mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 06:34:17 +08:00
c1f193a7ae
It didn't handle that case at all, and now dump_stack() can be implemented directly as show_stack(current, NULL) Signed-off-by: David S. Miller <davem@davemloft.net>
2604 lines
75 KiB
C
2604 lines
75 KiB
C
/* $Id: traps.c,v 1.85 2002/02/09 19:49:31 davem Exp $
|
|
* arch/sparc64/kernel/traps.c
|
|
*
|
|
* Copyright (C) 1995,1997 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
|
|
*/
|
|
|
|
/*
|
|
* I like traps on v9, :))))
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kdebug.h>
|
|
|
|
#include <asm/smp.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/system.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/fpumacro.h>
|
|
#include <asm/lsu.h>
|
|
#include <asm/dcu.h>
|
|
#include <asm/estate.h>
|
|
#include <asm/chafsr.h>
|
|
#include <asm/sfafsr.h>
|
|
#include <asm/psrcompat.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/timer.h>
|
|
#include <asm/head.h>
|
|
#ifdef CONFIG_KMOD
|
|
#include <linux/kmod.h>
|
|
#endif
|
|
#include <asm/prom.h>
|
|
|
|
|
|
/* When an irrecoverable trap occurs at tl > 0, the trap entry
|
|
* code logs the trap state registers at every level in the trap
|
|
* stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
|
|
* is as follows:
|
|
*/
|
|
struct tl1_traplog {
|
|
struct {
|
|
unsigned long tstate;
|
|
unsigned long tpc;
|
|
unsigned long tnpc;
|
|
unsigned long tt;
|
|
} trapstack[4];
|
|
unsigned long tl;
|
|
};
|
|
|
|
static void dump_tl1_traplog(struct tl1_traplog *p)
|
|
{
|
|
int i, limit;
|
|
|
|
printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
|
|
"dumping track stack.\n", p->tl);
|
|
|
|
limit = (tlb_type == hypervisor) ? 2 : 4;
|
|
for (i = 0; i < limit; i++) {
|
|
printk(KERN_EMERG
|
|
"TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
|
|
"TNPC[%016lx] TT[%lx]\n",
|
|
i + 1,
|
|
p->trapstack[i].tstate, p->trapstack[i].tpc,
|
|
p->trapstack[i].tnpc, p->trapstack[i].tt);
|
|
print_symbol("TRAPLOG: TPC<%s>\n", p->trapstack[i].tpc);
|
|
}
|
|
}
|
|
|
|
void do_call_debug(struct pt_regs *regs)
|
|
{
|
|
notify_die(DIE_CALL, "debug call", regs, 0, 255, SIGINT);
|
|
}
|
|
|
|
void bad_trap(struct pt_regs *regs, long lvl)
|
|
{
|
|
char buffer[32];
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "bad trap", regs,
|
|
0, lvl, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (lvl < 0x100) {
|
|
sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
|
|
die_if_kernel(buffer, regs);
|
|
}
|
|
|
|
lvl -= 0x100;
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
sprintf(buffer, "Kernel bad sw trap %lx", lvl);
|
|
die_if_kernel(buffer, regs);
|
|
}
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code = ILL_ILLTRP;
|
|
info.si_addr = (void __user *)regs->tpc;
|
|
info.si_trapno = lvl;
|
|
force_sig_info(SIGILL, &info, current);
|
|
}
|
|
|
|
void bad_trap_tl1(struct pt_regs *regs, long lvl)
|
|
{
|
|
char buffer[32];
|
|
|
|
if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
|
|
0, lvl, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
|
|
sprintf (buffer, "Bad trap %lx at tl>0", lvl);
|
|
die_if_kernel (buffer, regs);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_BUGVERBOSE
|
|
void do_BUG(const char *file, int line)
|
|
{
|
|
bust_spinlocks(1);
|
|
printk("kernel BUG at %s:%d!\n", file, line);
|
|
}
|
|
#endif
|
|
|
|
void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "instruction access exception", regs,
|
|
0, 0x8, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
printk("spitfire_insn_access_exception: SFSR[%016lx] "
|
|
"SFAR[%016lx], going.\n", sfsr, sfar);
|
|
die_if_kernel("Iax", regs);
|
|
}
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = SEGV_MAPERR;
|
|
info.si_addr = (void __user *)regs->tpc;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGSEGV, &info, current);
|
|
}
|
|
|
|
void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
|
|
{
|
|
if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
|
|
0, 0x8, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
spitfire_insn_access_exception(regs, sfsr, sfar);
|
|
}
|
|
|
|
void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
|
|
{
|
|
unsigned short type = (type_ctx >> 16);
|
|
unsigned short ctx = (type_ctx & 0xffff);
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "instruction access exception", regs,
|
|
0, 0x8, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
printk("sun4v_insn_access_exception: ADDR[%016lx] "
|
|
"CTX[%04x] TYPE[%04x], going.\n",
|
|
addr, ctx, type);
|
|
die_if_kernel("Iax", regs);
|
|
}
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = SEGV_MAPERR;
|
|
info.si_addr = (void __user *) addr;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGSEGV, &info, current);
|
|
}
|
|
|
|
void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
|
|
{
|
|
if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
|
|
0, 0x8, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
sun4v_insn_access_exception(regs, addr, type_ctx);
|
|
}
|
|
|
|
void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "data access exception", regs,
|
|
0, 0x30, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
/* Test if this comes from uaccess places. */
|
|
const struct exception_table_entry *entry;
|
|
|
|
entry = search_exception_tables(regs->tpc);
|
|
if (entry) {
|
|
/* Ouch, somebody is trying VM hole tricks on us... */
|
|
#ifdef DEBUG_EXCEPTIONS
|
|
printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
|
|
printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
|
|
regs->tpc, entry->fixup);
|
|
#endif
|
|
regs->tpc = entry->fixup;
|
|
regs->tnpc = regs->tpc + 4;
|
|
return;
|
|
}
|
|
/* Shit... */
|
|
printk("spitfire_data_access_exception: SFSR[%016lx] "
|
|
"SFAR[%016lx], going.\n", sfsr, sfar);
|
|
die_if_kernel("Dax", regs);
|
|
}
|
|
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = SEGV_MAPERR;
|
|
info.si_addr = (void __user *)sfar;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGSEGV, &info, current);
|
|
}
|
|
|
|
void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
|
|
{
|
|
if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
|
|
0, 0x30, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
spitfire_data_access_exception(regs, sfsr, sfar);
|
|
}
|
|
|
|
void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
|
|
{
|
|
unsigned short type = (type_ctx >> 16);
|
|
unsigned short ctx = (type_ctx & 0xffff);
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "data access exception", regs,
|
|
0, 0x8, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
printk("sun4v_data_access_exception: ADDR[%016lx] "
|
|
"CTX[%04x] TYPE[%04x], going.\n",
|
|
addr, ctx, type);
|
|
die_if_kernel("Dax", regs);
|
|
}
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = SEGV_MAPERR;
|
|
info.si_addr = (void __user *) addr;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGSEGV, &info, current);
|
|
}
|
|
|
|
void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
|
|
{
|
|
if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
|
|
0, 0x8, SIGTRAP) == NOTIFY_STOP)
|
|
return;
|
|
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
sun4v_data_access_exception(regs, addr, type_ctx);
|
|
}
|
|
|
|
#ifdef CONFIG_PCI
|
|
/* This is really pathetic... */
|
|
extern volatile int pci_poke_in_progress;
|
|
extern volatile int pci_poke_cpu;
|
|
extern volatile int pci_poke_faulted;
|
|
#endif
|
|
|
|
/* When access exceptions happen, we must do this. */
|
|
static void spitfire_clean_and_reenable_l1_caches(void)
|
|
{
|
|
unsigned long va;
|
|
|
|
if (tlb_type != spitfire)
|
|
BUG();
|
|
|
|
/* Clean 'em. */
|
|
for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
|
|
spitfire_put_icache_tag(va, 0x0);
|
|
spitfire_put_dcache_tag(va, 0x0);
|
|
}
|
|
|
|
/* Re-enable in LSU. */
|
|
__asm__ __volatile__("flush %%g6\n\t"
|
|
"membar #Sync\n\t"
|
|
"stxa %0, [%%g0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
|
|
LSU_CONTROL_IM | LSU_CONTROL_DM),
|
|
"i" (ASI_LSU_CONTROL)
|
|
: "memory");
|
|
}
|
|
|
|
static void spitfire_enable_estate_errors(void)
|
|
{
|
|
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (ESTATE_ERR_ALL),
|
|
"i" (ASI_ESTATE_ERROR_EN));
|
|
}
|
|
|
|
static char ecc_syndrome_table[] = {
|
|
0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
|
|
0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
|
|
0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
|
|
0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
|
|
0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
|
|
0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
|
|
0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
|
|
0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
|
|
0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
|
|
0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
|
|
0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
|
|
0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
|
|
0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
|
|
0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
|
|
0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
|
|
0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
|
|
0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
|
|
0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
|
|
0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
|
|
0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
|
|
0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
|
|
0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
|
|
0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
|
|
0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
|
|
0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
|
|
0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
|
|
0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
|
|
0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
|
|
0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
|
|
0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
|
|
0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
|
|
0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
|
|
};
|
|
|
|
static char *syndrome_unknown = "<Unknown>";
|
|
|
|
static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
|
|
{
|
|
unsigned short scode;
|
|
char memmod_str[64], *p;
|
|
|
|
if (udbl & bit) {
|
|
scode = ecc_syndrome_table[udbl & 0xff];
|
|
if (prom_getunumber(scode, afar,
|
|
memmod_str, sizeof(memmod_str)) == -1)
|
|
p = syndrome_unknown;
|
|
else
|
|
p = memmod_str;
|
|
printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
|
|
"Memory Module \"%s\"\n",
|
|
smp_processor_id(), scode, p);
|
|
}
|
|
|
|
if (udbh & bit) {
|
|
scode = ecc_syndrome_table[udbh & 0xff];
|
|
if (prom_getunumber(scode, afar,
|
|
memmod_str, sizeof(memmod_str)) == -1)
|
|
p = syndrome_unknown;
|
|
else
|
|
p = memmod_str;
|
|
printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
|
|
"Memory Module \"%s\"\n",
|
|
smp_processor_id(), scode, p);
|
|
}
|
|
|
|
}
|
|
|
|
static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
|
|
{
|
|
|
|
printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
|
|
"AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
|
|
smp_processor_id(), afsr, afar, udbl, udbh, tl1);
|
|
|
|
spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
|
|
|
|
/* We always log it, even if someone is listening for this
|
|
* trap.
|
|
*/
|
|
notify_die(DIE_TRAP, "Correctable ECC Error", regs,
|
|
0, TRAP_TYPE_CEE, SIGTRAP);
|
|
|
|
/* The Correctable ECC Error trap does not disable I/D caches. So
|
|
* we only have to restore the ESTATE Error Enable register.
