2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 13:13:57 +08:00
linux-next/drivers/scsi/sym53c8xx_2/sym_glue.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

2143 lines
53 KiB
C

/*
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
* of PCI-SCSI IO processors.
*
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
* Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
*
* This driver is derived from the Linux sym53c8xx driver.
* Copyright (C) 1998-2000 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux-1.2.13.
*
* The original ncr driver has been written for 386bsd and FreeBSD by
* Wolfgang Stanglmeier <wolf@cologne.de>
* Stefan Esser <se@mi.Uni-Koeln.de>
* Copyright (C) 1994 Wolfgang Stanglmeier
*
* Other major contributions:
*
* NVRAM detection and reading.
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*
*-----------------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <scsi/scsi.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>
#include "sym_glue.h"
#include "sym_nvram.h"
#define NAME53C "sym53c"
#define NAME53C8XX "sym53c8xx"
#define IRQ_FMT "%d"
#define IRQ_PRM(x) (x)
struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
unsigned int sym_debug_flags = 0;
static char *excl_string;
static char *safe_string;
module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
module_param_named(verb, sym_driver_setup.verbose, byte, 0);
module_param_named(debug, sym_debug_flags, uint, 0);
module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
module_param_named(excl, excl_string, charp, 0);
module_param_named(safe, safe_string, charp, 0);
MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers");
MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
MODULE_PARM_DESC(debug, "Set bits to enable debugging");
MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3");
MODULE_PARM_DESC(nvram, "Option currently not used");
MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
MODULE_LICENSE("GPL");
MODULE_VERSION(SYM_VERSION);
MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
static void sym2_setup_params(void)
{
char *p = excl_string;
int xi = 0;
while (p && (xi < 8)) {
char *next_p;
int val = (int) simple_strtoul(p, &next_p, 0);
sym_driver_setup.excludes[xi++] = val;
p = next_p;
}
if (safe_string) {
if (*safe_string == 'y') {
sym_driver_setup.max_tag = 0;
sym_driver_setup.burst_order = 0;
sym_driver_setup.scsi_led = 0;
sym_driver_setup.scsi_diff = 1;
sym_driver_setup.irq_mode = 0;
sym_driver_setup.scsi_bus_check = 2;
sym_driver_setup.host_id = 7;
sym_driver_setup.verbose = 2;
sym_driver_setup.settle_delay = 10;
sym_driver_setup.use_nvram = 1;
} else if (*safe_string != 'n') {
printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
" passed to safe option", safe_string);
}
}
}
static struct scsi_transport_template *sym2_transport_template = NULL;
/*
* Driver private area in the SCSI command structure.
*/
struct sym_ucmd { /* Override the SCSI pointer structure */
dma_addr_t data_mapping;
unsigned char data_mapped;
unsigned char to_do; /* For error handling */
void (*old_done)(struct scsi_cmnd *); /* For error handling */
struct completion *eh_done; /* For error handling */
};
#define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp))
#define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
int dma_dir = cmd->sc_data_direction;
switch(SYM_UCMD_PTR(cmd)->data_mapped) {
case 2:
pci_unmap_sg(pdev, cmd->request_buffer, cmd->use_sg, dma_dir);
break;
case 1:
pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
cmd->request_bufflen, dma_dir);
break;
}
SYM_UCMD_PTR(cmd)->data_mapped = 0;
}
static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
dma_addr_t mapping;
int dma_dir = cmd->sc_data_direction;
mapping = pci_map_single(pdev, cmd->request_buffer,
cmd->request_bufflen, dma_dir);
if (mapping) {
SYM_UCMD_PTR(cmd)->data_mapped = 1;
SYM_UCMD_PTR(cmd)->data_mapping = mapping;
}
return mapping;
}
static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
int use_sg;
int dma_dir = cmd->sc_data_direction;
use_sg = pci_map_sg(pdev, cmd->request_buffer, cmd->use_sg, dma_dir);
if (use_sg > 0) {
SYM_UCMD_PTR(cmd)->data_mapped = 2;
SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
}
return use_sg;
}
#define unmap_scsi_data(np, cmd) \
__unmap_scsi_data(np->s.device, cmd)
#define map_scsi_single_data(np, cmd) \
__map_scsi_single_data(np->s.device, cmd)
#define map_scsi_sg_data(np, cmd) \
__map_scsi_sg_data(np->s.device, cmd)
/*
* Complete a pending CAM CCB.
*/
void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
{
unmap_scsi_data(np, cmd);
cmd->scsi_done(cmd);
}
static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
{
sym_set_cam_status(cmd, cam_status);
sym_xpt_done(np, cmd);
}
/*
* Tell the SCSI layer about a BUS RESET.
*/
void sym_xpt_async_bus_reset(struct sym_hcb *np)
{
printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
np->s.settle_time_valid = 1;
if (sym_verbose >= 2)
printf_info("%s: command processing suspended for %d seconds\n",
sym_name(np), sym_driver_setup.settle_delay);
}
/*
* Tell the SCSI layer about a BUS DEVICE RESET message sent.
*/
void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
{
printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
}
/*
* Choose the more appropriate CAM status if
* the IO encountered an extended error.
*/
static int sym_xerr_cam_status(int cam_status, int x_status)
{
if (x_status) {
if (x_status & XE_PARITY_ERR)
cam_status = DID_PARITY;
else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
cam_status = DID_ERROR;
else if (x_status & XE_BAD_PHASE)
cam_status = DID_ERROR;
else
cam_status = DID_ERROR;
}
return cam_status;
}
/*
* Build CAM result for a failed or auto-sensed IO.
*/
void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
{
struct scsi_cmnd *cmd = cp->cmd;
u_int cam_status, scsi_status, drv_status;
drv_status = 0;
cam_status = DID_OK;
scsi_status = cp->ssss_status;
if (cp->host_flags & HF_SENSE) {
scsi_status = cp->sv_scsi_status;
resid = cp->sv_resid;
if (sym_verbose && cp->sv_xerr_status)
sym_print_xerr(cmd, cp->sv_xerr_status);
if (cp->host_status == HS_COMPLETE &&
cp->ssss_status == S_GOOD &&
cp->xerr_status == 0) {
cam_status = sym_xerr_cam_status(DID_OK,
cp->sv_xerr_status);
drv_status = DRIVER_SENSE;
/*
* Bounce back the sense data to user.
