ring.virt, rmu->msg_rx_ring.phys);
goto out;
}
/*
* Configure inbound message unit:
* Snooping
* 4KB max message size
* Unmask all interrupt sources
* Disable
*/
out_be32(&rmu->msg_regs->imr, 0x001b0060);
/* Set number of queue entries */
setbits32(&rmu->msg_regs->imr, (get_bitmask_order(entries) - 2) << 12);
/* Now enable the unit */
setbits32(&rmu->msg_regs->imr, 0x1);
out:
return rc;
}
/**
* fsl_close_inb_mbox - Shut down MPC85xx inbound mailbox
* @mport: Master port implementing the inbound message unit
* @mbox: Mailbox to close
*
* Disables the inbound message unit, free all buffers, and
* frees the inbound message interrupt.
*/
void fsl_close_inb_mbox(struct rio_mport *mport, int mbox)
{
struct rio_priv *priv = mport->priv;
struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
/* Disable inbound message unit */
out_be32(&rmu->msg_regs->imr, 0);
/* Free ring */
dma_free_coherent(priv->dev, rmu->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
rmu->msg_rx_ring.virt, rmu->msg_rx_ring.phys);
/* Free interrupt */
free_irq(IRQ_RIO_RX(mport), (void *)mport);
}
/**
* fsl_add_inb_buffer - Add buffer to the MPC85xx inbound message queue
* @mport: Master port implementing the inbound message unit
* @mbox: Inbound mailbox number
* @buf: Buffer to add to inbound queue
*
* Adds the @buf buffer to the MPC85xx inbound message queue. Returns
* %0 on success or %-EINVAL on failure.
*/
int fsl_add_inb_buffer(struct rio_mport *mport, int mbox, void *buf)
{
int rc = 0;
struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
pr_debug("RIO: fsl_add_inb_buffer(), msg_rx_ring.rx_slot %d\n",
rmu->msg_rx_ring.rx_slot);
if (rmu->msg_rx_ring.virt_buffer[rmu->msg_rx_ring.rx_slot]) {
printk(KERN_ERR
"RIO: error adding inbound buffer %d, buffer exists\n",
rmu->msg_rx_ring.rx_slot);
rc = -EINVAL;
goto out;
}
rmu->msg_rx_ring.virt_buffer[rmu->msg_rx_ring.rx_slot] = buf;
if (++rmu->msg_rx_ring.rx_slot == rmu->msg_rx_ring.size)
rmu->msg_rx_ring.rx_slot = 0;
out:
return rc;
}
/**
* fsl_get_inb_message - Fetch inbound message from the MPC85xx message unit
* @mport: Master port implementing the inbound message unit
* @mbox: Inbound mailbox number
*
* Gets the next available inbound message from the inbound message queue.
* A pointer to the message is returned on success or NULL on failure.
*/
void *fsl_get_inb_message(struct rio_mport *mport, int mbox)
{
struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
u32 phys_buf;
void *virt_buf;
void *buf = NULL;
int buf_idx;
phys_buf = in_be32(&rmu->msg_regs->ifqdpar);
/* If no more messages, then bail out */
if (phys_buf == in_be32(&rmu->msg_regs->ifqepar))
goto out2;
virt_buf = rmu->msg_rx_ring.virt + (phys_buf
- rmu->msg_rx_ring.phys);
buf_idx = (phys_buf - rmu->msg_rx_ring.phys) / RIO_MAX_MSG_SIZE;
buf = rmu->msg_rx_ring.virt_buffer[buf_idx];
if (!buf) {
printk(KERN_ERR
"RIO: inbound message copy failed, no buffers\n");
goto out1;
}
/* Copy max message size, caller is expected to allocate that big */
memcpy(buf, virt_buf, RIO_MAX_MSG_SIZE);
/* Clear the available buffer */
rmu->msg_rx_ring.virt_buffer[buf_idx] = NULL;
out1:
setbits32(&rmu->msg_regs->imr, RIO_MSG_IMR_MI);
out2:
return buf;
}
/**
* fsl_rio_doorbell_init - MPC85xx doorbell interface init
* @mport: Master port implementing the inbound doorbell unit
*
* Initializes doorbell unit hardware and inbound DMA buffer
* ring. Called from fsl_rio_setup(). Returns %0 on success
* or %-ENOMEM on failure.
*/
int fsl_rio_doorbell_init(struct fsl_rio_dbell *dbell)
{
int rc = 0;
/* Initialize inbound doorbells */
dbell->dbell_ring.virt = dma_alloc_coherent(dbell->dev, 512 *
DOORBELL_MESSAGE_SIZE, &dbell->dbell_ring.phys, GFP_KERNEL);
if (!dbell->dbell_ring.virt) {
printk(KERN_ERR "RIO: unable allocate inbound doorbell ring\n");
rc = -ENOMEM;
goto out;
}
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&dbell->dbell_regs->dqdpar, (u32) dbell->dbell_ring.phys);
out_be32(&dbell->dbell_regs->dqepar, (u32) dbell->dbell_ring.phys);
/* Clear interrupt status */
out_be32(&dbell->dbell_regs->dsr, 0x00000091);
/* Hook up doorbell handler */
rc = request_irq(IRQ_RIO_BELL(dbell), fsl_rio_dbell_handler, 0,
"dbell_rx", (void *)dbell);
if (rc < 0) {
dma_free_coherent(dbell->dev, 512 * DOORBELL_MESSAGE_SIZE,
dbell->dbell_ring.virt, dbell->dbell_ring.phys);
printk(KERN_ERR
"MPC85xx RIO: unable to request inbound doorbell irq");
goto out;
}
/* Configure doorbells for snooping, 512 entries, and enable */
out_be32(&dbell->dbell_regs->dmr, 0x00108161);
out:
return rc;
}
int fsl_rio_setup_rmu(struct rio_mport *mport, struct device_node *node)
{
struct rio_priv *priv;
struct fsl_rmu *rmu;
u64 msg_start;
const u32 *msg_addr;
int mlen;
int aw;
if (!mport || !mport->priv)
return -EINVAL;
priv = mport->priv;
if (!node) {
dev_warn(priv->dev, "Can't get %s property 'fsl,rmu'\n",
priv->dev->of_node->full_name);
return -EINVAL;
}
rmu = kzalloc(sizeof(struct fsl_rmu), GFP_KERNEL);
if (!rmu)
return -ENOMEM;
aw = of_n_addr_cells(node);
msg_addr = of_get_property(node, "reg", &mlen);
if (!msg_addr) {
pr_err("%s: unable to find 'reg' property of message-unit\n",
node->full_name);
kfree(rmu);
return -ENOMEM;
}
msg_start = of_read_number(msg_addr, aw);
rmu->msg_regs = (struct rio_msg_regs *)
(rmu_regs_win + (u32)msg_start);
rmu->txirq = irq_of_parse_and_map(node, 0);
rmu->rxirq = irq_of_parse_and_map(node, 1);
printk(KERN_INFO "%s: txirq: %d, rxirq %d\n",
node->full_name, rmu->txirq, rmu->rxirq);
priv->rmm_handle = rmu;
rio_init_dbell_res(&mport->riores[RIO_DOORBELL_RESOURCE], 0, 0xffff);
rio_init_mbox_res(&mport->riores[RIO_INB_MBOX_RESOURCE], 0, 0);
rio_init_mbox_res(&mport->riores[RIO_OUTB_MBOX_RESOURCE], 0, 0);
return 0;
}