|
|
*/
|
|
spitfire_enable_estate_errors();
|
|
}
|
|
|
|
static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
|
|
"AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
|
|
smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
|
|
|
|
/* XXX add more human friendly logging of the error status
|
|
* XXX as is implemented for cheetah
|
|
*/
|
|
|
|
spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
|
|
|
|
/* We always log it, even if someone is listening for this
|
|
* trap.
|
|
*/
|
|
notify_die(DIE_TRAP, "Uncorrectable Error", regs,
|
|
0, tt, SIGTRAP);
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
if (tl1)
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("UE", regs);
|
|
}
|
|
|
|
/* XXX need more intelligent processing here, such as is implemented
|
|
* XXX for cheetah errors, in fact if the E-cache still holds the
|
|
* XXX line with bad parity this will loop
|
|
*/
|
|
|
|
spitfire_clean_and_reenable_l1_caches();
|
|
spitfire_enable_estate_errors();
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_OBJERR;
|
|
info.si_addr = (void *)0;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGBUS, &info, current);
|
|
}
|
|
|
|
void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
|
|
{
|
|
unsigned long afsr, tt, udbh, udbl;
|
|
int tl1;
|
|
|
|
afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
|
|
tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
|
|
tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
|
|
udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
|
|
udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
|
|
|
|
#ifdef CONFIG_PCI
|
|
if (tt == TRAP_TYPE_DAE &&
|
|
pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
|
|
spitfire_clean_and_reenable_l1_caches();
|
|
spitfire_enable_estate_errors();
|
|
|
|
pci_poke_faulted = 1;
|
|
regs->tnpc = regs->tpc + 4;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (afsr & SFAFSR_UE)
|
|
spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
|
|
|
|
if (tt == TRAP_TYPE_CEE) {
|
|
/* Handle the case where we took a CEE trap, but ACK'd
|
|
* only the UE state in the UDB error registers.
|
|
*/
|
|
if (afsr & SFAFSR_UE) {
|
|
if (udbh & UDBE_CE) {
|
|
__asm__ __volatile__(
|
|
"stxa %0, [%1] %2\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (udbh & UDBE_CE),
|
|
"r" (0x0), "i" (ASI_UDB_ERROR_W));
|
|
}
|
|
if (udbl & UDBE_CE) {
|
|
__asm__ __volatile__(
|
|
"stxa %0, [%1] %2\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (udbl & UDBE_CE),
|
|
"r" (0x18), "i" (ASI_UDB_ERROR_W));
|
|
}
|
|
}
|
|
|
|
spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
|
|
}
|
|
}
|
|
|
|
int cheetah_pcache_forced_on;
|
|
|
|
void cheetah_enable_pcache(void)
|
|
{
|
|
unsigned long dcr;
|
|
|
|
printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
|
|
smp_processor_id());
|
|
|
|
__asm__ __volatile__("ldxa [%%g0] %1, %0"
|
|
: "=r" (dcr)
|
|
: "i" (ASI_DCU_CONTROL_REG));
|
|
dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
|
|
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
|
|
}
|
|
|
|
/* Cheetah error trap handling. */
|
|
static unsigned long ecache_flush_physbase;
|
|
static unsigned long ecache_flush_linesize;
|
|
static unsigned long ecache_flush_size;
|
|
|
|
/* WARNING: The error trap handlers in assembly know the precise
|
|
* layout of the following structure.
|
|
*
|
|
* C-level handlers below use this information to log the error
|
|
* and then determine how to recover (if possible).
|
|
*/
|
|
struct cheetah_err_info {
|
|
/*0x00*/u64 afsr;
|
|
/*0x08*/u64 afar;
|
|
|
|
/* D-cache state */
|
|
/*0x10*/u64 dcache_data[4]; /* The actual data */
|
|
/*0x30*/u64 dcache_index; /* D-cache index */
|
|
/*0x38*/u64 dcache_tag; /* D-cache tag/valid */
|
|
/*0x40*/u64 dcache_utag; /* D-cache microtag */
|
|
/*0x48*/u64 dcache_stag; /* D-cache snooptag */
|
|
|
|
/* I-cache state */
|
|
/*0x50*/u64 icache_data[8]; /* The actual insns + predecode */
|
|
/*0x90*/u64 icache_index; /* I-cache index */
|
|
/*0x98*/u64 icache_tag; /* I-cache phys tag */
|
|
/*0xa0*/u64 icache_utag; /* I-cache microtag */
|
|
/*0xa8*/u64 icache_stag; /* I-cache snooptag */
|
|
/*0xb0*/u64 icache_upper; /* I-cache upper-tag */
|
|
/*0xb8*/u64 icache_lower; /* I-cache lower-tag */
|
|
|
|
/* E-cache state */
|
|
/*0xc0*/u64 ecache_data[4]; /* 32 bytes from staging registers */
|
|
/*0xe0*/u64 ecache_index; /* E-cache index */
|
|
/*0xe8*/u64 ecache_tag; /* E-cache tag/state */
|
|
|
|
/*0xf0*/u64 __pad[32 - 30];
|
|
};
|
|
#define CHAFSR_INVALID ((u64)-1L)
|
|
|
|
/* This table is ordered in priority of errors and matches the
|
|
* AFAR overwrite policy as well.
|
|
*/
|
|
|
|
struct afsr_error_table {
|
|
unsigned long mask;
|
|
const char *name;
|
|
};
|
|
|
|
static const char CHAFSR_PERR_msg[] =
|
|
"System interface protocol error";
|
|
static const char CHAFSR_IERR_msg[] =
|
|
"Internal processor error";
|
|
static const char CHAFSR_ISAP_msg[] =
|
|
"System request parity error on incoming addresss";
|
|
static const char CHAFSR_UCU_msg[] =
|
|
"Uncorrectable E-cache ECC error for ifetch/data";
|
|
static const char CHAFSR_UCC_msg[] =
|
|
"SW Correctable E-cache ECC error for ifetch/data";
|
|
static const char CHAFSR_UE_msg[] =
|
|
"Uncorrectable system bus data ECC error for read";
|
|
static const char CHAFSR_EDU_msg[] =
|
|
"Uncorrectable E-cache ECC error for stmerge/blkld";
|
|
static const char CHAFSR_EMU_msg[] =
|
|
"Uncorrectable system bus MTAG error";
|
|
static const char CHAFSR_WDU_msg[] =
|
|
"Uncorrectable E-cache ECC error for writeback";
|
|
static const char CHAFSR_CPU_msg[] =
|
|
"Uncorrectable ECC error for copyout";
|
|
static const char CHAFSR_CE_msg[] =
|
|
"HW corrected system bus data ECC error for read";
|
|
static const char CHAFSR_EDC_msg[] =
|
|
"HW corrected E-cache ECC error for stmerge/blkld";
|
|
static const char CHAFSR_EMC_msg[] =
|
|
"HW corrected system bus MTAG ECC error";
|
|
static const char CHAFSR_WDC_msg[] =
|
|
"HW corrected E-cache ECC error for writeback";
|
|
static const char CHAFSR_CPC_msg[] =
|
|
"HW corrected ECC error for copyout";
|
|
static const char CHAFSR_TO_msg[] =
|
|
"Unmapped error from system bus";
|
|
static const char CHAFSR_BERR_msg[] =
|
|
"Bus error response from system bus";
|
|
static const char CHAFSR_IVC_msg[] =
|
|
"HW corrected system bus data ECC error for ivec read";
|
|
static const char CHAFSR_IVU_msg[] =
|
|
"Uncorrectable system bus data ECC error for ivec read";
|
|
static struct afsr_error_table __cheetah_error_table[] = {
|
|
{ CHAFSR_PERR, CHAFSR_PERR_msg },
|
|
{ CHAFSR_IERR, CHAFSR_IERR_msg },
|
|
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
|
|
{ CHAFSR_UCU, CHAFSR_UCU_msg },
|
|
{ CHAFSR_UCC, CHAFSR_UCC_msg },
|
|
{ CHAFSR_UE, CHAFSR_UE_msg },
|
|
{ CHAFSR_EDU, CHAFSR_EDU_msg },
|
|
{ CHAFSR_EMU, CHAFSR_EMU_msg },
|
|
{ CHAFSR_WDU, CHAFSR_WDU_msg },
|
|
{ CHAFSR_CPU, CHAFSR_CPU_msg },
|
|
{ CHAFSR_CE, CHAFSR_CE_msg },
|
|
{ CHAFSR_EDC, CHAFSR_EDC_msg },
|
|
{ CHAFSR_EMC, CHAFSR_EMC_msg },
|
|
{ CHAFSR_WDC, CHAFSR_WDC_msg },
|
|
{ CHAFSR_CPC, CHAFSR_CPC_msg },
|
|
{ CHAFSR_TO, CHAFSR_TO_msg },
|
|
{ CHAFSR_BERR, CHAFSR_BERR_msg },
|
|
/* These two do not update the AFAR. */
|
|
{ CHAFSR_IVC, CHAFSR_IVC_msg },
|
|
{ CHAFSR_IVU, CHAFSR_IVU_msg },
|
|
{ 0, NULL },
|
|
};
|
|
static const char CHPAFSR_DTO_msg[] =
|
|
"System bus unmapped error for prefetch/storequeue-read";
|
|
static const char CHPAFSR_DBERR_msg[] =
|
|
"System bus error for prefetch/storequeue-read";
|
|
static const char CHPAFSR_THCE_msg[] =
|
|
"Hardware corrected E-cache Tag ECC error";
|
|
static const char CHPAFSR_TSCE_msg[] =
|
|
"SW handled correctable E-cache Tag ECC error";
|
|
static const char CHPAFSR_TUE_msg[] =
|
|
"Uncorrectable E-cache Tag ECC error";
|
|
static const char CHPAFSR_DUE_msg[] =
|
|
"System bus uncorrectable data ECC error due to prefetch/store-fill";
|
|
static struct afsr_error_table __cheetah_plus_error_table[] = {
|
|
{ CHAFSR_PERR, CHAFSR_PERR_msg },
|
|
{ CHAFSR_IERR, CHAFSR_IERR_msg },
|
|
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
|
|
{ CHAFSR_UCU, CHAFSR_UCU_msg },
|
|
{ CHAFSR_UCC, CHAFSR_UCC_msg },
|
|
{ CHAFSR_UE, CHAFSR_UE_msg },
|
|
{ CHAFSR_EDU, CHAFSR_EDU_msg },
|
|
{ CHAFSR_EMU, CHAFSR_EMU_msg },
|
|
{ CHAFSR_WDU, CHAFSR_WDU_msg },
|
|
{ CHAFSR_CPU, CHAFSR_CPU_msg },
|
|
{ CHAFSR_CE, CHAFSR_CE_msg },
|
|
{ CHAFSR_EDC, CHAFSR_EDC_msg },
|
|
{ CHAFSR_EMC, CHAFSR_EMC_msg },
|
|
{ CHAFSR_WDC, CHAFSR_WDC_msg },
|
|
{ CHAFSR_CPC, CHAFSR_CPC_msg },