*/
memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
memcpy(cmd->sense_buffer, cp->sns_bbuf,
min(sizeof(cmd->sense_buffer),
(size_t)SYM_SNS_BBUF_LEN));
#if 0
/*
* If the device reports a UNIT ATTENTION condition
* due to a RESET condition, we should consider all
* disconnect CCBs for this unit as aborted.
*/
if (1) {
u_char *p;
p = (u_char *) cmd->sense_data;
if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
sym_clear_tasks(np, DID_ABORT,
cp->target,cp->lun, -1);
}
#endif
} else {
/*
* Error return from our internal request sense. This
* is bad: we must clear the contingent allegiance
* condition otherwise the device will always return
* BUSY. Use a big stick.
*/
sym_reset_scsi_target(np, cmd->device->id);
cam_status = DID_ERROR;
}
} else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */
cam_status = DID_OK;
else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
cam_status = DID_NO_CONNECT;
else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
cam_status = DID_ERROR;
else { /* Extended error */
if (sym_verbose) {
sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
cp->host_status, cp->ssss_status,
cp->xerr_status);
}
/*
* Set the most appropriate value for CAM status.
*/
cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
}
cmd->resid = resid;
cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
}
/*
* Build the scatter/gather array for an I/O.
*/
static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
{
struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
int segment;
unsigned int len = cmd->request_bufflen;
if (len) {
dma_addr_t baddr = map_scsi_single_data(np, cmd);
if (baddr) {
if (len & 1) {
struct sym_tcb *tp = &np->target[cp->target];
if (tp->head.wval & EWS) {
len++;
cp->odd_byte_adjustment++;
}
}
cp->data_len = len;
sym_build_sge(np, data, baddr, len);
segment = 1;
} else {
segment = -2;
}
} else {
segment = 0;
}
return segment;
}
static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
{
int segment;
int use_sg = (int) cmd->use_sg;
cp->data_len = 0;
if (!use_sg)
segment = sym_scatter_no_sglist(np, cp, cmd);
else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
struct scatterlist *scatter = (struct scatterlist *)cmd->request_buffer;
struct sym_tcb *tp = &np->target[cp->target];
struct sym_tblmove *data;
if (use_sg > SYM_CONF_MAX_SG) {
unmap_scsi_data(np, cmd);
return -1;
}
data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
for (segment = 0; segment < use_sg; segment++) {
dma_addr_t baddr = sg_dma_address(&scatter[segment]);
unsigned int len = sg_dma_len(&scatter[segment]);
if ((len & 1) && (tp->head.wval & EWS)) {
len++;
cp->odd_byte_adjustment++;
}
sym_build_sge(np, &data[segment], baddr, len);
cp->data_len += len;
}
} else {
segment = -2;
}
return segment;
}
/*
* Queue a SCSI command.
*/
static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct sym_tcb *tp;
struct sym_lcb *lp;
struct sym_ccb *cp;
int order;
/*
* Minimal checkings, so that we will not
* go outside our tables.
*/
if (sdev->id == np->myaddr) {
sym_xpt_done2(np, cmd, DID_NO_CONNECT);
return 0;
}
/*
* Retrieve the target descriptor.
*/
tp = &np->target[sdev->id];
/*
* Select tagged/untagged.
*/
lp = sym_lp(tp, sdev->lun);
order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
/*
* Queue the SCSI IO.
*/
cp = sym_get_ccb(np, cmd, order);
if (!cp)
return 1; /* Means resource shortage */
sym_queue_scsiio(np, cmd, cp);
return 0;
}
/*
* Setup buffers and pointers that address the CDB.
*/
static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
{
memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
return 0;
}
/*
* Setup pointers that address the data and start the I/O.
*/
int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
{
u32 lastp, goalp;
int dir;
/*
* Build the CDB.
*/
if (sym_setup_cdb(np, cmd, cp))
goto out_abort;
/*
* No direction means no data.
*/
dir = cmd->sc_data_direction;
if (dir != DMA_NONE) {
cp->segments = sym_scatter(np, cp, cmd);
if (cp->segments < 0) {
sym_set_cam_status(cmd, DID_ERROR);
goto out_abort;
}
/*
* No segments means no data.
*/
if (!cp->segments)
dir = DMA_NONE;
} else {
cp->data_len = 0;
cp->segments = 0;
}
/*
* Set the data pointer.
*/
switch (dir) {
case DMA_BIDIRECTIONAL:
printk("%s: got DMA_BIDIRECTIONAL command", sym_name(np));
sym_set_cam_status(cmd, DID_ERROR);
goto out_abort;
case DMA_TO_DEVICE:
goalp = SCRIPTA_BA(np, data_out2) + 8;
lastp = goalp - 8 - (cp->segments * (2*4));
break;
case DMA_FROM_DEVICE:
cp->host_flags |= HF_DATA_IN;
goalp = SCRIPTA_BA(np, data_in2) + 8;
lastp = goalp - 8 - (cp->segments * (2*4));
break;
case DMA_NONE:
default:
lastp = goalp = SCRIPTB_BA(np, no_data);
break;
}
/*
* Set all pointers values needed by SCRIPTS.
*/
cp->phys.head.lastp = cpu_to_scr(lastp);
cp->phys.head.savep = cpu_to_scr(lastp);
cp->startp = cp->phys.head.savep;
cp->goalp = cpu_to_scr(goalp);
/*
* When `#ifed 1', the code below makes the driver
* panic on the first attempt to write to a SCSI device.
* It is the first test we want to do after a driver
* change that does not seem obviously safe. :)
*/
#if 0
switch (cp->cdb_buf[0]) {
case 0x0A: case 0x2A: case 0xAA:
panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
break;
default:
break;
}
#endif
/*
* activate this job.
*/
sym_put_start_queue(np, cp);
return 0;
out_abort:
sym_free_ccb(np, cp);
sym_xpt_done(np, cmd);
return 0;
}
/*
* timer daemon.
*
* Misused to keep the driver running when
* interrupts are not configured correctly.
*/
static void sym_timer(struct sym_hcb *np)
{
unsigned long thistime = jiffies;
/*
* Restart the timer.
*/
np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
add_timer(&np->s.timer);
/*
* If we are resetting the ncr, wait for settle_time before
* clearing it. Then command processing will be resumed.
