mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-07 13:13:57 +08:00
de0d411cb8
This moves two inlines back to packet_history.h: these are not private to packet_history.c, but are needed by CCID3/4 to detect whether a new loss is indicated, or whether a loss is already pending. Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
500 lines
14 KiB
C
500 lines
14 KiB
C
/*
|
|
* net/dccp/packet_history.c
|
|
*
|
|
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
|
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
|
|
*
|
|
* An implementation of the DCCP protocol
|
|
*
|
|
* This code has been developed by the University of Waikato WAND
|
|
* research group. For further information please see http://www.wand.net.nz/
|
|
* or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
|
|
*
|
|
* This code also uses code from Lulea University, rereleased as GPL by its
|
|
* authors:
|
|
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
|
|
*
|
|
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
|
|
* and to make it work as a loadable module in the DCCP stack written by
|
|
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
|
|
*
|
|
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include "packet_history.h"
|
|
#include "../../dccp.h"
|
|
|
|
/**
|
|
* tfrc_tx_hist_entry - Simple singly-linked TX history list
|
|
* @next: next oldest entry (LIFO order)
|
|
* @seqno: sequence number of this entry
|
|
* @stamp: send time of packet with sequence number @seqno
|
|
*/
|
|
struct tfrc_tx_hist_entry {
|
|
struct tfrc_tx_hist_entry *next;
|
|
u64 seqno;
|
|
ktime_t stamp;
|
|
};
|
|
|
|
/*
|
|
* Transmitter History Routines
|
|
*/
|
|
static struct kmem_cache *tfrc_tx_hist_slab;
|
|
|
|
int __init tfrc_tx_packet_history_init(void)
|
|
{
|
|
tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
|
|
sizeof(struct tfrc_tx_hist_entry),
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
|
return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
|
|
}
|
|
|
|
void tfrc_tx_packet_history_exit(void)
|
|
{
|
|
if (tfrc_tx_hist_slab != NULL) {
|
|
kmem_cache_destroy(tfrc_tx_hist_slab);
|
|
tfrc_tx_hist_slab = NULL;
|
|
}
|
|
}
|
|
|
|
static struct tfrc_tx_hist_entry *
|
|
tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry *head, u64 seqno)
|
|
{
|
|
while (head != NULL && head->seqno != seqno)
|
|
head = head->next;
|
|
|
|
return head;
|
|
}
|
|
|
|
int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
|
|
{
|
|
struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
|
|
|
|
if (entry == NULL)
|
|
return -ENOBUFS;
|
|
entry->seqno = seqno;
|
|
entry->stamp = ktime_get_real();
|
|
entry->next = *headp;
|
|
*headp = entry;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
|
|
|
|
void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
|
|
{
|
|
struct tfrc_tx_hist_entry *head = *headp;
|
|
|
|
while (head != NULL) {
|
|
struct tfrc_tx_hist_entry *next = head->next;
|
|
|
|
kmem_cache_free(tfrc_tx_hist_slab, head);
|
|
head = next;
|
|
}
|
|
|
|
*headp = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
|
|
|
|
u32 tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry *head, const u64 seqno,
|
|
const ktime_t now)
|
|
{
|
|
u32 rtt = 0;
|
|
struct tfrc_tx_hist_entry *packet = tfrc_tx_hist_find_entry(head, seqno);
|
|
|
|
if (packet != NULL) {
|
|
rtt = ktime_us_delta(now, packet->stamp);
|
|
/*
|
|
* Garbage-collect older (irrelevant) entries:
|
|
*/
|
|
tfrc_tx_hist_purge(&packet->next);
|
|
}
|
|
|
|
return rtt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_tx_hist_rtt);
|
|
|
|
|
|
/*
|
|
* Receiver History Routines
|
|
*/
|
|
static struct kmem_cache *tfrc_rx_hist_slab;
|
|
|
|
int __init tfrc_rx_packet_history_init(void)
|
|