|
|
{ CHAFSR_TO, CHAFSR_TO_msg },
|
|
{ CHAFSR_BERR, CHAFSR_BERR_msg },
|
|
{ CHPAFSR_DTO, CHPAFSR_DTO_msg },
|
|
{ CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
|
|
{ CHPAFSR_THCE, CHPAFSR_THCE_msg },
|
|
{ CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
|
|
{ CHPAFSR_TUE, CHPAFSR_TUE_msg },
|
|
{ CHPAFSR_DUE, CHPAFSR_DUE_msg },
|
|
/* These two do not update the AFAR. */
|
|
{ CHAFSR_IVC, CHAFSR_IVC_msg },
|
|
{ CHAFSR_IVU, CHAFSR_IVU_msg },
|
|
{ 0, NULL },
|
|
};
|
|
static const char JPAFSR_JETO_msg[] =
|
|
"System interface protocol error, hw timeout caused";
|
|
static const char JPAFSR_SCE_msg[] =
|
|
"Parity error on system snoop results";
|
|
static const char JPAFSR_JEIC_msg[] =
|
|
"System interface protocol error, illegal command detected";
|
|
static const char JPAFSR_JEIT_msg[] =
|
|
"System interface protocol error, illegal ADTYPE detected";
|
|
static const char JPAFSR_OM_msg[] =
|
|
"Out of range memory error has occurred";
|
|
static const char JPAFSR_ETP_msg[] =
|
|
"Parity error on L2 cache tag SRAM";
|
|
static const char JPAFSR_UMS_msg[] =
|
|
"Error due to unsupported store";
|
|
static const char JPAFSR_RUE_msg[] =
|
|
"Uncorrectable ECC error from remote cache/memory";
|
|
static const char JPAFSR_RCE_msg[] =
|
|
"Correctable ECC error from remote cache/memory";
|
|
static const char JPAFSR_BP_msg[] =
|
|
"JBUS parity error on returned read data";
|
|
static const char JPAFSR_WBP_msg[] =
|
|
"JBUS parity error on data for writeback or block store";
|
|
static const char JPAFSR_FRC_msg[] =
|
|
"Foreign read to DRAM incurring correctable ECC error";
|
|
static const char JPAFSR_FRU_msg[] =
|
|
"Foreign read to DRAM incurring uncorrectable ECC error";
|
|
static struct afsr_error_table __jalapeno_error_table[] = {
|
|
{ JPAFSR_JETO, JPAFSR_JETO_msg },
|
|
{ JPAFSR_SCE, JPAFSR_SCE_msg },
|
|
{ JPAFSR_JEIC, JPAFSR_JEIC_msg },
|
|
{ JPAFSR_JEIT, JPAFSR_JEIT_msg },
|
|
{ CHAFSR_PERR, CHAFSR_PERR_msg },
|
|
{ CHAFSR_IERR, CHAFSR_IERR_msg },
|
|
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
|
|
{ CHAFSR_UCU, CHAFSR_UCU_msg },
|
|
{ CHAFSR_UCC, CHAFSR_UCC_msg },
|
|
{ CHAFSR_UE, CHAFSR_UE_msg },
|
|
{ CHAFSR_EDU, CHAFSR_EDU_msg },
|
|
{ JPAFSR_OM, JPAFSR_OM_msg },
|
|
{ CHAFSR_WDU, CHAFSR_WDU_msg },
|
|
{ CHAFSR_CPU, CHAFSR_CPU_msg },
|
|
{ CHAFSR_CE, CHAFSR_CE_msg },
|
|
{ CHAFSR_EDC, CHAFSR_EDC_msg },
|
|
{ JPAFSR_ETP, JPAFSR_ETP_msg },
|
|
{ CHAFSR_WDC, CHAFSR_WDC_msg },
|
|
{ CHAFSR_CPC, CHAFSR_CPC_msg },
|
|
{ CHAFSR_TO, CHAFSR_TO_msg },
|
|
{ CHAFSR_BERR, CHAFSR_BERR_msg },
|
|
{ JPAFSR_UMS, JPAFSR_UMS_msg },
|
|
{ JPAFSR_RUE, JPAFSR_RUE_msg },
|
|
{ JPAFSR_RCE, JPAFSR_RCE_msg },
|
|
{ JPAFSR_BP, JPAFSR_BP_msg },
|
|
{ JPAFSR_WBP, JPAFSR_WBP_msg },
|
|
{ JPAFSR_FRC, JPAFSR_FRC_msg },
|
|
{ JPAFSR_FRU, JPAFSR_FRU_msg },
|
|
/* These two do not update the AFAR. */
|
|
{ CHAFSR_IVU, CHAFSR_IVU_msg },
|
|
{ 0, NULL },
|
|
};
|
|
static struct afsr_error_table *cheetah_error_table;
|
|
static unsigned long cheetah_afsr_errors;
|
|
|
|
/* This is allocated at boot time based upon the largest hardware
|
|
* cpu ID in the system. We allocate two entries per cpu, one for
|
|
* TL==0 logging and one for TL >= 1 logging.
|
|
*/
|
|
struct cheetah_err_info *cheetah_error_log;
|
|
|
|
static __inline__ struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
|
|
{
|
|
struct cheetah_err_info *p;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!cheetah_error_log)
|
|
return NULL;
|
|
|
|
p = cheetah_error_log + (cpu * 2);
|
|
if ((afsr & CHAFSR_TL1) != 0UL)
|
|
p++;
|
|
|
|
return p;
|
|
}
|
|
|
|
extern unsigned int tl0_icpe[], tl1_icpe[];
|
|
extern unsigned int tl0_dcpe[], tl1_dcpe[];
|
|
extern unsigned int tl0_fecc[], tl1_fecc[];
|
|
extern unsigned int tl0_cee[], tl1_cee[];
|
|
extern unsigned int tl0_iae[], tl1_iae[];
|
|
extern unsigned int tl0_dae[], tl1_dae[];
|
|
extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
|
|
extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
|
|
extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
|
|
extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
|
|
extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
|
|
|
|
void __init cheetah_ecache_flush_init(void)
|
|
{
|
|
unsigned long largest_size, smallest_linesize, order, ver;
|
|
int i, sz;
|
|
|
|
/* Scan all cpu device tree nodes, note two values:
|
|
* 1) largest E-cache size
|
|
* 2) smallest E-cache line size
|
|
*/
|
|
largest_size = 0UL;
|
|
smallest_linesize = ~0UL;
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
unsigned long val;
|
|
|
|
val = cpu_data(i).ecache_size;
|
|
if (!val)
|
|
continue;
|
|
|
|
if (val > largest_size)
|
|
largest_size = val;
|
|
|
|
val = cpu_data(i).ecache_line_size;
|
|
if (val < smallest_linesize)
|
|
smallest_linesize = val;
|
|
|
|
}
|
|
|
|
if (largest_size == 0UL || smallest_linesize == ~0UL) {
|
|
prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
|
|
"parameters.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
ecache_flush_size = (2 * largest_size);
|
|
ecache_flush_linesize = smallest_linesize;
|
|
|
|
ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
|
|
|
|
if (ecache_flush_physbase == ~0UL) {
|
|
prom_printf("cheetah_ecache_flush_init: Cannot find %d byte "
|
|
"contiguous physical memory.\n",
|
|
ecache_flush_size);
|
|
prom_halt();
|
|
}
|
|
|
|
/* Now allocate error trap reporting scoreboard. */
|
|
sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
|
|
for (order = 0; order < MAX_ORDER; order++) {
|
|
if ((PAGE_SIZE << order) >= sz)
|
|
break;
|
|
}
|
|
cheetah_error_log = (struct cheetah_err_info *)
|
|
__get_free_pages(GFP_KERNEL, order);
|
|
if (!cheetah_error_log) {
|
|
prom_printf("cheetah_ecache_flush_init: Failed to allocate "
|
|
"error logging scoreboard (%d bytes).\n", sz);
|
|
prom_halt();
|
|
}
|
|
memset(cheetah_error_log, 0, PAGE_SIZE << order);
|
|
|
|
/* Mark all AFSRs as invalid so that the trap handler will
|
|
* log new new information there.
|
|
*/
|
|
for (i = 0; i < 2 * NR_CPUS; i++)
|
|
cheetah_error_log[i].afsr = CHAFSR_INVALID;
|
|
|
|
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
|
|
if ((ver >> 32) == __JALAPENO_ID ||
|
|
(ver >> 32) == __SERRANO_ID) {
|
|
cheetah_error_table = &__jalapeno_error_table[0];
|
|
cheetah_afsr_errors = JPAFSR_ERRORS;
|
|
} else if ((ver >> 32) == 0x003e0015) {
|
|
cheetah_error_table = &__cheetah_plus_error_table[0];
|
|
cheetah_afsr_errors = CHPAFSR_ERRORS;
|
|
} else {
|
|
cheetah_error_table = &__cheetah_error_table[0];
|
|
cheetah_afsr_errors = CHAFSR_ERRORS;
|
|
}
|
|
|
|
/* Now patch trap tables. */
|
|
memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
|
|
memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
|
|
memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
|
|
memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
|
|
memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
|
|
memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
|
|
memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
|
|
memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
|
|
if (tlb_type == cheetah_plus) {
|
|
memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
|
|
memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
|
|
memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
|
|
memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
|
|
}
|
|
flushi(PAGE_OFFSET);
|
|
}
|
|
|
|
static void cheetah_flush_ecache(void)
|
|
{
|
|
unsigned long flush_base = ecache_flush_physbase;
|
|
unsigned long flush_linesize = ecache_flush_linesize;
|
|
unsigned long flush_size = ecache_flush_size;
|
|
|
|
__asm__ __volatile__("1: subcc %0, %4, %0\n\t"
|
|
" bne,pt %%xcc, 1b\n\t"
|
|
" ldxa [%2 + %0] %3, %%g0\n\t"
|
|
: "=&r" (flush_size)
|
|
: "0" (flush_size), "r" (flush_base),
|
|
"i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
|
|
}
|
|
|
|
static void cheetah_flush_ecache_line(unsigned long physaddr)
|
|
{
|
|
unsigned long alias;
|
|
|
|
physaddr &= ~(8UL - 1UL);
|
|
physaddr = (ecache_flush_physbase +
|
|
(physaddr & ((ecache_flush_size>>1UL) - 1UL)));
|
|
alias = physaddr + (ecache_flush_size >> 1UL);
|
|
__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
|
|
"ldxa [%1] %2, %%g0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (physaddr), "r" (alias),
|
|
"i" (ASI_PHYS_USE_EC));
|
|
}
|
|
|
|
/* Unfortunately, the diagnostic access to the I-cache tags we need to
|
|
* use to clear the thing interferes with I-cache coherency transactions.