*/
if (np->s.settle_time_valid) {
if (time_before_eq(np->s.settle_time, thistime)) {
if (sym_verbose >= 2 )
printk("%s: command processing resumed\n",
sym_name(np));
np->s.settle_time_valid = 0;
}
return;
}
/*
* Nothing to do for now, but that may come.
*/
if (np->s.lasttime + 4*HZ < thistime) {
np->s.lasttime = thistime;
}
#ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
/*
* Some way-broken PCI bridges may lead to
* completions being lost when the clearing
* of the INTFLY flag by the CPU occurs
* concurrently with the chip raising this flag.
* If this ever happen, lost completions will
* be reaped here.
*/
sym_wakeup_done(np);
#endif
}
/*
* PCI BUS error handler.
*/
void sym_log_bus_error(struct sym_hcb *np)
{
u_short pci_sts;
pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
if (pci_sts & 0xf900) {
pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
printf("%s: PCI STATUS = 0x%04x\n",
sym_name(np), pci_sts & 0xf900);
}
}
/*
* queuecommand method. Entered with the host adapter lock held and
* interrupts disabled.
*/
static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
int sts = 0;
cmd->scsi_done = done;
memset(ucp, 0, sizeof(*ucp));
/*
* Shorten our settle_time if needed for
* this command not to time out.
*/
if (np->s.settle_time_valid && cmd->timeout_per_command) {
unsigned long tlimit = jiffies + cmd->timeout_per_command;
tlimit -= SYM_CONF_TIMER_INTERVAL*2;
if (time_after(np->s.settle_time, tlimit)) {
np->s.settle_time = tlimit;
}
}
if (np->s.settle_time_valid)
return SCSI_MLQUEUE_HOST_BUSY;
sts = sym_queue_command(np, cmd);
if (sts)
return SCSI_MLQUEUE_HOST_BUSY;
return 0;
}
/*
* Linux entry point of the interrupt handler.
*/
static irqreturn_t sym53c8xx_intr(int irq, void *dev_id)
{
unsigned long flags;
struct sym_hcb *np = (struct sym_hcb *)dev_id;
if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
spin_lock_irqsave(np->s.host->host_lock, flags);
sym_interrupt(np);
spin_unlock_irqrestore(np->s.host->host_lock, flags);
if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
return IRQ_HANDLED;
}
/*
* Linux entry point of the timer handler
*/
static void sym53c8xx_timer(unsigned long npref)
{
struct sym_hcb *np = (struct sym_hcb *)npref;
unsigned long flags;
spin_lock_irqsave(np->s.host->host_lock, flags);
sym_timer(np);
spin_unlock_irqrestore(np->s.host->host_lock, flags);
}
/*
* What the eh thread wants us to perform.
*/
#define SYM_EH_ABORT 0
#define SYM_EH_DEVICE_RESET 1
#define SYM_EH_BUS_RESET 2
#define SYM_EH_HOST_RESET 3
/*
* What we will do regarding the involved SCSI command.
*/
#define SYM_EH_DO_IGNORE 0
#define SYM_EH_DO_WAIT 2
/*
* scsi_done() alias when error recovery is in progress.
*/
static void sym_eh_done(struct scsi_cmnd *cmd)
{
struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));
cmd->scsi_done = ucmd->old_done;
if (ucmd->to_do == SYM_EH_DO_WAIT)
complete(ucmd->eh_done);
}
/*
* Generic method for our eh processing.
* The 'op' argument tells what we have to do.
*/
static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
{
struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
struct Scsi_Host *host = cmd->device->host;
SYM_QUEHEAD *qp;
int to_do = SYM_EH_DO_IGNORE;
int sts = -1;
struct completion eh_done;
dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
spin_lock_irq(host->host_lock);
/* This one is queued in some place -> to wait for completion */
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp->cmd == cmd) {
to_do = SYM_EH_DO_WAIT;
break;
}
}
if (to_do == SYM_EH_DO_WAIT) {
init_completion(&eh_done);
ucmd->old_done = cmd->scsi_done;
ucmd->eh_done = &eh_done;
wmb();
cmd->scsi_done = sym_eh_done;
}
/* Try to proceed the operation we have been asked for */
sts = -1;
switch(op) {
case SYM_EH_ABORT:
sts = sym_abort_scsiio(np, cmd, 1);
break;
case SYM_EH_DEVICE_RESET:
sts = sym_reset_scsi_target(np, cmd->device->id);
break;
case SYM_EH_BUS_RESET:
sym_reset_scsi_bus(np, 1);
sts = 0;
break;
case SYM_EH_HOST_RESET:
sym_reset_scsi_bus(np, 0);
sym_start_up (np, 1);
sts = 0;
break;
default:
break;
}
/* On error, restore everything and cross fingers :) */
if (sts) {
cmd->scsi_done = ucmd->old_done;
to_do = SYM_EH_DO_IGNORE;
}
ucmd->to_do = to_do;
spin_unlock_irq(host->host_lock);
if (to_do == SYM_EH_DO_WAIT) {
if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
ucmd->to_do = SYM_EH_DO_IGNORE;
wmb();
sts = -2;
}
}
dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
return sts ? SCSI_FAILED : SCSI_SUCCESS;
}
/*
* Error handlers called from the eh thread (one thread per HBA).
*/
static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
{
return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
}
static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
{
return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
}
static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
{
return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
}
static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
{
return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
}
/*
* Tune device queuing depth, according to various limits.