{
|
|
tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
|
|
sizeof(struct tfrc_rx_hist_entry),
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
|
return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
|
|
}
|
|
|
|
void tfrc_rx_packet_history_exit(void)
|
|
{
|
|
if (tfrc_rx_hist_slab != NULL) {
|
|
kmem_cache_destroy(tfrc_rx_hist_slab);
|
|
tfrc_rx_hist_slab = NULL;
|
|
}
|
|
}
|
|
|
|
static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
|
|
const struct sk_buff *skb,
|
|
const u32 ndp)
|
|
{
|
|
const struct dccp_hdr *dh = dccp_hdr(skb);
|
|
|
|
entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
|
|
entry->tfrchrx_ccval = dh->dccph_ccval;
|
|
entry->tfrchrx_type = dh->dccph_type;
|
|
entry->tfrchrx_ndp = ndp;
|
|
entry->tfrchrx_tstamp = ktime_get_real();
|
|
}
|
|
|
|
void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
|
|
const struct sk_buff *skb,
|
|
const u32 ndp)
|
|
{
|
|
struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
|
|
|
|
tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
|
|
|
|
/* has the packet contained in skb been seen before? */
|
|
int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
|
|
{
|
|
const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
|
|
int i;
|
|
|
|
if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
|
|
return 1;
|
|
|
|
for (i = 1; i <= h->loss_count; i++)
|
|
if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
|
|
|
|
static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
|
|
{
|
|
const u8 idx_a = tfrc_rx_hist_index(h, a),
|
|
idx_b = tfrc_rx_hist_index(h, b);
|
|
struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
|
|
|
|
h->ring[idx_a] = h->ring[idx_b];
|
|
h->ring[idx_b] = tmp;
|
|
}
|
|
|
|
/*
|
|
* Private helper functions for loss detection.
|
|
*
|
|
* In the descriptions, `Si' refers to the sequence number of entry number i,
|
|
* whose NDP count is `Ni' (lower case is used for variables).
|
|
* Note: All __after_loss functions expect that a test against duplicates has
|
|
* been performed already: the seqno of the skb must not be less than the
|
|
* seqno of loss_prev; and it must not equal that of any valid hist_entry.
|
|
*/
|
|
static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
|
|
{
|
|
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
|
|
s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
|
|
s2 = DCCP_SKB_CB(skb)->dccpd_seq;
|
|
int n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp,
|
|
d12 = dccp_delta_seqno(s1, s2), d2;
|
|
|
|
if (d12 > 0) { /* S1 < S2 */
|
|
h->loss_count = 2;
|
|
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
|
|
return;
|
|
}
|
|
|
|
/* S0 < S2 < S1 */
|
|
d2 = dccp_delta_seqno(s0, s2);
|
|
|
|
if (d2 == 1 || n2 >= d2) { /* S2 is direct successor of S0 */
|
|
int d21 = -d12;
|
|
|
|
if (d21 == 1 || n1 >= d21) {
|
|
/* hole is filled: S0, S2, and S1 are consecutive */
|
|
h->loss_count = 0;
|
|
h->loss_start = tfrc_rx_hist_index(h, 1);
|
|
} else
|
|
/* gap between S2 and S1: just update loss_prev */
|
|
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
|
|
|
|
} else { /* hole between S0 and S2 */
|
|
/*
|
|
* Reorder history to insert S2 between S0 and s1
|
|
*/
|
|
tfrc_rx_hist_swap(h, 0, 3);
|
|
h->loss_start = tfrc_rx_hist_index(h, 3);
|
|
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
|
|
h->loss_count = 2;
|
|
}
|
|
}
|
|
|
|
/* return 1 if a new loss event has been identified */
|
|
static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
|
|
{
|
|
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
|
|
s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
|
|
s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
|
|
s3 = DCCP_SKB_CB(skb)->dccpd_seq;
|
|