|
|
*
|
|
* So we must only flush the I-cache when it is disabled.
|
|
*/
|
|
static void __cheetah_flush_icache(void)
|
|
{
|
|
unsigned int icache_size, icache_line_size;
|
|
unsigned long addr;
|
|
|
|
icache_size = local_cpu_data().icache_size;
|
|
icache_line_size = local_cpu_data().icache_line_size;
|
|
|
|
/* Clear the valid bits in all the tags. */
|
|
for (addr = 0; addr < icache_size; addr += icache_line_size) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (addr | (2 << 3)),
|
|
"i" (ASI_IC_TAG));
|
|
}
|
|
}
|
|
|
|
static void cheetah_flush_icache(void)
|
|
{
|
|
unsigned long dcu_save;
|
|
|
|
/* Save current DCU, disable I-cache. */
|
|
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
|
|
"or %0, %2, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %1\n\t"
|
|
"membar #Sync"
|
|
: "=r" (dcu_save)
|
|
: "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
|
|
: "g1");
|
|
|
|
__cheetah_flush_icache();
|
|
|
|
/* Restore DCU register */
|
|
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
|
|
}
|
|
|
|
static void cheetah_flush_dcache(void)
|
|
{
|
|
unsigned int dcache_size, dcache_line_size;
|
|
unsigned long addr;
|
|
|
|
dcache_size = local_cpu_data().dcache_size;
|
|
dcache_line_size = local_cpu_data().dcache_line_size;
|
|
|
|
for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (addr), "i" (ASI_DCACHE_TAG));
|
|
}
|
|
}
|
|
|
|
/* In order to make the even parity correct we must do two things.
|
|
* First, we clear DC_data_parity and set DC_utag to an appropriate value.
|
|
* Next, we clear out all 32-bytes of data for that line. Data of
|
|
* all-zero + tag parity value of zero == correct parity.
|
|
*/
|
|
static void cheetah_plus_zap_dcache_parity(void)
|
|
{
|
|
unsigned int dcache_size, dcache_line_size;
|
|
unsigned long addr;
|
|
|
|
dcache_size = local_cpu_data().dcache_size;
|
|
dcache_line_size = local_cpu_data().dcache_line_size;
|
|
|
|
for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
|
|
unsigned long tag = (addr >> 14);
|
|
unsigned long line;
|
|
|
|
__asm__ __volatile__("membar #Sync\n\t"
|
|
"stxa %0, [%1] %2\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (tag), "r" (addr),
|
|
"i" (ASI_DCACHE_UTAG));
|
|
for (line = addr; line < addr + dcache_line_size; line += 8)
|
|
__asm__ __volatile__("membar #Sync\n\t"
|
|
"stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (line),
|
|
"i" (ASI_DCACHE_DATA));
|
|
}
|
|
}
|
|
|
|
/* Conversion tables used to frob Cheetah AFSR syndrome values into
|
|
* something palatable to the memory controller driver get_unumber
|
|
* routine.
|
|
*/
|
|
#define MT0 137
|
|
#define MT1 138
|
|
#define MT2 139
|
|
#define NONE 254
|
|
#define MTC0 140
|
|
#define MTC1 141
|
|
#define MTC2 142
|
|
#define MTC3 143
|
|
#define C0 128
|
|
#define C1 129
|
|
#define C2 130
|
|
#define C3 131
|
|
#define C4 132
|
|
#define C5 133
|
|
#define C6 134
|
|
#define C7 135
|
|
#define C8 136
|
|
#define M2 144
|
|
#define M3 145
|
|
#define M4 146
|
|
#define M 147
|
|
static unsigned char cheetah_ecc_syntab[] = {
|
|
/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
|
|
/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
|
|
/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
|
|
/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
|
|
/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
|
|
/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
|
|
/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
|
|
/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
|
|
/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
|
|
/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
|
|
/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
|
|
/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
|
|
/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
|
|
/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
|
|
/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
|
|
/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
|
|
/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
|
|
/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
|
|
/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
|
|
/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
|
|
/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
|
|
/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
|
|
/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
|
|
/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
|
|
/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
|
|
/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
|
|
/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
|
|
/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
|
|
/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
|
|
/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
|
|
/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
|
|
/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
|
|
};
|
|
static unsigned char cheetah_mtag_syntab[] = {
|
|
NONE, MTC0,
|
|
MTC1, NONE,
|
|
MTC2, NONE,
|
|
NONE, MT0,
|
|
MTC3, NONE,
|
|
NONE, MT1,
|
|
NONE, MT2,
|
|
NONE, NONE
|
|
};
|
|
|
|
/* Return the highest priority error conditon mentioned. */
|
|
static __inline__ unsigned long cheetah_get_hipri(unsigned long afsr)
|
|
{
|
|
unsigned long tmp = 0;
|
|
int i;
|
|
|
|
for (i = 0; cheetah_error_table[i].mask; i++) {
|
|
if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
|
|
return tmp;
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
static const char *cheetah_get_string(unsigned long bit)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; cheetah_error_table[i].mask; i++) {
|
|
if ((bit & cheetah_error_table[i].mask) != 0UL)
|
|
return cheetah_error_table[i].name;
|
|
}
|
|
return "???";
|
|
}
|
|
|
|
extern int chmc_getunumber(int, unsigned long, char *, int);
|
|
|
|
static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
|
|
unsigned long afsr, unsigned long afar, int recoverable)
|
|
{
|
|
unsigned long hipri;
|
|
char unum[256];
|
|
|
|
printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
afsr, afar,
|
|
(afsr & CHAFSR_TL1) ? 1 : 0);
|
|
printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
|
|
printk("%s" "ERROR(%d): ",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
|
|
print_symbol("TPC<%s>\n", regs->tpc);
|
|
printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
(afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
|
|
(afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
|
|
(afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
|
|
(afsr & CHAFSR_PRIV) ? ", Privileged" : "");
|
|
hipri = cheetah_get_hipri(afsr);
|
|
printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
hipri, cheetah_get_string(hipri));
|
|
|
|
/* Try to get unumber if relevant. */
|
|
#define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
|
|
CHAFSR_CPC | CHAFSR_CPU | \
|
|
CHAFSR_UE | CHAFSR_CE | \
|
|
CHAFSR_EDC | CHAFSR_EDU | \
|
|
CHAFSR_UCC | CHAFSR_UCU | \
|
|
CHAFSR_WDU | CHAFSR_WDC)
|
|
#define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
|
|
if (afsr & ESYND_ERRORS) {
|
|
int syndrome;
|
|
int ret;
|
|
|
|
syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
|
|
syndrome = cheetah_ecc_syntab[syndrome];
|
|
ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum));
|
|
if (ret != -1)
|
|
printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT),
|
|
smp_processor_id(), unum);
|
|
} else if (afsr & MSYND_ERRORS) {
|
|
int syndrome;
|
|
int ret;
|
|
|
|
syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
|
|
syndrome = cheetah_mtag_syntab[syndrome];
|
|
ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum));
|
|
if (ret != -1)
|
|
printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT),
|
|
smp_processor_id(), unum);
|
|
}
|
|
|
|
/* Now dump the cache snapshots. */
|
|
printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
(int) info->dcache_index,
|
|
info->dcache_tag,
|
|
info->dcache_utag,
|
|
info->dcache_stag);
|
|
printk("%s" "ERROR(%d): D-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
info->dcache_data[0],
|
|
info->dcache_data[1],
|
|
info->dcache_data[2],
|
|
info->dcache_data[3]);
|
|
printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx] "
|
|
"u[%016lx] l[%016lx]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
(int) info->icache_index,
|
|
info->icache_tag,
|
|
info->icache_utag,
|
|
info->icache_stag,
|
|
info->icache_upper,
|
|
info->icache_lower);
|
|
printk("%s" "ERROR(%d): I-cache INSN0[%016lx] INSN1[%016lx] INSN2[%016lx] INSN3[%016lx]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
info->icache_data[0],
|
|
info->icache_data[1],
|
|
info->icache_data[2],
|
|
info->icache_data[3]);
|
|
printk("%s" "ERROR(%d): I-cache INSN4[%016lx] INSN5[%016lx] INSN6[%016lx] INSN7[%016lx]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
info->icache_data[4],
|
|
info->icache_data[5],
|
|
info->icache_data[6],
|
|
info->icache_data[7]);
|
|
printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016lx]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
(int) info->ecache_index, info->ecache_tag);
|
|
printk("%s" "ERROR(%d): E-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
|
|
info->ecache_data[0],
|
|
info->ecache_data[1],
|
|
info->ecache_data[2],
|
|
info->ecache_data[3]);
|
|
|
|
afsr = (afsr & ~hipri) & cheetah_afsr_errors;
|
|
while (afsr != 0UL) {
|
|
unsigned long bit = cheetah_get_hipri(afsr);
|
|
|
|
printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
|
|
(recoverable ? KERN_WARNING : KERN_CRIT),
|
|
bit, cheetah_get_string(bit));
|
|
|
|
afsr &= ~bit;
|
|
}
|
|
|
|
if (!recoverable)
|
|
printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
|
|
}
|
|
|
|
static int cheetah_recheck_errors(struct cheetah_err_info *logp)
|
|
{
|
|
unsigned long afsr, afar;
|
|
int ret = 0;
|
|
|
|
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
|
|
: "=r" (afsr)
|
|
: "i" (ASI_AFSR));
|
|
if ((afsr & cheetah_afsr_errors) != 0) {
|
|
if (logp != NULL) {
|
|
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
|
|
: "=r" (afar)
|
|
: "i" (ASI_AFAR));
|
|
logp->afsr = afsr;
|
|
logp->afar = afar;
|
|
}
|
|
ret = 1;
|
|
}
|
|
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
|
|
"membar #Sync\n\t"
|
|
: : "r" (afsr), "i" (ASI_AFSR));
|
|
|
|
return ret;
|
|
}
|
|
|
|
void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
|
|
{
|
|
struct cheetah_err_info local_snapshot, *p;
|
|
int recoverable;
|
|
|
|
/* Flush E-cache */
|
|
cheetah_flush_ecache();
|
|
|
|
p = cheetah_get_error_log(afsr);
|
|
if (!p) {
|
|
prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
|
|
afsr, afar);
|
|
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
|
|
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
|
|
prom_halt();
|
|
}
|
|
|
|
/* Grab snapshot of logged error. */
|
|
memcpy(&local_snapshot, p, sizeof(local_snapshot));
|
|
|
|
/* If the current trap snapshot does not match what the
|
|
* trap handler passed along into our args, big trouble.
|
|
* In such a case, mark the local copy as invalid.