*/
static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
{
struct sym_lcb *lp = sym_lp(tp, lun);
u_short oldtags;
if (!lp)
return;
oldtags = lp->s.reqtags;
if (reqtags > lp->s.scdev_depth)
reqtags = lp->s.scdev_depth;
lp->s.reqtags = reqtags;
if (reqtags != oldtags) {
dev_info(&tp->starget->dev,
"tagged command queuing %s, command queue depth %d.\n",
lp->s.reqtags ? "enabled" : "disabled", reqtags);
}
}
/*
* Linux select queue depths function
*/
#define DEF_DEPTH (sym_driver_setup.max_tag)
#define ALL_TARGETS -2
#define NO_TARGET -1
#define ALL_LUNS -2
#define NO_LUN -1
static int device_queue_depth(struct sym_hcb *np, int target, int lun)
{
int c, h, t, u, v;
char *p = sym_driver_setup.tag_ctrl;
char *ep;
h = -1;
t = NO_TARGET;
u = NO_LUN;
while ((c = *p++) != 0) {
v = simple_strtoul(p, &ep, 0);
switch(c) {
case '/':
++h;
t = ALL_TARGETS;
u = ALL_LUNS;
break;
case 't':
if (t != target)
t = (target == v) ? v : NO_TARGET;
u = ALL_LUNS;
break;
case 'u':
if (u != lun)
u = (lun == v) ? v : NO_LUN;
break;
case 'q':
if (h == np->s.unit &&
(t == ALL_TARGETS || t == target) &&
(u == ALL_LUNS || u == lun))
return v;
break;
case '-':
t = ALL_TARGETS;
u = ALL_LUNS;
break;
default:
break;
}
p = ep;
}
return DEF_DEPTH;
}
static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
{
struct sym_hcb *np = sym_get_hcb(sdev->host);
struct sym_tcb *tp = &np->target[sdev->id];
struct sym_lcb *lp;
if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
return -ENXIO;
tp->starget = sdev->sdev_target;
/*
* Fail the device init if the device is flagged NOSCAN at BOOT in
* the NVRAM. This may speed up boot and maintain coherency with
* BIOS device numbering. Clearing the flag allows the user to
* rescan skipped devices later. We also return an error for
* devices not flagged for SCAN LUNS in the NVRAM since some single
* lun devices behave badly when asked for a non zero LUN.
*/
if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
starget_printk(KERN_INFO, tp->starget,
"Scan at boot disabled in NVRAM\n");
return -ENXIO;
}
if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
if (sdev->lun != 0)
return -ENXIO;
starget_printk(KERN_INFO, tp->starget,
"Multiple LUNs disabled in NVRAM\n");
}
lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
if (!lp)
return -ENOMEM;
spi_min_period(tp->starget) = tp->usr_period;
spi_max_width(tp->starget) = tp->usr_width;
return 0;
}
/*
* Linux entry point for device queue sizing.
*/
static int sym53c8xx_slave_configure(struct scsi_device *sdev)
{
struct sym_hcb *np = sym_get_hcb(sdev->host);
struct sym_tcb *tp = &np->target[sdev->id];
struct sym_lcb *lp = sym_lp(tp, sdev->lun);
int reqtags, depth_to_use;
/*
* Get user flags.
*/
lp->curr_flags = lp->user_flags;
/*
* Select queue depth from driver setup.
* Donnot use more than configured by user.
* Use at least 2.
* Donnot use more than our maximum.
*/
reqtags = device_queue_depth(np, sdev->id, sdev->lun);
if (reqtags > tp->usrtags)
reqtags = tp->usrtags;
if (!sdev->tagged_supported)
reqtags = 0;
#if 1 /* Avoid to locally queue commands for no good reasons */
if (reqtags > SYM_CONF_MAX_TAG)
reqtags = SYM_CONF_MAX_TAG;
depth_to_use = (reqtags ? reqtags : 2);
#else
depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
#endif
scsi_adjust_queue_depth(sdev,
(sdev->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
lp->s.scdev_depth = depth_to_use;
sym_tune_dev_queuing(tp, sdev->lun, reqtags);
if (!spi_initial_dv(sdev->sdev_target))
spi_dv_device(sdev);
return 0;
}
static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
{
struct sym_hcb *np = sym_get_hcb(sdev->host);
struct sym_lcb *lp = sym_lp(&np->target[sdev->id], sdev->lun);
if (lp->itlq_tbl)
sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK * 4, "ITLQ_TBL");
kfree(lp->cb_tags);
sym_mfree_dma(lp, sizeof(*lp), "LCB");
}
/*
* Linux entry point for info() function
*/
static const char *sym53c8xx_info (struct Scsi_Host *host)
{
return SYM_DRIVER_NAME;
}
#ifdef SYM_LINUX_PROC_INFO_SUPPORT
/*
* Proc file system stuff
*
* A read operation returns adapter information.
* A write operation is a control command.
* The string is parsed in the driver code and the command is passed
* to the sym_usercmd() function.
*/
#ifdef SYM_LINUX_USER_COMMAND_SUPPORT
struct sym_usrcmd {
u_long target;
u_long lun;
u_long data;
u_long cmd;
};
#define UC_SETSYNC 10
#define UC_SETTAGS 11
#define UC_SETDEBUG 12
#define UC_SETWIDE 14
#define UC_SETFLAG 15
#define UC_SETVERBOSE 17
#define UC_RESETDEV 18
#define UC_CLEARDEV 19
static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
{
struct sym_tcb *tp;
int t, l;
switch (uc->cmd) {
case 0: return;
#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
case UC_SETDEBUG:
sym_debug_flags = uc->data;
break;
#endif
case UC_SETVERBOSE:
np->verbose = uc->data;
break;
default:
/*
* We assume that other commands apply to targets.
* This should always be the case and avoid the below
* 4 lines to be repeated 6 times.