int n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp,
|
|
d23 = dccp_delta_seqno(s2, s3), d13, d3, d31;
|
|
|
|
if (d23 > 0) { /* S2 < S3 */
|
|
h->loss_count = 3;
|
|
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
|
|
return 1;
|
|
}
|
|
|
|
/* S3 < S2 */
|
|
d13 = dccp_delta_seqno(s1, s3);
|
|
|
|
if (d13 > 0) {
|
|
/*
|
|
* The sequence number order is S1, S3, S2
|
|
* Reorder history to insert entry between S1 and S2
|
|
*/
|
|
tfrc_rx_hist_swap(h, 2, 3);
|
|
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
|
|
h->loss_count = 3;
|
|
return 1;
|
|
}
|
|
|
|
/* S0 < S3 < S1 */
|
|
d31 = -d13;
|
|
d3 = dccp_delta_seqno(s0, s3);
|
|
|
|
if (d3 == 1 || n3 >= d3) { /* S3 is a successor of S0 */
|
|
|
|
if (d31 == 1 || n1 >= d31) {
|
|
/* hole between S0 and S1 filled by S3 */
|
|
int d2 = dccp_delta_seqno(s1, s2),
|
|
n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
|
|
|
|
if (d2 == 1 || n2 >= d2) {
|
|
/* entire hole filled by S0, S3, S1, S2 */
|
|
h->loss_start = tfrc_rx_hist_index(h, 2);
|
|
h->loss_count = 0;
|
|
} else {
|
|
/* gap remains between S1 and S2 */
|
|
h->loss_start = tfrc_rx_hist_index(h, 1);
|
|
h->loss_count = 1;
|
|
}
|
|
|
|
} else /* gap exists between S3 and S1, loss_count stays at 2 */
|
|
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The remaining case: S3 is not a successor of S0.
|
|
* Sequence order is S0, S3, S1, S2; reorder to insert between S0 and S1
|
|
*/
|
|
tfrc_rx_hist_swap(h, 0, 3);
|
|
h->loss_start = tfrc_rx_hist_index(h, 3);
|
|
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
|
|
h->loss_count = 3;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* return the signed modulo-2^48 sequence number distance from entry e1 to e2 */
|
|
static s64 tfrc_rx_hist_delta_seqno(struct tfrc_rx_hist *h, u8 e1, u8 e2)
|
|
{
|
|
DCCP_BUG_ON(e1 > h->loss_count || e2 > h->loss_count);
|
|
|
|
return dccp_delta_seqno(tfrc_rx_hist_entry(h, e1)->tfrchrx_seqno,
|
|
tfrc_rx_hist_entry(h, e2)->tfrchrx_seqno);
|
|
}
|
|
|
|
/* recycle RX history records to continue loss detection if necessary */
|
|
static void __three_after_loss(struct tfrc_rx_hist *h)
|
|
{
|
|
/*
|
|
* The distance between S0 and S1 is always greater than 1 and the NDP
|
|
* count of S1 is smaller than this distance. Otherwise there would
|
|
* have been no loss. Hence it is only necessary to see whether there
|
|
* are further missing data packets between S1/S2 and S2/S3.
|
|
*/
|
|
int d2 = tfrc_rx_hist_delta_seqno(h, 1, 2),
|
|
d3 = tfrc_rx_hist_delta_seqno(h, 2, 3),
|
|
n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
|
|
n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
|
|
|
|
if (d2 == 1 || n2 >= d2) { /* S2 is successor to S1 */
|
|
|
|
if (d3 == 1 || n3 >= d3) {
|
|
/* S3 is successor of S2: entire hole is filled */
|
|
h->loss_start = tfrc_rx_hist_index(h, 3);
|
|
h->loss_count = 0;
|
|
} else {
|
|
/* gap between S2 and S3 */
|
|
h->loss_start = tfrc_rx_hist_index(h, 2);
|
|
h->loss_count = 1;
|
|
}
|
|
|
|
} else { /* gap between S1 and S2 */
|
|
h->loss_start = tfrc_rx_hist_index(h, 1);
|
|
h->loss_count = 2;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tfrc_rx_handle_loss - Loss detection and further processing
|
|
* @h: The non-empty RX history object
|
|
* @lh: Loss Intervals database to update
|
|
* @skb: Currently received packet
|
|
* @ndp: The NDP count belonging to @skb
|
|
* @calc_first_li: Caller-dependent computation of first loss interval in @lh
|
|
* @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
|
|
* Chooses action according to pending loss, updates LI database when a new
|
|
* loss was detected, and does required post-processing. Returns 1 when caller
|
|
* should send feedback, 0 otherwise.