|
|
*
|
|
* Else, it matches and we mark the afsr in the non-local
|
|
* copy as invalid so we may log new error traps there.
|
|
*/
|
|
if (p->afsr != afsr || p->afar != afar)
|
|
local_snapshot.afsr = CHAFSR_INVALID;
|
|
else
|
|
p->afsr = CHAFSR_INVALID;
|
|
|
|
cheetah_flush_icache();
|
|
cheetah_flush_dcache();
|
|
|
|
/* Re-enable I-cache/D-cache */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_DCU_CONTROL_REG),
|
|
"i" (DCU_DC | DCU_IC)
|
|
: "g1");
|
|
|
|
/* Re-enable error reporting */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_ESTATE_ERROR_EN),
|
|
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
|
|
: "g1");
|
|
|
|
/* Decide if we can continue after handling this trap and
|
|
* logging the error.
|
|
*/
|
|
recoverable = 1;
|
|
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
|
|
recoverable = 0;
|
|
|
|
/* Re-check AFSR/AFAR. What we are looking for here is whether a new
|
|
* error was logged while we had error reporting traps disabled.
|
|
*/
|
|
if (cheetah_recheck_errors(&local_snapshot)) {
|
|
unsigned long new_afsr = local_snapshot.afsr;
|
|
|
|
/* If we got a new asynchronous error, die... */
|
|
if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
|
|
CHAFSR_WDU | CHAFSR_CPU |
|
|
CHAFSR_IVU | CHAFSR_UE |
|
|
CHAFSR_BERR | CHAFSR_TO))
|
|
recoverable = 0;
|
|
}
|
|
|
|
/* Log errors. */
|
|
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
|
|
|
|
if (!recoverable)
|
|
panic("Irrecoverable Fast-ECC error trap.\n");
|
|
|
|
/* Flush E-cache to kick the error trap handlers out. */
|
|
cheetah_flush_ecache();
|
|
}
|
|
|
|
/* Try to fix a correctable error by pushing the line out from
|
|
* the E-cache. Recheck error reporting registers to see if the
|
|
* problem is intermittent.
|
|
*/
|
|
static int cheetah_fix_ce(unsigned long physaddr)
|
|
{
|
|
unsigned long orig_estate;
|
|
unsigned long alias1, alias2;
|
|
int ret;
|
|
|
|
/* Make sure correctable error traps are disabled. */
|
|
__asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
|
|
"andn %0, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %2\n\t"
|
|
"membar #Sync"
|
|
: "=&r" (orig_estate)
|
|
: "i" (ESTATE_ERROR_CEEN),
|
|
"i" (ASI_ESTATE_ERROR_EN)
|
|
: "g1");
|
|
|
|
/* We calculate alias addresses that will force the
|
|
* cache line in question out of the E-cache. Then
|
|
* we bring it back in with an atomic instruction so
|
|
* that we get it in some modified/exclusive state,
|
|
* then we displace it again to try and get proper ECC
|
|
* pushed back into the system.
|
|
*/
|
|
physaddr &= ~(8UL - 1UL);
|
|
alias1 = (ecache_flush_physbase +
|
|
(physaddr & ((ecache_flush_size >> 1) - 1)));
|
|
alias2 = alias1 + (ecache_flush_size >> 1);
|
|
__asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
|
|
"ldxa [%1] %3, %%g0\n\t"
|
|
"casxa [%2] %3, %%g0, %%g0\n\t"
|
|
"membar #StoreLoad | #StoreStore\n\t"
|
|
"ldxa [%0] %3, %%g0\n\t"
|
|
"ldxa [%1] %3, %%g0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (alias1), "r" (alias2),
|
|
"r" (physaddr), "i" (ASI_PHYS_USE_EC));
|
|
|
|
/* Did that trigger another error? */
|
|
if (cheetah_recheck_errors(NULL)) {
|
|
/* Try one more time. */
|
|
__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
|
|
"membar #Sync"
|
|
: : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
|
|
if (cheetah_recheck_errors(NULL))
|
|
ret = 2;
|
|
else
|
|
ret = 1;
|
|
} else {
|
|
/* No new error, intermittent problem. */
|
|
ret = 0;
|
|
}
|
|
|
|
/* Restore error enables. */
|
|
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
|
|
"membar #Sync"
|
|
: : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Return non-zero if PADDR is a valid physical memory address. */
|
|
static int cheetah_check_main_memory(unsigned long paddr)
|
|
{
|
|
unsigned long vaddr = PAGE_OFFSET + paddr;
|
|
|
|
if (vaddr > (unsigned long) high_memory)
|
|
return 0;
|
|
|
|
return kern_addr_valid(vaddr);
|
|
}
|
|
|
|
void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
|
|
{
|
|
struct cheetah_err_info local_snapshot, *p;
|
|
int recoverable, is_memory;
|
|
|
|
p = cheetah_get_error_log(afsr);
|
|
if (!p) {
|
|
prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
|
|
afsr, afar);
|
|
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
|
|
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
|
|
prom_halt();
|
|
}
|
|
|
|
/* Grab snapshot of logged error. */
|
|
memcpy(&local_snapshot, p, sizeof(local_snapshot));
|
|
|
|
/* If the current trap snapshot does not match what the
|
|
* trap handler passed along into our args, big trouble.
|
|
* In such a case, mark the local copy as invalid.
|
|
*
|
|
* Else, it matches and we mark the afsr in the non-local
|
|
* copy as invalid so we may log new error traps there.
|
|
*/
|
|
if (p->afsr != afsr || p->afar != afar)
|
|
local_snapshot.afsr = CHAFSR_INVALID;
|
|
else
|
|
p->afsr = CHAFSR_INVALID;
|
|
|
|
is_memory = cheetah_check_main_memory(afar);
|
|
|
|
if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
|
|
/* XXX Might want to log the results of this operation
|
|
* XXX somewhere... -DaveM
|
|
*/
|
|
cheetah_fix_ce(afar);
|
|
}
|
|
|
|
{
|
|
int flush_all, flush_line;
|
|
|
|
flush_all = flush_line = 0;
|
|
if ((afsr & CHAFSR_EDC) != 0UL) {
|
|
if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
|
|
flush_line = 1;
|
|
else
|
|
flush_all = 1;
|
|
} else if ((afsr & CHAFSR_CPC) != 0UL) {
|
|
if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
|
|
flush_line = 1;
|
|
else
|
|
flush_all = 1;
|
|
}
|
|
|
|
/* Trap handler only disabled I-cache, flush it. */
|
|
cheetah_flush_icache();
|
|
|
|
/* Re-enable I-cache */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_DCU_CONTROL_REG),
|
|
"i" (DCU_IC)
|
|
: "g1");
|
|
|
|
if (flush_all)
|
|
cheetah_flush_ecache();
|
|
else if (flush_line)
|
|
cheetah_flush_ecache_line(afar);
|
|
}
|
|
|
|
/* Re-enable error reporting */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_ESTATE_ERROR_EN),
|
|
"i" (ESTATE_ERROR_CEEN)
|
|
: "g1");
|
|
|
|
/* Decide if we can continue after handling this trap and
|
|
* logging the error.
|
|
*/
|
|
recoverable = 1;
|
|
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
|
|
recoverable = 0;
|
|
|
|
/* Re-check AFSR/AFAR */
|
|
(void) cheetah_recheck_errors(&local_snapshot);
|
|
|
|
/* Log errors. */
|
|
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
|
|
|
|
if (!recoverable)
|
|
panic("Irrecoverable Correctable-ECC error trap.\n");
|
|
}
|
|
|
|
void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
|
|
{
|
|
struct cheetah_err_info local_snapshot, *p;
|
|
int recoverable, is_memory;
|
|
|
|
#ifdef CONFIG_PCI
|
|
/* Check for the special PCI poke sequence. */
|
|
if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
|
|
cheetah_flush_icache();
|
|
cheetah_flush_dcache();
|
|
|
|
/* Re-enable I-cache/D-cache */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_DCU_CONTROL_REG),
|
|
"i" (DCU_DC | DCU_IC)
|
|
: "g1");
|
|
|
|
/* Re-enable error reporting */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_ESTATE_ERROR_EN),
|
|
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
|
|
: "g1");
|
|
|
|
(void) cheetah_recheck_errors(NULL);
|
|
|
|
pci_poke_faulted = 1;
|
|
regs->tpc += 4;
|
|
regs->tnpc = regs->tpc + 4;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
p = cheetah_get_error_log(afsr);
|
|
if (!p) {
|
|
prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
|
|
afsr, afar);
|
|
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
|
|
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
|
|
prom_halt();
|
|
}
|
|
|
|
/* Grab snapshot of logged error. */
|
|
memcpy(&local_snapshot, p, sizeof(local_snapshot));
|
|
|
|
/* If the current trap snapshot does not match what the
|
|
* trap handler passed along into our args, big trouble.
|
|
* In such a case, mark the local copy as invalid.
|
|
*
|
|
* Else, it matches and we mark the afsr in the non-local
|
|
* copy as invalid so we may log new error traps there.
|
|
*/
|
|
if (p->afsr != afsr || p->afar != afar)
|
|
local_snapshot.afsr = CHAFSR_INVALID;
|
|
else
|
|
p->afsr = CHAFSR_INVALID;
|
|
|
|
is_memory = cheetah_check_main_memory(afar);
|
|
|
|
{
|
|
int flush_all, flush_line;
|
|
|
|
flush_all = flush_line = 0;
|
|
if ((afsr & CHAFSR_EDU) != 0UL) {
|
|
if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
|
|
flush_line = 1;
|
|
else
|
|
flush_all = 1;
|
|
} else if ((afsr & CHAFSR_BERR) != 0UL) {
|
|
if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
|
|
flush_line = 1;
|
|
else
|
|
flush_all = 1;
|
|
}
|
|
|
|
cheetah_flush_icache();
|
|
cheetah_flush_dcache();
|
|
|
|
/* Re-enable I/D caches */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_DCU_CONTROL_REG),
|
|
"i" (DCU_IC | DCU_DC)
|
|
: "g1");
|
|
|
|
if (flush_all)
|
|
cheetah_flush_ecache();
|
|
else if (flush_line)
|
|
cheetah_flush_ecache_line(afar);
|
|
}
|
|
|
|
/* Re-enable error reporting */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_ESTATE_ERROR_EN),
|
|
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
|
|
: "g1");
|
|
|
|
/* Decide if we can continue after handling this trap and
|
|
* logging the error.
|
|
*/
|
|
recoverable = 1;
|
|
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
|
|
recoverable = 0;
|
|
|
|
/* Re-check AFSR/AFAR. What we are looking for here is whether a new
|
|
* error was logged while we had error reporting traps disabled.