*/
for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
if (!((uc->target >> t) & 1))
continue;
tp = &np->target[t];
switch (uc->cmd) {
case UC_SETSYNC:
if (!uc->data || uc->data >= 255) {
tp->tgoal.iu = tp->tgoal.dt =
tp->tgoal.qas = 0;
tp->tgoal.offset = 0;
} else if (uc->data <= 9 && np->minsync_dt) {
if (uc->data < np->minsync_dt)
uc->data = np->minsync_dt;
tp->tgoal.iu = tp->tgoal.dt =
tp->tgoal.qas = 1;
tp->tgoal.width = 1;
tp->tgoal.period = uc->data;
tp->tgoal.offset = np->maxoffs_dt;
} else {
if (uc->data < np->minsync)
uc->data = np->minsync;
tp->tgoal.iu = tp->tgoal.dt =
tp->tgoal.qas = 0;
tp->tgoal.period = uc->data;
tp->tgoal.offset = np->maxoffs;
}
tp->tgoal.check_nego = 1;
break;
case UC_SETWIDE:
tp->tgoal.width = uc->data ? 1 : 0;
tp->tgoal.check_nego = 1;
break;
case UC_SETTAGS:
for (l = 0; l < SYM_CONF_MAX_LUN; l++)
sym_tune_dev_queuing(tp, l, uc->data);
break;
case UC_RESETDEV:
tp->to_reset = 1;
np->istat_sem = SEM;
OUTB(np, nc_istat, SIGP|SEM);
break;
case UC_CLEARDEV:
for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
struct sym_lcb *lp = sym_lp(tp, l);
if (lp) lp->to_clear = 1;
}
np->istat_sem = SEM;
OUTB(np, nc_istat, SIGP|SEM);
break;
case UC_SETFLAG:
tp->usrflags = uc->data;
break;
}
}
break;
}
}
static int skip_spaces(char *ptr, int len)
{
int cnt, c;
for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
return (len - cnt);
}
static int get_int_arg(char *ptr, int len, u_long *pv)
{
char *end;
*pv = simple_strtoul(ptr, &end, 10);
return (end - ptr);
}
static int is_keyword(char *ptr, int len, char *verb)
{
int verb_len = strlen(verb);
if (len >= verb_len && !memcmp(verb, ptr, verb_len))
return verb_len;
else
return 0;
}
#define SKIP_SPACES(ptr, len) \
if ((arg_len = skip_spaces(ptr, len)) < 1) \
return -EINVAL; \
ptr += arg_len; len -= arg_len;
#define GET_INT_ARG(ptr, len, v) \
if (!(arg_len = get_int_arg(ptr, len, &(v)))) \
return -EINVAL; \
ptr += arg_len; len -= arg_len;
/*
* Parse a control command
*/
static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
{
char *ptr = buffer;
int len = length;
struct sym_usrcmd cmd, *uc = &cmd;
int arg_len;
u_long target;
memset(uc, 0, sizeof(*uc));
if (len > 0 && ptr[len-1] == '\n')
--len;
if ((arg_len = is_keyword(ptr, len, "setsync")) != 0)
uc->cmd = UC_SETSYNC;
else if ((arg_len = is_keyword(ptr, len, "settags")) != 0)
uc->cmd = UC_SETTAGS;
else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
uc->cmd = UC_SETVERBOSE;
else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0)
uc->cmd = UC_SETWIDE;
#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
uc->cmd = UC_SETDEBUG;
#endif
else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0)
uc->cmd = UC_SETFLAG;
else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
uc->cmd = UC_RESETDEV;
else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
uc->cmd = UC_CLEARDEV;
else
arg_len = 0;
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
#endif
if (!arg_len)
return -EINVAL;
ptr += arg_len; len -= arg_len;
switch(uc->cmd) {
case UC_SETSYNC:
case UC_SETTAGS:
case UC_SETWIDE:
case UC_SETFLAG:
case UC_RESETDEV:
case UC_CLEARDEV:
SKIP_SPACES(ptr, len);
if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
ptr += arg_len; len -= arg_len;
uc->target = ~0;
} else {
GET_INT_ARG(ptr, len, target);
uc->target = (1<<target);
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: target=%ld\n", target);
#endif
}
break;
}
switch(uc->cmd) {
case UC_SETVERBOSE:
case UC_SETSYNC:
case UC_SETTAGS:
case UC_SETWIDE:
SKIP_SPACES(ptr, len);
GET_INT_ARG(ptr, len, uc->data);
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: data=%ld\n", uc->data);
#endif
break;
#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
case UC_SETDEBUG:
while (len > 0) {
SKIP_SPACES(ptr, len);
if ((arg_len = is_keyword(ptr, len, "alloc")))
uc->data |= DEBUG_ALLOC;
else if ((arg_len = is_keyword(ptr, len, "phase")))
uc->data |= DEBUG_PHASE;
else if ((arg_len = is_keyword(ptr, len, "queue")))
uc->data |= DEBUG_QUEUE;
else if ((arg_len = is_keyword(ptr, len, "result")))
uc->data |= DEBUG_RESULT;
else if ((arg_len = is_keyword(ptr, len, "scatter")))
uc->data |= DEBUG_SCATTER;
else if ((arg_len = is_keyword(ptr, len, "script")))
uc->data |= DEBUG_SCRIPT;
else if ((arg_len = is_keyword(ptr, len, "tiny")))
uc->data |= DEBUG_TINY;
else if ((arg_len = is_keyword(ptr, len, "timing")))
uc->data |= DEBUG_TIMING;
else if ((arg_len = is_keyword(ptr, len, "nego")))
uc->data |= DEBUG_NEGO;
else if ((arg_len = is_keyword(ptr, len, "tags")))
uc->data |= DEBUG_TAGS;
else if ((arg_len = is_keyword(ptr, len, "pointer")))
uc->data |= DEBUG_POINTER;
else
return -EINVAL;
ptr += arg_len; len -= arg_len;
}
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: data=%ld\n", uc->data);
#endif
break;
#endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
case UC_SETFLAG:
while (len > 0) {
SKIP_SPACES(ptr, len);
if ((arg_len = is_keyword(ptr, len, "no_disc")))
uc->data &= ~SYM_DISC_ENABLED;
else
return -EINVAL;
ptr += arg_len; len -= arg_len;
}
break;
default:
break;
}
if (len)
return -EINVAL;
else {
unsigned long flags;
spin_lock_irqsave(np->s.host->host_lock, flags);
sym_exec_user_command (np, uc);
spin_unlock_irqrestore(np->s.host->host_lock, flags);
}
return length;
}
#endif /* SYM_LINUX_USER_COMMAND_SUPPORT */
#ifdef SYM_LINUX_USER_INFO_SUPPORT
/*
* Informations through the proc file system.
*/
struct info_str {
char *buffer;
int length;
int offset;
int pos;
};
static void copy_mem_info(struct info_str *info, char *data, int len)
{
if (info->pos + len > info->length)
len = info->length - info->pos;
if (info->pos + len < info->offset) {
info->pos += len;
return;
}
if (info->pos < info->offset) {
data += (info->offset - info->pos);
len -= (info->offset - info->pos);
}
if (len > 0) {
memcpy(info->buffer + info->pos, data, len);
info->pos += len;
}
}
static int copy_info(struct info_str *info, char *fmt, ...)
{
va_list args;
char buf[81];
int len;
va_start(args, fmt);
len = vsprintf(buf, fmt, args);
va_end(args);
copy_mem_info(info, buf, len);
return len;
}
/*
* Copy formatted information into the input buffer.