|
|
*/
|
|
int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
|
|
struct tfrc_loss_hist *lh,
|
|
struct sk_buff *skb, u32 ndp,
|
|
u32 (*calc_first_li)(struct sock *), struct sock *sk)
|
|
{
|
|
int is_new_loss = 0;
|
|
|
|
if (h->loss_count == 1) {
|
|
__one_after_loss(h, skb, ndp);
|
|
} else if (h->loss_count != 2) {
|
|
DCCP_BUG("invalid loss_count %d", h->loss_count);
|
|
} else if (__two_after_loss(h, skb, ndp)) {
|
|
/*
|
|
* Update Loss Interval database and recycle RX records
|
|
*/
|
|
is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
|
|
__three_after_loss(h);
|
|
}
|
|
return is_new_loss;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);
|
|
|
|
int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= TFRC_NDUPACK; i++) {
|
|
h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
|
|
if (h->ring[i] == NULL)
|
|
goto out_free;
|
|
}
|
|
|
|
h->loss_count = h->loss_start = 0;
|
|
return 0;
|
|
|
|
out_free:
|
|
while (i-- != 0) {
|
|
kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
|
|
h->ring[i] = NULL;
|
|
}
|
|
return -ENOBUFS;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_rx_hist_alloc);
|
|
|
|
void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= TFRC_NDUPACK; ++i)
|
|
if (h->ring[i] != NULL) {
|
|
kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
|
|
h->ring[i] = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
|
|
|
|
/**
|
|
* tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
|
|
*/
|
|
static inline struct tfrc_rx_hist_entry *
|
|
tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
|
|
{
|
|
return h->ring[0];
|
|
}
|
|
|
|
/**
|
|
* tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
|
|
*/
|
|
static inline struct tfrc_rx_hist_entry *
|
|
tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
|
|
{
|
|
return h->ring[h->rtt_sample_prev];
|
|
}
|
|
|
|
/**
|
|
* tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
|
|
* Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
|
|
* to compute a sample with given data - calling function should check this.
|
|
*/
|
|
u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
|
|
{
|
|
u32 sample = 0,
|
|
delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
|
|
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
|
|
|
|
if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
|
|
if (h->rtt_sample_prev == 2) { /* previous candidate stored */
|
|
sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
|
|
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
|
|
if (sample)
|
|
sample = 4 / sample *
|
|
ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
|
|
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
|
|
else /*
|
|
* FIXME: This condition is in principle not
|
|
* possible but occurs when CCID is used for
|
|
* two-way data traffic. I have tried to trace
|
|
* it, but the cause does not seem to be here.
|
|
*/
|
|
DCCP_BUG("please report to dccp@vger.kernel.org"
|
|
" => prev = %u, last = %u",
|
|
tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
|
|
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
|
|
} else if (delta_v < 1) {
|
|
h->rtt_sample_prev = 1;
|
|
goto keep_ref_for_next_time;
|
|
}
|
|
|
|
} else if (delta_v == 4) /* optimal match */
|
|
sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
|
|
else { /* suboptimal match */
|
|
h->rtt_sample_prev = 2;
|
|
goto keep_ref_for_next_time;
|
|
}
|
|
|
|
if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
|
|
DCCP_WARN("RTT sample %u too large, using max\n", sample);
|
|
sample = DCCP_SANE_RTT_MAX;
|
|
}
|
|
|
|
h->rtt_sample_prev = 0; /* use current entry as next reference */
|
|
keep_ref_for_next_time:
|
|
|
|
return sample;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);
|