|
|
*/
|
|
if (cheetah_recheck_errors(&local_snapshot)) {
|
|
unsigned long new_afsr = local_snapshot.afsr;
|
|
|
|
/* If we got a new asynchronous error, die... */
|
|
if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
|
|
CHAFSR_WDU | CHAFSR_CPU |
|
|
CHAFSR_IVU | CHAFSR_UE |
|
|
CHAFSR_BERR | CHAFSR_TO))
|
|
recoverable = 0;
|
|
}
|
|
|
|
/* Log errors. */
|
|
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
|
|
|
|
/* "Recoverable" here means we try to yank the page from ever
|
|
* being newly used again. This depends upon a few things:
|
|
* 1) Must be main memory, and AFAR must be valid.
|
|
* 2) If we trapped from user, OK.
|
|
* 3) Else, if we trapped from kernel we must find exception
|
|
* table entry (ie. we have to have been accessing user
|
|
* space).
|
|
*
|
|
* If AFAR is not in main memory, or we trapped from kernel
|
|
* and cannot find an exception table entry, it is unacceptable
|
|
* to try and continue.
|
|
*/
|
|
if (recoverable && is_memory) {
|
|
if ((regs->tstate & TSTATE_PRIV) == 0UL) {
|
|
/* OK, usermode access. */
|
|
recoverable = 1;
|
|
} else {
|
|
const struct exception_table_entry *entry;
|
|
|
|
entry = search_exception_tables(regs->tpc);
|
|
if (entry) {
|
|
/* OK, kernel access to userspace. */
|
|
recoverable = 1;
|
|
|
|
} else {
|
|
/* BAD, privileged state is corrupted. */
|
|
recoverable = 0;
|
|
}
|
|
|
|
if (recoverable) {
|
|
if (pfn_valid(afar >> PAGE_SHIFT))
|
|
get_page(pfn_to_page(afar >> PAGE_SHIFT));
|
|
else
|
|
recoverable = 0;
|
|
|
|
/* Only perform fixup if we still have a
|
|
* recoverable condition.
|
|
*/
|
|
if (recoverable) {
|
|
regs->tpc = entry->fixup;
|
|
regs->tnpc = regs->tpc + 4;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
recoverable = 0;
|
|
}
|
|
|
|
if (!recoverable)
|
|
panic("Irrecoverable deferred error trap.\n");
|
|
}
|
|
|
|
/* Handle a D/I cache parity error trap. TYPE is encoded as:
|
|
*
|
|
* Bit0: 0=dcache,1=icache
|
|
* Bit1: 0=recoverable,1=unrecoverable
|
|
*
|
|
* The hardware has disabled both the I-cache and D-cache in
|
|
* the %dcr register.
|
|
*/
|
|
void cheetah_plus_parity_error(int type, struct pt_regs *regs)
|
|
{
|
|
if (type & 0x1)
|
|
__cheetah_flush_icache();
|
|
else
|
|
cheetah_plus_zap_dcache_parity();
|
|
cheetah_flush_dcache();
|
|
|
|
/* Re-enable I-cache/D-cache */
|
|
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
|
|
"or %%g1, %1, %%g1\n\t"
|
|
"stxa %%g1, [%%g0] %0\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "i" (ASI_DCU_CONTROL_REG),
|
|
"i" (DCU_DC | DCU_IC)
|
|
: "g1");
|
|
|
|
if (type & 0x2) {
|
|
printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
|
|
smp_processor_id(),
|
|
(type & 0x1) ? 'I' : 'D',
|
|
regs->tpc);
|
|
print_symbol(KERN_EMERG "TPC<%s>\n", regs->tpc);
|
|
panic("Irrecoverable Cheetah+ parity error.");
|
|
}
|
|
|
|
printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
|
|
smp_processor_id(),
|
|
(type & 0x1) ? 'I' : 'D',
|
|
regs->tpc);
|
|
print_symbol(KERN_WARNING "TPC<%s>\n", regs->tpc);
|
|
}
|
|
|
|
struct sun4v_error_entry {
|
|
u64 err_handle;
|
|
u64 err_stick;
|
|
|
|
u32 err_type;
|
|
#define SUN4V_ERR_TYPE_UNDEFINED 0
|
|
#define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
|
|
#define SUN4V_ERR_TYPE_PRECISE_NONRES 2
|
|
#define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
|
|
#define SUN4V_ERR_TYPE_WARNING_RES 4
|
|
|
|
u32 err_attrs;
|
|
#define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
|
|
#define SUN4V_ERR_ATTRS_MEMORY 0x00000002
|
|
#define SUN4V_ERR_ATTRS_PIO 0x00000004
|
|
#define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
|
|
#define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
|
|
#define SUN4V_ERR_ATTRS_USER_MODE 0x01000000
|
|
#define SUN4V_ERR_ATTRS_PRIV_MODE 0x02000000
|
|
#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
|
|
|
|
u64 err_raddr;
|
|
u32 err_size;
|
|
u16 err_cpu;
|
|
u16 err_pad;
|
|
};
|
|
|
|
static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
|
|
static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
|
|
|
|
static const char *sun4v_err_type_to_str(u32 type)
|
|
{
|
|
switch (type) {
|
|
case SUN4V_ERR_TYPE_UNDEFINED:
|
|
return "undefined";
|
|
case SUN4V_ERR_TYPE_UNCORRECTED_RES:
|
|
return "uncorrected resumable";
|
|
case SUN4V_ERR_TYPE_PRECISE_NONRES:
|
|
return "precise nonresumable";
|
|
case SUN4V_ERR_TYPE_DEFERRED_NONRES:
|
|
return "deferred nonresumable";
|
|
case SUN4V_ERR_TYPE_WARNING_RES:
|
|
return "warning resumable";
|
|
default:
|
|
return "unknown";
|
|
};
|
|
}
|
|
|
|
extern void __show_regs(struct pt_regs * regs);
|
|
|
|
static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, int cpu, const char *pfx, atomic_t *ocnt)
|
|
{
|
|
int cnt;
|
|
|
|
printk("%s: Reporting on cpu %d\n", pfx, cpu);
|
|
printk("%s: err_handle[%lx] err_stick[%lx] err_type[%08x:%s]\n",
|
|
pfx,
|
|
ent->err_handle, ent->err_stick,
|
|
ent->err_type,
|
|
sun4v_err_type_to_str(ent->err_type));
|
|
printk("%s: err_attrs[%08x:%s %s %s %s %s %s %s %s]\n",
|
|
pfx,
|
|
ent->err_attrs,
|
|
((ent->err_attrs & SUN4V_ERR_ATTRS_PROCESSOR) ?
|
|
"processor" : ""),
|
|
((ent->err_attrs & SUN4V_ERR_ATTRS_MEMORY) ?
|
|
"memory" : ""),
|
|
((ent->err_attrs & SUN4V_ERR_ATTRS_PIO) ?
|
|
"pio" : ""),
|
|
((ent->err_attrs & SUN4V_ERR_ATTRS_INT_REGISTERS) ?
|
|
"integer-regs" : ""),
|
|
((ent->err_attrs & SUN4V_ERR_ATTRS_FPU_REGISTERS) ?
|
|
"fpu-regs" : ""),
|
|
((ent->err_attrs & SUN4V_ERR_ATTRS_USER_MODE) ?
|
|
"user" : ""),
|
|
((ent->err_attrs & SUN4V_ERR_ATTRS_PRIV_MODE) ?
|
|
"privileged" : ""),
|
|
((ent->err_attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) ?
|
|
"queue-full" : ""));
|
|
printk("%s: err_raddr[%016lx] err_size[%u] err_cpu[%u]\n",
|
|
pfx,
|
|
ent->err_raddr, ent->err_size, ent->err_cpu);
|
|
|
|
__show_regs(regs);
|
|
|
|
if ((cnt = atomic_read(ocnt)) != 0) {
|
|
atomic_set(ocnt, 0);
|
|
wmb();
|
|
printk("%s: Queue overflowed %d times.\n",
|
|
pfx, cnt);
|
|
}
|
|
}
|
|
|
|
/* We run with %pil set to 15 and PSTATE_IE enabled in %pstate.
|
|
* Log the event and clear the first word of the entry.
|
|
*/
|
|
void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
|
|
{
|
|
struct sun4v_error_entry *ent, local_copy;
|
|
struct trap_per_cpu *tb;
|
|
unsigned long paddr;
|
|
int cpu;
|
|
|
|
cpu = get_cpu();
|
|
|
|
tb = &trap_block[cpu];
|
|
paddr = tb->resum_kernel_buf_pa + offset;
|
|
ent = __va(paddr);
|
|
|
|
memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
|
|
|
|
/* We have a local copy now, so release the entry. */
|
|
ent->err_handle = 0;
|
|
wmb();
|
|
|
|
put_cpu();
|
|
|
|
if (ent->err_type == SUN4V_ERR_TYPE_WARNING_RES) {
|
|
/* If err_type is 0x4, it's a powerdown request. Do
|
|
* not do the usual resumable error log because that
|
|
* makes it look like some abnormal error.
|
|
*/
|
|
printk(KERN_INFO "Power down request...\n");
|
|
kill_cad_pid(SIGINT, 1);
|
|
return;
|
|
}
|
|
|
|
sun4v_log_error(regs, &local_copy, cpu,
|
|
KERN_ERR "RESUMABLE ERROR",
|
|
&sun4v_resum_oflow_cnt);
|
|
}
|
|
|
|
/* If we try to printk() we'll probably make matters worse, by trying
|
|
* to retake locks this cpu already holds or causing more errors. So
|
|
* just bump a counter, and we'll report these counter bumps above.
|
|
*/
|
|
void sun4v_resum_overflow(struct pt_regs *regs)
|
|
{
|
|
atomic_inc(&sun4v_resum_oflow_cnt);
|
|
}
|
|
|
|
/* We run with %pil set to 15 and PSTATE_IE enabled in %pstate.
|
|
* Log the event, clear the first word of the entry, and die.
|
|
*/
|
|
void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
|
|
{
|
|
struct sun4v_error_entry *ent, local_copy;
|
|
struct trap_per_cpu *tb;
|
|
unsigned long paddr;
|
|
int cpu;
|
|
|
|
cpu = get_cpu();
|
|
|
|
tb = &trap_block[cpu];
|
|
paddr = tb->nonresum_kernel_buf_pa + offset;
|
|
ent = __va(paddr);
|
|
|
|
memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
|
|
|
|
/* We have a local copy now, so release the entry. */
|
|
ent->err_handle = 0;
|
|
wmb();
|
|
|
|
put_cpu();
|
|
|
|
#ifdef CONFIG_PCI
|
|
/* Check for the special PCI poke sequence. */
|
|
if (pci_poke_in_progress && pci_poke_cpu == cpu) {
|
|
pci_poke_faulted = 1;
|
|
regs->tpc += 4;
|
|
regs->tnpc = regs->tpc + 4;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
sun4v_log_error(regs, &local_copy, cpu,
|
|
KERN_EMERG "NON-RESUMABLE ERROR",
|
|
&sun4v_nonresum_oflow_cnt);
|
|
|
|
panic("Non-resumable error.");
|
|
}
|
|
|
|
/* If we try to printk() we'll probably make matters worse, by trying
|
|
* to retake locks this cpu already holds or causing more errors. So
|
|
* just bump a counter, and we'll report these counter bumps above.