*/
static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
{
struct info_str info;
info.buffer = ptr;
info.length = len;
info.offset = offset;
info.pos = 0;
copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
"revision id 0x%x\n",
np->s.chip_name, np->device_id, np->revision_id);
copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
pci_name(np->s.device), IRQ_PRM(np->s.irq));
copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
(int) (np->minsync_dt ? np->minsync_dt : np->minsync),
np->maxwide ? "Wide" : "Narrow",
np->minsync_dt ? ", DT capable" : "");
copy_info(&info, "Max. started commands %d, "
"max. commands per LUN %d\n",
SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
return info.pos > info.offset? info.pos - info.offset : 0;
}
#endif /* SYM_LINUX_USER_INFO_SUPPORT */
/*
* Entry point of the scsi proc fs of the driver.
* - func = 0 means read (returns adapter infos)
* - func = 1 means write (not yet merget from sym53c8xx)
*/
static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
char **start, off_t offset, int length, int func)
{
struct sym_hcb *np = sym_get_hcb(host);
int retv;
if (func) {
#ifdef SYM_LINUX_USER_COMMAND_SUPPORT
retv = sym_user_command(np, buffer, length);
#else
retv = -EINVAL;
#endif
} else {
if (start)
*start = buffer;
#ifdef SYM_LINUX_USER_INFO_SUPPORT
retv = sym_host_info(np, buffer, offset, length);
#else
retv = -EINVAL;
#endif
}
return retv;
}
#endif /* SYM_LINUX_PROC_INFO_SUPPORT */
/*
* Free controller resources.
*/
static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
{
/*
* Free O/S specific resources.
*/
if (np->s.irq)
free_irq(np->s.irq, np);
if (np->s.ioaddr)
pci_iounmap(pdev, np->s.ioaddr);
if (np->s.ramaddr)
pci_iounmap(pdev, np->s.ramaddr);
/*
* Free O/S independent resources.
*/
sym_hcb_free(np);
sym_mfree_dma(np, sizeof(*np), "HCB");
}
/*
* Ask/tell the system about DMA addressing.
*/
static int sym_setup_bus_dma_mask(struct sym_hcb *np)
{
#if SYM_CONF_DMA_ADDRESSING_MODE > 0
#if SYM_CONF_DMA_ADDRESSING_MODE == 1
#define DMA_DAC_MASK DMA_40BIT_MASK
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
#define DMA_DAC_MASK DMA_64BIT_MASK
#endif
if ((np->features & FE_DAC) &&
!pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
np->use_dac = 1;
return 0;
}
#endif
if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
return 0;
printf_warning("%s: No suitable DMA available\n", sym_name(np));
return -1;
}
/*
* Host attach and initialisations.
*
* Allocate host data and ncb structure.
* Remap MMIO region.
* Do chip initialization.
* If all is OK, install interrupt handling and
* start the timer daemon.
*/
static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
int unit, struct sym_device *dev)
{
struct host_data *host_data;
struct sym_hcb *np = NULL;
struct Scsi_Host *instance = NULL;
struct pci_dev *pdev = dev->pdev;
unsigned long flags;
struct sym_fw *fw;
printk(KERN_INFO
"sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
unit, dev->chip.name, dev->chip.revision_id,
pci_name(pdev), IRQ_PRM(pdev->irq));
/*
* Get the firmware for this chip.
*/
fw = sym_find_firmware(&dev->chip);
if (!fw)
goto attach_failed;
/*
* Allocate host_data structure
*/
instance = scsi_host_alloc(tpnt, sizeof(*host_data));
if (!instance)
goto attach_failed;
host_data = (struct host_data *) instance->hostdata;
/*
* Allocate immediately the host control block,
* since we are only expecting to succeed. :)
* We keep track in the HCB of all the resources that
* are to be released on error.
*/
np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
if (!np)
goto attach_failed;
np->s.device = pdev;
np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
host_data->ncb = np;
np->s.host = instance;
pci_set_drvdata(pdev, np);
/*
* Copy some useful infos to the HCB.
*/
np->hcb_ba = vtobus(np);
np->verbose = sym_driver_setup.verbose;
np->s.device = pdev;
np->s.unit = unit;
np->device_id = dev->chip.device_id;
np->revision_id = dev->chip.revision_id;
np->features = dev->chip.features;
np->clock_divn = dev->chip.nr_divisor;
np->maxoffs = dev->chip.offset_max;
np->maxburst = dev->chip.burst_max;
np->myaddr = dev->host_id;
/*
* Edit its name.
*/
strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
sprintf(np->s.inst_name, "sym%d", np->s.unit);
if (sym_setup_bus_dma_mask(np))
goto attach_failed;
/*
* Try to map the controller chip to
* virtual and physical memory.
*/
np->mmio_ba = (u32)dev->mmio_base;
np->s.ioaddr = dev->s.ioaddr;
np->s.ramaddr = dev->s.ramaddr;
np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
/*
* Map on-chip RAM if present and supported.
*/
if (!(np->features & FE_RAM))
dev->ram_base = 0;
if (dev->ram_base) {
np->ram_ba = (u32)dev->ram_base;
np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
}
if (sym_hcb_attach(instance, fw, dev->nvram))
goto attach_failed;
/*
* Install the interrupt handler.
* If we synchonize the C code with SCRIPTS on interrupt,
* we do not want to share the INTR line at all.
*/
if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, np)) {
printf_err("%s: request irq %d failure\n",
sym_name(np), pdev->irq);
goto attach_failed;
}
np->s.irq = pdev->irq;
/*
* After SCSI devices have been opened, we cannot
* reset the bus safely, so we do it here.
*/
spin_lock_irqsave(instance->host_lock, flags);
if (sym_reset_scsi_bus(np, 0))
goto reset_failed;
/*
* Start the SCRIPTS.
*/
sym_start_up (np, 1);
/*
* Start the timer daemon
*/
init_timer(&np->s.timer);
np->s.timer.data = (unsigned long) np;
np->s.timer.function = sym53c8xx_timer;
np->s.lasttime=0;
sym_timer (np);
/*
* Fill Linux host instance structure
* and return success.