|
|
*/
|
|
void sun4v_nonresum_overflow(struct pt_regs *regs)
|
|
{
|
|
/* XXX Actually even this can make not that much sense. Perhaps
|
|
* XXX we should just pull the plug and panic directly from here?
|
|
*/
|
|
atomic_inc(&sun4v_nonresum_oflow_cnt);
|
|
}
|
|
|
|
unsigned long sun4v_err_itlb_vaddr;
|
|
unsigned long sun4v_err_itlb_ctx;
|
|
unsigned long sun4v_err_itlb_pte;
|
|
unsigned long sun4v_err_itlb_error;
|
|
|
|
void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
|
|
{
|
|
if (tl > 1)
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
|
|
printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
|
|
regs->tpc, tl);
|
|
print_symbol(KERN_EMERG "SUN4V-ITLB: TPC<%s>\n", regs->tpc);
|
|
printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
|
|
"pte[%lx] error[%lx]\n",
|
|
sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
|
|
sun4v_err_itlb_pte, sun4v_err_itlb_error);
|
|
|
|
prom_halt();
|
|
}
|
|
|
|
unsigned long sun4v_err_dtlb_vaddr;
|
|
unsigned long sun4v_err_dtlb_ctx;
|
|
unsigned long sun4v_err_dtlb_pte;
|
|
unsigned long sun4v_err_dtlb_error;
|
|
|
|
void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
|
|
{
|
|
if (tl > 1)
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
|
|
printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
|
|
regs->tpc, tl);
|
|
print_symbol(KERN_EMERG "SUN4V-DTLB: TPC<%s>\n", regs->tpc);
|
|
printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
|
|
"pte[%lx] error[%lx]\n",
|
|
sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
|
|
sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
|
|
|
|
prom_halt();
|
|
}
|
|
|
|
void hypervisor_tlbop_error(unsigned long err, unsigned long op)
|
|
{
|
|
printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
|
|
err, op);
|
|
}
|
|
|
|
void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
|
|
{
|
|
printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
|
|
err, op);
|
|
}
|
|
|
|
void do_fpe_common(struct pt_regs *regs)
|
|
{
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
regs->tpc = regs->tnpc;
|
|
regs->tnpc += 4;
|
|
} else {
|
|
unsigned long fsr = current_thread_info()->xfsr[0];
|
|
siginfo_t info;
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGFPE;
|
|
info.si_errno = 0;
|
|
info.si_addr = (void __user *)regs->tpc;
|
|
info.si_trapno = 0;
|
|
info.si_code = __SI_FAULT;
|
|
if ((fsr & 0x1c000) == (1 << 14)) {
|
|
if (fsr & 0x10)
|
|
info.si_code = FPE_FLTINV;
|
|
else if (fsr & 0x08)
|
|
info.si_code = FPE_FLTOVF;
|
|
else if (fsr & 0x04)
|
|
info.si_code = FPE_FLTUND;
|
|
else if (fsr & 0x02)
|
|
info.si_code = FPE_FLTDIV;
|
|
else if (fsr & 0x01)
|
|
info.si_code = FPE_FLTRES;
|
|
}
|
|
force_sig_info(SIGFPE, &info, current);
|
|
}
|
|
}
|
|
|
|
void do_fpieee(struct pt_regs *regs)
|
|
{
|
|
if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
|
|
0, 0x24, SIGFPE) == NOTIFY_STOP)
|
|
return;
|
|
|
|
do_fpe_common(regs);
|
|
}
|
|
|
|
extern int do_mathemu(struct pt_regs *, struct fpustate *);
|
|
|
|
void do_fpother(struct pt_regs *regs)
|
|
{
|
|
struct fpustate *f = FPUSTATE;
|
|
int ret = 0;
|
|
|
|
if (notify_die(DIE_TRAP, "fpu exception other", regs,
|
|
0, 0x25, SIGFPE) == NOTIFY_STOP)
|
|
return;
|
|
|
|
switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
|
|
case (2 << 14): /* unfinished_FPop */
|
|
case (3 << 14): /* unimplemented_FPop */
|
|
ret = do_mathemu(regs, f);
|
|
break;
|
|
}
|
|
if (ret)
|
|
return;
|
|
do_fpe_common(regs);
|
|
}
|
|
|
|
void do_tof(struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
|
|
0, 0x26, SIGEMT) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (regs->tstate & TSTATE_PRIV)
|
|
die_if_kernel("Penguin overflow trap from kernel mode", regs);
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGEMT;
|
|
info.si_errno = 0;
|
|
info.si_code = EMT_TAGOVF;
|
|
info.si_addr = (void __user *)regs->tpc;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGEMT, &info, current);
|
|
}
|
|
|
|
void do_div0(struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "integer division by zero", regs,
|
|
0, 0x28, SIGFPE) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (regs->tstate & TSTATE_PRIV)
|
|
die_if_kernel("TL0: Kernel divide by zero.", regs);
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGFPE;
|
|
info.si_errno = 0;
|
|
info.si_code = FPE_INTDIV;
|
|
info.si_addr = (void __user *)regs->tpc;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGFPE, &info, current);
|
|
}
|
|
|
|
void instruction_dump (unsigned int *pc)
|
|
{
|
|
int i;
|
|
|
|
if ((((unsigned long) pc) & 3))
|
|
return;
|
|
|
|
printk("Instruction DUMP:");
|
|
for (i = -3; i < 6; i++)
|
|
printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
|
|
printk("\n");
|
|
}
|
|
|
|
static void user_instruction_dump (unsigned int __user *pc)
|
|
{
|
|
int i;
|
|
unsigned int buf[9];
|
|
|
|
if ((((unsigned long) pc) & 3))
|
|
return;
|
|
|
|
if (copy_from_user(buf, pc - 3, sizeof(buf)))
|
|
return;
|
|
|
|
printk("Instruction DUMP:");
|
|
for (i = 0; i < 9; i++)
|
|
printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
|
|
printk("\n");
|
|
}
|
|
|
|
void show_stack(struct task_struct *tsk, unsigned long *_ksp)
|
|
{
|
|
unsigned long pc, fp, thread_base, ksp;
|
|
struct thread_info *tp;
|
|
struct reg_window *rw;
|
|
int count = 0;
|
|
|
|
ksp = (unsigned long) _ksp;
|
|
if (!tsk)
|
|
tsk = current;
|
|
tp = task_thread_info(tsk);
|
|
if (ksp == 0UL) {
|
|
if (tsk == current)
|
|
asm("mov %%fp, %0" : "=r" (ksp));
|
|
else
|
|
ksp = tp->ksp;
|
|
}
|
|
if (tp == current_thread_info())
|
|
flushw_all();
|
|
|
|
fp = ksp + STACK_BIAS;
|
|
thread_base = (unsigned long) tp;
|
|
|
|
printk("Call Trace:");
|
|
#ifdef CONFIG_KALLSYMS
|
|
printk("\n");
|
|
#endif
|
|
do {
|
|
/* Bogus frame pointer? */
|
|
if (fp < (thread_base + sizeof(struct thread_info)) ||
|
|
fp >= (thread_base + THREAD_SIZE))
|
|
break;
|
|
rw = (struct reg_window *)fp;
|
|
pc = rw->ins[7];
|
|
printk(" [%016lx] ", pc);
|
|
print_symbol("%s\n", pc);
|
|
fp = rw->ins[6] + STACK_BIAS;
|
|
} while (++count < 16);
|
|
#ifndef CONFIG_KALLSYMS
|
|
printk("\n");
|
|
#endif
|
|
}
|
|
|
|
void dump_stack(void)
|
|
{
|
|
show_stack(current, NULL);
|
|
}
|
|
|
|
EXPORT_SYMBOL(dump_stack);
|
|
|
|
static inline int is_kernel_stack(struct task_struct *task,
|
|
struct reg_window *rw)
|
|
{
|
|
unsigned long rw_addr = (unsigned long) rw;
|
|
unsigned long thread_base, thread_end;
|
|
|
|
if (rw_addr < PAGE_OFFSET) {
|
|
if (task != &init_task)
|
|
return 0;
|
|
}
|
|
|
|
thread_base = (unsigned long) task_stack_page(task);
|
|
thread_end = thread_base + sizeof(union thread_union);
|
|
if (rw_addr >= thread_base &&
|
|
rw_addr < thread_end &&
|
|
!(rw_addr & 0x7UL))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
|
|
{
|
|
unsigned long fp = rw->ins[6];
|
|
|
|
if (!fp)
|
|
return NULL;
|
|
|
|
return (struct reg_window *) (fp + STACK_BIAS);
|
|
}
|
|
|
|
void die_if_kernel(char *str, struct pt_regs *regs)
|
|
{
|
|
static int die_counter;
|
|
extern void smp_report_regs(void);
|
|
int count = 0;
|
|
|
|
/* Amuse the user. */
|
|
printk(
|
|
" \\|/ ____ \\|/\n"
|
|
" \"@'/ .. \\`@\"\n"
|
|
" /_| \\__/ |_\\\n"
|
|
" \\__U_/\n");
|
|
|
|
printk("%s(%d): %s [#%d]\n", current->comm, current->pid, str, ++die_counter);
|
|
notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
|
|
__asm__ __volatile__("flushw");
|
|
__show_regs(regs);
|
|
add_taint(TAINT_DIE);
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
struct reg_window *rw = (struct reg_window *)
|
|
(regs->u_regs[UREG_FP] + STACK_BIAS);
|
|
|
|
/* Stop the back trace when we hit userland or we
|
|
* find some badly aligned kernel stack.
|
|
*/
|
|
while (rw &&
|
|
count++ < 30&&
|
|
is_kernel_stack(current, rw)) {
|
|
printk("Caller[%016lx]", rw->ins[7]);
|
|
print_symbol(": %s", rw->ins[7]);
|
|
printk("\n");
|
|
|
|
rw = kernel_stack_up(rw);
|
|
}
|
|
instruction_dump ((unsigned int *) regs->tpc);
|
|
} else {
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
user_instruction_dump ((unsigned int __user *) regs->tpc);
|
|
}
|
|
#if 0
|
|
#ifdef CONFIG_SMP
|
|
smp_report_regs();
|
|
#endif
|
|
#endif
|
|
if (regs->tstate & TSTATE_PRIV)
|
|
do_exit(SIGKILL);
|
|
do_exit(SIGSEGV);
|
|
}
|
|
|
|
#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
|
|
#define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19))
|
|
|
|
extern int handle_popc(u32 insn, struct pt_regs *regs);
|
|
extern int handle_ldf_stq(u32 insn, struct pt_regs *regs);
|
|
extern int vis_emul(struct pt_regs *, unsigned int);
|
|
|
|
void do_illegal_instruction(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc = regs->tpc;
|
|
unsigned long tstate = regs->tstate;
|
|
u32 insn;
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "illegal instruction", regs,
|
|
0, 0x10, SIGILL) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (tstate & TSTATE_PRIV)
|
|
die_if_kernel("Kernel illegal instruction", regs);
|
|
if (test_thread_flag(TIF_32BIT))
|
|
pc = (u32)pc;
|
|
if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
|
|
if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
|
|
if (handle_popc(insn, regs))
|
|
return;
|
|
} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
|
|
if (handle_ldf_stq(insn, regs))
|
|
return;
|
|
} else if (tlb_type == hypervisor) {
|
|
if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
|
|
if (!vis_emul(regs, insn))
|
|
return;
|
|
} else {
|
|
struct fpustate *f = FPUSTATE;
|
|
|
|
/* XXX maybe verify XFSR bits like
|
|
* XXX do_fpother() does?
|
|
*/
|
|
if (do_mathemu(regs, f))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
info.si_signo = SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code = ILL_ILLOPC;
|
|
info.si_addr = (void __user *)pc;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGILL, &info, current);
|
|
}
|
|
|
|
extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn);
|
|
|
|
void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "memory address unaligned", regs,
|
|
0, 0x34, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
|
|
return;
|
|
}
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRALN;
|
|
info.si_addr = (void __user *)sfar;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGBUS, &info, current);
|
|
}
|
|
|
|
void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "memory address unaligned", regs,
|
|
0, 0x34, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
|
|
return;
|
|
}
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRALN;
|
|
info.si_addr = (void __user *) addr;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGBUS, &info, current);
|
|
}
|
|
|
|
void do_privop(struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (notify_die(DIE_TRAP, "privileged operation", regs,
|
|
0, 0x11, SIGILL) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
info.si_signo = SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code = ILL_PRVOPC;
|
|
info.si_addr = (void __user *)regs->tpc;
|
|
info.si_trapno = 0;
|
|
force_sig_info(SIGILL, &info, current);
|
|
}
|
|
|
|
void do_privact(struct pt_regs *regs)
|
|
{
|
|
do_privop(regs);
|
|
}
|
|
|
|
/* Trap level 1 stuff or other traps we should never see... */
|
|
void do_cee(struct pt_regs *regs)
|
|
{
|
|
die_if_kernel("TL0: Cache Error Exception", regs);
|
|
}
|
|
|
|
void do_cee_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: Cache Error Exception", regs);
|
|
}
|
|
|
|
void do_dae_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: Data Access Exception", regs);
|
|
}
|
|
|
|
void do_iae_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: Instruction Access Exception", regs);
|
|
}
|
|
|
|
void do_div0_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: DIV0 Exception", regs);
|
|
}
|
|
|
|
void do_fpdis_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: FPU Disabled", regs);
|
|
}
|
|
|
|
void do_fpieee_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: FPU IEEE Exception", regs);
|
|
}
|
|
|
|
void do_fpother_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: FPU Other Exception", regs);
|
|
}
|
|
|
|
void do_ill_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: Illegal Instruction Exception", regs);
|
|
}
|
|
|
|
void do_irq_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: IRQ Exception", regs);
|
|
}
|
|
|
|
void do_lddfmna_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: LDDF Exception", regs);
|
|
}
|
|
|
|
void do_stdfmna_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: STDF Exception", regs);
|
|
}
|
|
|
|
void do_paw(struct pt_regs *regs)
|
|
{
|
|
die_if_kernel("TL0: Phys Watchpoint Exception", regs);
|
|
}
|
|
|
|
void do_paw_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: Phys Watchpoint Exception", regs);
|
|
}
|
|
|
|
void do_vaw(struct pt_regs *regs)
|
|
{
|
|
die_if_kernel("TL0: Virt Watchpoint Exception", regs);
|
|
}
|
|
|
|
void do_vaw_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: Virt Watchpoint Exception", regs);
|
|
}
|
|
|
|
void do_tof_tl1(struct pt_regs *regs)
|
|
{
|
|
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
|
|
die_if_kernel("TL1: Tag Overflow Exception", regs);
|
|
}
|
|
|
|
void do_getpsr(struct pt_regs *regs)
|
|
{
|
|
regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
|
|
regs->tpc = regs->tnpc;
|
|
regs->tnpc += 4;
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
regs->tpc &= 0xffffffff;
|
|
regs->tnpc &= 0xffffffff;
|
|
}
|
|
}
|
|
|
|
struct trap_per_cpu trap_block[NR_CPUS];
|
|
|
|
/* This can get invoked before sched_init() so play it super safe
|
|
* and use hard_smp_processor_id().
|
|
*/
|
|
void init_cur_cpu_trap(struct thread_info *t)
|
|
{
|
|
int cpu = hard_smp_processor_id();
|
|
struct trap_per_cpu *p = &trap_block[cpu];
|
|
|
|
p->thread = t;
|
|
p->pgd_paddr = 0;
|
|
}
|
|
|
|
extern void thread_info_offsets_are_bolixed_dave(void);
|
|
extern void trap_per_cpu_offsets_are_bolixed_dave(void);
|
|
extern void tsb_config_offsets_are_bolixed_dave(void);
|
|
|
|
/* Only invoked on boot processor. */
|
|
void __init trap_init(void)
|
|
{
|
|
/* Compile time sanity check. */
|
|
if (TI_TASK != offsetof(struct thread_info, task) ||
|
|
TI_FLAGS != offsetof(struct thread_info, flags) ||
|
|
TI_CPU != offsetof(struct thread_info, cpu) ||
|
|
TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
|
|
TI_KSP != offsetof(struct thread_info, ksp) ||
|
|
TI_FAULT_ADDR != offsetof(struct thread_info, fault_address) ||
|
|
TI_KREGS != offsetof(struct thread_info, kregs) ||
|
|
TI_UTRAPS != offsetof(struct thread_info, utraps) ||
|
|
TI_EXEC_DOMAIN != offsetof(struct thread_info, exec_domain) ||
|
|
TI_REG_WINDOW != offsetof(struct thread_info, reg_window) ||
|
|
TI_RWIN_SPTRS != offsetof(struct thread_info, rwbuf_stkptrs) ||
|
|
TI_GSR != offsetof(struct thread_info, gsr) ||
|
|
TI_XFSR != offsetof(struct thread_info, xfsr) ||
|
|
TI_USER_CNTD0 != offsetof(struct thread_info, user_cntd0) ||
|
|
TI_USER_CNTD1 != offsetof(struct thread_info, user_cntd1) ||
|
|
TI_KERN_CNTD0 != offsetof(struct thread_info, kernel_cntd0) ||
|
|
TI_KERN_CNTD1 != offsetof(struct thread_info, kernel_cntd1) ||
|
|
TI_PCR != offsetof(struct thread_info, pcr_reg) ||
|
|
TI_PRE_COUNT != offsetof(struct thread_info, preempt_count) ||
|
|
TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
|
|
TI_SYS_NOERROR != offsetof(struct thread_info, syscall_noerror) ||
|
|
TI_RESTART_BLOCK != offsetof(struct thread_info, restart_block) ||
|
|
TI_KUNA_REGS != offsetof(struct thread_info, kern_una_regs) ||
|
|
TI_KUNA_INSN != offsetof(struct thread_info, kern_una_insn) ||
|
|
TI_FPREGS != offsetof(struct thread_info, fpregs) ||
|
|
(TI_FPREGS & (64 - 1)))
|
|
thread_info_offsets_are_bolixed_dave();
|
|
|
|
if (TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, thread) ||
|
|
(TRAP_PER_CPU_PGD_PADDR !=
|
|
offsetof(struct trap_per_cpu, pgd_paddr)) ||
|
|
(TRAP_PER_CPU_CPU_MONDO_PA !=
|
|
offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
|
|
(TRAP_PER_CPU_DEV_MONDO_PA !=
|
|
offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
|
|
(TRAP_PER_CPU_RESUM_MONDO_PA !=
|
|
offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
|
|
(TRAP_PER_CPU_RESUM_KBUF_PA !=
|
|
offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
|
|
(TRAP_PER_CPU_NONRESUM_MONDO_PA !=
|
|
offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
|
|
(TRAP_PER_CPU_NONRESUM_KBUF_PA !=
|
|
offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
|
|
(TRAP_PER_CPU_FAULT_INFO !=
|
|
offsetof(struct trap_per_cpu, fault_info)) ||
|
|
(TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
|
|
offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
|
|
(TRAP_PER_CPU_CPU_LIST_PA !=
|
|
offsetof(struct trap_per_cpu, cpu_list_pa)) ||
|
|
(TRAP_PER_CPU_TSB_HUGE !=
|
|
offsetof(struct trap_per_cpu, tsb_huge)) ||
|
|
(TRAP_PER_CPU_TSB_HUGE_TEMP !=
|
|
offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
|
|
(TRAP_PER_CPU_IRQ_WORKLIST !=
|
|
offsetof(struct trap_per_cpu, irq_worklist)) ||
|
|
(TRAP_PER_CPU_CPU_MONDO_QMASK !=
|
|
offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
|
|
(TRAP_PER_CPU_DEV_MONDO_QMASK !=
|
|
offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
|
|
(TRAP_PER_CPU_RESUM_QMASK !=
|
|
offsetof(struct trap_per_cpu, resum_qmask)) ||
|
|
(TRAP_PER_CPU_NONRESUM_QMASK !=
|
|
offsetof(struct trap_per_cpu, nonresum_qmask)))
|
|
trap_per_cpu_offsets_are_bolixed_dave();
|
|
|
|
if ((TSB_CONFIG_TSB !=
|
|
offsetof(struct tsb_config, tsb)) ||
|
|
(TSB_CONFIG_RSS_LIMIT !=
|
|
offsetof(struct tsb_config, tsb_rss_limit)) ||
|
|
(TSB_CONFIG_NENTRIES !=
|
|
offsetof(struct tsb_config, tsb_nentries)) ||
|
|
(TSB_CONFIG_REG_VAL !=
|
|
offsetof(struct tsb_config, tsb_reg_val)) ||
|
|
(TSB_CONFIG_MAP_VADDR !=
|
|
offsetof(struct tsb_config, tsb_map_vaddr)) ||
|
|
(TSB_CONFIG_MAP_PTE !=
|
|
offsetof(struct tsb_config, tsb_map_pte)))
|
|
tsb_config_offsets_are_bolixed_dave();
|
|
|
|
/* Attach to the address space of init_task. On SMP we
|
|
* do this in smp.c:smp_callin for other cpus.
|
|
*/
|
|
atomic_inc(&init_mm.mm_count);
|
|
current->active_mm = &init_mm;
|
|
}
|