*/
instance->max_channel = 0;
instance->this_id = np->myaddr;
instance->max_id = np->maxwide ? 16 : 8;
instance->max_lun = SYM_CONF_MAX_LUN;
instance->unique_id = pci_resource_start(pdev, 0);
instance->cmd_per_lun = SYM_CONF_MAX_TAG;
instance->can_queue = (SYM_CONF_MAX_START-2);
instance->sg_tablesize = SYM_CONF_MAX_SG;
instance->max_cmd_len = 16;
BUG_ON(sym2_transport_template == NULL);
instance->transportt = sym2_transport_template;
spin_unlock_irqrestore(instance->host_lock, flags);
return instance;
reset_failed:
printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
"TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
spin_unlock_irqrestore(instance->host_lock, flags);
attach_failed:
if (!instance)
return NULL;
printf_info("%s: giving up ...\n", sym_name(np));
if (np)
sym_free_resources(np, pdev);
scsi_host_put(instance);
return NULL;
}
/*
* Detect and try to read SYMBIOS and TEKRAM NVRAM.
*/
#if SYM_CONF_NVRAM_SUPPORT
static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
{
devp->nvram = nvp;
devp->device_id = devp->chip.device_id;
nvp->type = 0;
sym_read_nvram(devp, nvp);
}
#else
static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
{
}
#endif /* SYM_CONF_NVRAM_SUPPORT */
static int __devinit sym_check_supported(struct sym_device *device)
{
struct sym_chip *chip;
struct pci_dev *pdev = device->pdev;
u_char revision;
unsigned long io_port = pci_resource_start(pdev, 0);
int i;
/*
* If user excluded this chip, do not initialize it.
* I hate this code so much. Must kill it.
*/
if (io_port) {
for (i = 0 ; i < 8 ; i++) {
if (sym_driver_setup.excludes[i] == io_port)
return -ENODEV;
}
}
/*
* Check if the chip is supported. Then copy the chip description
* to our device structure so we can make it match the actual device
* and options.
*/
pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
chip = sym_lookup_chip_table(pdev->device, revision);
if (!chip) {
dev_info(&pdev->dev, "device not supported\n");
return -ENODEV;
}
memcpy(&device->chip, chip, sizeof(device->chip));
device->chip.revision_id = revision;
return 0;
}
/*
* Ignore Symbios chips controlled by various RAID controllers.
* These controllers set value 0x52414944 at RAM end - 16.
*/
static int __devinit sym_check_raid(struct sym_device *device)
{
unsigned int ram_size, ram_val;
if (!device->s.ramaddr)
return 0;
if (device->chip.features & FE_RAM8K)
ram_size = 8192;
else
ram_size = 4096;
ram_val = readl(device->s.ramaddr + ram_size - 16);
if (ram_val != 0x52414944)
return 0;
dev_info(&device->pdev->dev,
"not initializing, driven by RAID controller.\n");
return -ENODEV;
}
static int __devinit sym_set_workarounds(struct sym_device *device)
{
struct sym_chip *chip = &device->chip;
struct pci_dev *pdev = device->pdev;
u_short status_reg;
/*
* (ITEM 12 of a DEL about the 896 I haven't yet).
* We must ensure the chip will use WRITE AND INVALIDATE.
* The revision number limit is for now arbitrary.
*/
if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
chip->features |= (FE_WRIE | FE_CLSE);
}
/* If the chip can do Memory Write Invalidate, enable it */
if (chip->features & FE_WRIE) {
if (pci_set_mwi(pdev))
return -ENODEV;
}
/*
* Work around for errant bit in 895A. The 66Mhz
* capable bit is set erroneously. Clear this bit.
* (Item 1 DEL 533)
*
* Make sure Config space and Features agree.
*
* Recall: writes are not normal to status register -
* write a 1 to clear and a 0 to leave unchanged.
* Can only reset bits.
*/
pci_read_config_word(pdev, PCI_STATUS, &status_reg);
if (chip->features & FE_66MHZ) {
if (!(status_reg & PCI_STATUS_66MHZ))
chip->features &= ~FE_66MHZ;
} else {
if (status_reg & PCI_STATUS_66MHZ) {
status_reg = PCI_STATUS_66MHZ;
pci_write_config_word(pdev, PCI_STATUS, status_reg);
pci_read_config_word(pdev, PCI_STATUS, &status_reg);
}
}
return 0;
}
/*
* Read and check the PCI configuration for any detected NCR
* boards and save data for attaching after all boards have
* been detected.
*/
static void __devinit
sym_init_device(struct pci_dev *pdev, struct sym_device *device)
{
int i = 2;
struct pci_bus_region bus_addr;
device->host_id = SYM_SETUP_HOST_ID;
device->pdev = pdev;
pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[1]);
device->mmio_base = bus_addr.start;
/*
* If the BAR is 64-bit, resource 2 will be occupied by the
* upper 32 bits
*/
if (!pdev->resource[i].flags)
i++;
pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[i]);
device->ram_base = bus_addr.start;
#ifdef CONFIG_SCSI_SYM53C8XX_MMIO
if (device->mmio_base)
device->s.ioaddr = pci_iomap(pdev, 1,
pci_resource_len(pdev, 1));
#endif
if (!device->s.ioaddr)
device->s.ioaddr = pci_iomap(pdev, 0,
pci_resource_len(pdev, 0));
if (device->ram_base)
device->s.ramaddr = pci_iomap(pdev, i,
pci_resource_len(pdev, i));
}
/*
* The NCR PQS and PDS cards are constructed as a DEC bridge
* behind which sits a proprietary NCR memory controller and
* either four or two 53c875s as separate devices. We can tell
* if an 875 is part of a PQS/PDS or not since if it is, it will
* be on the same bus as the memory controller. In its usual
* mode of operation, the 875s are slaved to the memory
* controller for all transfers. To operate with the Linux
* driver, the memory controller is disabled and the 875s
* freed to function independently. The only wrinkle is that
* the preset SCSI ID (which may be zero) must be read in from
* a special configuration space register of the 875.
*/
static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
{
int slot;
u8 tmp;
for (slot = 0; slot < 256; slot++) {
struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
pci_dev_put(memc);
continue;
}
/* bit 1: allow individual 875 configuration */
pci_read_config_byte(memc, 0x44, &tmp);
if ((tmp & 0x2) == 0) {
tmp |= 0x2;
pci_write_config_byte(memc, 0x44, tmp);
}
/* bit 2: drive individual 875 interrupts to the bus */
pci_read_config_byte(memc, 0x45, &tmp);
if ((tmp & 0x4) == 0) {
tmp |= 0x4;
pci_write_config_byte(memc, 0x45, tmp);
}
pci_dev_put(memc);
break;
}
pci_read_config_byte(pdev, 0x84, &tmp);
sym_dev->host_id = tmp;
}
/*
* Called before unloading the module.
* Detach the host.
* We have to free resources and halt the NCR chip.
*/
static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
{
printk("%s: detaching ...\n", sym_name(np));
del_timer_sync(&np->s.timer);
/*
* Reset NCR chip.
* We should use sym_soft_reset(), but we don't want to do
* so, since we may not be safe if interrupts occur.
*/
printk("%s: resetting chip\n", sym_name(np));
OUTB(np, nc_istat, SRST);
INB(np, nc_mbox1);
udelay(10);
OUTB(np, nc_istat, 0);
sym_free_resources(np, pdev);
return 1;
}
/*
* Driver host template.
*/
static struct scsi_host_template sym2_template = {
.module = THIS_MODULE,
.name = "sym53c8xx",
.info = sym53c8xx_info,
.queuecommand = sym53c8xx_queue_command,
.slave_alloc = sym53c8xx_slave_alloc,
.slave_configure = sym53c8xx_slave_configure,
.slave_destroy = sym53c8xx_slave_destroy,
.eh_abort_handler = sym53c8xx_eh_abort_handler,
.eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
.eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler,
.eh_host_reset_handler = sym53c8xx_eh_host_reset_handler,
.this_id = 7,
.use_clustering = ENABLE_CLUSTERING,
.max_sectors = 0xFFFF,
#ifdef SYM_LINUX_PROC_INFO_SUPPORT
.proc_info = sym53c8xx_proc_info,
.proc_name = NAME53C8XX,
#endif
};
static int attach_count;
static int __devinit sym2_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct sym_device sym_dev;
struct sym_nvram nvram;
struct Scsi_Host *instance;
memset(&sym_dev, 0, sizeof(sym_dev));
memset(&nvram, 0, sizeof(nvram));
if (pci_enable_device(pdev))
goto leave;
pci_set_master(pdev);
if (pci_request_regions(pdev, NAME53C8XX))
goto disable;
sym_init_device(pdev, &sym_dev);
if (sym_check_supported(&sym_dev))
goto free;
if (sym_check_raid(&sym_dev))
goto leave; /* Don't disable the device */
if (sym_set_workarounds(&sym_dev))
goto free;
sym_config_pqs(pdev, &sym_dev);
sym_get_nvram(&sym_dev, &nvram);
instance = sym_attach(&sym2_template, attach_count, &sym_dev);
if (!instance)
goto free;
if (scsi_add_host(instance, &pdev->dev))
goto detach;
scsi_scan_host(instance);
attach_count++;
return 0;
detach:
sym_detach(pci_get_drvdata(pdev), pdev);
free:
pci_release_regions(pdev);
disable:
pci_disable_device(pdev);
leave:
return -ENODEV;
}
static void __devexit sym2_remove(struct pci_dev *pdev)
{
struct sym_hcb *np = pci_get_drvdata(pdev);
struct Scsi_Host *host = np->s.host;
scsi_remove_host(host);
scsi_host_put(host);
sym_detach(np, pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
attach_count--;
}
static void sym2_get_signalling(struct Scsi_Host *shost)
{
struct sym_hcb *np = sym_get_hcb(shost);
enum spi_signal_type type;
switch (np->scsi_mode) {
case SMODE_SE:
type = SPI_SIGNAL_SE;
break;
case SMODE_LVD:
type = SPI_SIGNAL_LVD;
break;
case SMODE_HVD:
type = SPI_SIGNAL_HVD;
break;
default:
type = SPI_SIGNAL_UNKNOWN;
break;
}
spi_signalling(shost) = type;
}
static void sym2_set_offset(struct scsi_target *starget, int offset)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
tp->tgoal.offset = offset;
tp->tgoal.check_nego = 1;
}
static void sym2_set_period(struct scsi_target *starget, int period)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
/* have to have DT for these transfers, but DT will also
* set width, so check that this is allowed */
if (period <= np->minsync && spi_width(starget))
tp->tgoal.dt = 1;
tp->tgoal.period = period;
tp->tgoal.check_nego = 1;
}
static void sym2_set_width(struct scsi_target *starget, int width)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
/* It is illegal to have DT set on narrow transfers. If DT is
* clear, we must also clear IU and QAS. */
if (width == 0)
tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
tp->tgoal.width = width;
tp->tgoal.check_nego = 1;
}
static void sym2_set_dt(struct scsi_target *starget, int dt)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
/* We must clear QAS and IU if DT is clear */
if (dt)
tp->tgoal.dt = 1;
else
tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
tp->tgoal.check_nego = 1;
}
#if 0
static void sym2_set_iu(struct scsi_target *starget, int iu)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
if (iu)
tp->tgoal.iu = tp->tgoal.dt = 1;
else
tp->tgoal.iu = 0;
tp->tgoal.check_nego = 1;
}
static void sym2_set_qas(struct scsi_target *starget, int qas)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
if (qas)
tp->tgoal.dt = tp->tgoal.qas = 1;
else
tp->tgoal.qas = 0;
tp->tgoal.check_nego = 1;
}
#endif
static struct spi_function_template sym2_transport_functions = {
.set_offset = sym2_set_offset,
.show_offset = 1,
.set_period = sym2_set_period,
.show_period = 1,
.set_width = sym2_set_width,
.show_width = 1,
.set_dt = sym2_set_dt,
.show_dt = 1,
#if 0
.set_iu = sym2_set_iu,
.show_iu = 1,
.set_qas = sym2_set_qas,
.show_qas = 1,
#endif
.get_signalling = sym2_get_signalling,
};
static struct pci_device_id sym2_id_table[] __devinitdata = {
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, sym2_id_table);
static struct pci_driver sym2_driver = {
.name = NAME53C8XX,
.id_table = sym2_id_table,
.probe = sym2_probe,
.remove = __devexit_p(sym2_remove),
};
static int __init sym2_init(void)
{
int error;
sym2_setup_params();
sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
if (!sym2_transport_template)
return -ENODEV;
error = pci_register_driver(&sym2_driver);
if (error)
spi_release_transport(sym2_transport_template);
return error;
}
static void __exit sym2_exit(void)
{
pci_unregister_driver(&sym2_driver);
spi_release_transport(sym2_transport_template);
}
module_init(sym2_init);
module_exit(sym2_exit);